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Abstract. An exploratory study of learning a neural network for cat-
egorisation shows that commonly used leaky integrate and fire neurons
and Hebbian learning can be effective. The system learns with a standard
spike timing dependent plasticity Hebbian learning rule. A two layer feed
forward topology is used with a presentation mechanism of inputs fol-
lowed by outputs a simulated millisecond later to learn Iris flower and
Breast Cancer tumour Malignancy categeorisers. An exploration of pa-
rameters indicates how this mechanism may be applied to other tasks,
and extensions to the topology, and overall mechanism are explored.

Keywords: Spiking Neural Network · Spike Timing Dependent Plastic-
ity · Categorisation

1 Introduction

AI is a critical technology with immense interest from governments, companies
and society at large. Recent developements in machine learning and deep net-
works in particular have achieved success in a wide range of areas, such as face
recognition [18] and games [16, 13].

Deep Nets [9] are a diverse group of systems typically with large numbers
of units between layers, and many well connected layers. Deep nets gain their
strength from these connections, which are trained to reflect a mapping from
known inputs to known outputs. These connectionist systems are typically in-
spired by the brain, and are thus called neural networks.

Simulated biological neural networks, on the other hand, attempt to repro-
duce the behaviour of brains, or parts of brains [15]. These are based on models
of biological neurons, models of biological learning, and biological topologies.
The neural models are typically spiking neurons.

Research in deep nets and biological neural nets are largely distinct, though
there is shared interest. In particular, one of the problems with work in deep nets
is that it is computationally expensive, while actual biological nets are known
to be relatively computationally inexpensive. A human brain uses less power
than a light bulb. Consequently, there is an increasing interest in spiking nets
for machine learning.
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This paper describes a system that categorises data based on a neural net-
work. The network has aspects of biological plausibility combined with a biologi-
cally unrealistic topology. The plausible aspects include learning via spike timing
dependenant plasticity, a Hebbian learning rule, and a widely used, though sim-
ple, biological neuron model. It is not clear that the presentation or testing
mechanism is psychologically realistic.

2 Literature Review

There many neural models including relatively simple point models that rep-
resent neurons by simple equations and elaborate compartmental models [10]
that break neurons into compartments and evaluate the conductance of these
compartments. Leaky integrate and fire neurons integrate activation from other
neurons. The activation leaks away, but if enough accumlates, the neuron fires
emiting a spike. The activation resets after it fires. In this paper, the leaky inte-
grate and fire neural model is from Brette and Gerstner [5]. The model includes
exponential current transmission, so that the current is transferred across the
synapse (after the pre synaptic neuron fires) at an exponentially decaying rate.

In the brain, most if not all learning is Hebbian [8]. If the presynaptic neuron
tends to cause the postsynaptic neuron to fire, the weight will tend to increase.
There are many rules, but a great deal of biological evidence supports Spike
Timing Dependent Plasticity (STDP) [3]. Bi and Poo [3] have perhaps the first
published example that shows the performance of the changing efficiency of
biological synapses. Song et al. [17] have developed an idealised curve that fits
the biological data, though it is a curve fitting exercise. Figure 1 shows a version
of this curve. Horizontally, the figure shows the difference between the firing
times of the pre and post synaptic neurons, with the post synaptic neuron firing
first on the left. In this case, the synapse is weakened because the pre synaptic
neuron has not caused the post synaptic neuron to fire. When the pre synaptic
neuron fires first, the weight is increased. Note that the closer to precisely co-
firing, the more the weight change. These curves are exponential functions. The
simulations in the remainder of the paper use an STDP learing rule.

Other spiking systems have used Hebbian learning and Hebbian like learning
rules to learn categorisers. One system uses leaky integrate and fire neurons with
adaptation and a compensatory Hebbian learning rule to learn categorisers [11].
This uses recurrent connectivity. Another uses spiking neurons and a modified
Hebbian learning rule [20]. The modified rule includes data about the slowly
varying time-averaged value of post-synaptic activity [4].

3 Methods

There are many neural simulators and neural models. This diversity encourages
exploration, but reduces reusability and reproducability. The code for the sim-
ulations below has made use of one widely used mechanism, PyNN and NEST.
The system was developed using PyNN middleware [6], a python package to
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Spike Timing Dependent Plasticity Curve

Fig. 1. An idealised standard STDP curve. The left curve shows the weight change
of the synapse that connects two neurons when the pre synaptic neuron fires first. It
is reduced, and reduced more the closer the two fire. The left curve shows the weight
change when the pre synaptic neuron fires first; the weight increases, and the closer
the two fire the more it increases.

specify the topology and manage inputs. The backend was the NEST neuron
simulation platform [7].1

Data was taken from the widely used University of California at Irvine (UCI)
benchmark [1]. A commonly used task, categorisation of Iris flowers, is used
initially. The data was split into two equal sized groups. The Iris data has 150
instances, 50 of each of three categories, so the data was split into two 75 item
data sets with 25 of each category in each.

First the data is preprocessed by scaling the range of features to 0 to 100 with
two digits of precision. Now all features are represented by a number between 0
and 100 inclusive. The input to the system is represented by a neuron for each
number. So, for the Iris data, there are four features, and thus 404 input neurons.

There is a neuron for each output category. For the Iris data, there are three
categories, and thus three neurons.

The input neurons are well connected to the output neurons using plastic
synapses. The plasiticity rule is a variant Hebbian STDP, consistent with Song
et al. [17].

During training, the input neurons are sent a spike, and the output neurons
are sent a spike one ms. later. This uses the PyNN spike source, an impossible
feature of biological learning because neural firing is caused either directly in
sensory neurons, or via a cascade of firing from other neurons. The input neurons
consist of those mapped to the input feature, and in a window of three on either

1 The code can be found on http://www.cwa.mdx.ac.uk/NEAL/NEAL.html.
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side. So, when the first training feature is 19, the neurons numbered 15 to 21
are stimulated as numbering is zero based. The neurons are stimulated so that
they fire once.

One of the parameters that was explored in development was the number of
training epochs. An epoch is the presentation of all the training examples; in
the case of the Iris task, all 75 training items. There may be several epochs of
training with all of the training items presented in sequence in each epoch.

The time between each example was another parameter that was explored.
This time can effect the system for two main reasons. First, if the time is too
small, an input example can continue to spike into the next example. Second, the
STDP synaptic reduction window is effected by the prior example; if the prior
example fires nearer to the time of the current example, the synaptic weight
from the prior input neurons to the current category neuron may be reduced.

During testing, the input neurons are stimulated, and the spikes of the output
categorisation neurons are counted. The input is categorised based on the spiking
behaviour with the neuron that spiked most winning. If there is a tie it was
resolved as follows: no neurons fired, category 3; all three neurons fired equally,
category 2; the first and second neuron were co-equal highest firers, 2; the first
and third neurons were co-equal highest firers, 3; and the second and third were
co-equal highest firers, category 2. Other measurement mechanisms could be
used or included, for example the first spike time could be used as the answer,
or to resolve ties.

It is possible to set the neural parameters for the model, but the default
parameters were used, and varying them was not explored. Some important
parameters are: the firing threshold, the higher the threshold, the more activation
is required for a spike; the refractory period, after a neuron spikes, all input
activation is ignored during the refractory period; and the leak rate, the higher
the leak rate the faster activation leaks away making the neuron more difficult
to fire over short periods of time. Another simulation parameter is the time step
that sets how often are the neural and synaptic variables are updated. These
simulations used a one ms. time step.

There are many STDP rules, and a spike pair rule is used in the simulations in
this paper. The STDP learning rule is described by seven parameters. The first is
the initial synaptic weight i, the second is the maximum synaptic weight m. The
third is the minimum weight that has always been 0 in the simulations described
in this paper; input features may have no influence on output categories, so the
neurons that represent these values should have a 0 connection. The weight
is modified based on spike pairs alone. There are four parameters associated
with this, two for increasing the weight and two for decreasing the weight. The
increasing parameters are A+, for scaling how much the weight increases, and τ+
for stretching the window of that the weight increases. The parallel decreasing
parameters are A− and τ−. τ+ and tau− are in ms.

Parameters are explored to develop a system that categorises reasonably well.
The data has been broken into a training and a test set. Parameters are explored
using the training set, and the test set is used, largely, for reporting.
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In the first example there are five training epochs; the time between examples
is 30; the initial synaptic weight was 0; the maximum synaptic weight was 0.05;
the synaptic increase parameters were τ+ = 20.0ms. and A+ = 0.004, and the
decrease parameters were τ− = 20.0ms. and A− = 0.003. This is represented by
the first line in table 1. The results of this system is 65 of the 75 training items
correctly categorised when the system was trained on the first set and tested on
the second; pleasantly 68 of the 75 when the training sets are switched.

4 Results

Exploration of parameters can include a change of topology, but some simple
things to explore are the learning parameters, and presentation mechanism. In
particular, the five learning parameters, the number of training epochs, and the
length between presentations are explored.

Exploration is done by training the system on the training set, and testing
on the testing set. It is not a two fold cross validation. Aside from randomising
presentation in section 4.1, the system uses no randomness. Repeating a run will
have the same results. Fortunately, each run provides information.

One large piece of information is how many test examples actually have
neurons firing. The default categorisation works with no neurons firing but it
shows that the system is not categorising these examples. The parameters affect
how many categorisation neurons fire in the test. Unsurprisingly, typically, the
more training epochs, the more firing in the test neurons. Since synaptic weights
are initially zero and each presentation provides the opportunity to increase,
and increased synaptic weight leads to further firing in future epochs, further
increasing weights, more epochs lead to increased firing in the test neurons. This
may not be the case if the initial weight is larger than zero.

Too much firing also causes the output neurons to become saturated. The
neurons integrate input from a set of pre synaptic neurons, all firing once at the
same time, and this can cause the post synaptic neuron to have enough activation
so that it fires multiple times. However, if two or three of the categorisation
neurons get a great deal of input, they saturate and fire the same number of
times. So, there is an ideal window of incoming synaptic strength to diffentiate
between the categories.

Perhaps the most powerful mechanism for increasing firing is to increase the
maximum synaptic weight m. So, if the system with a particular parameter set
had many tests with no output neurons firing, m was increased. Similarly, the
total output spikes can also be tabulated, and if this is very high, m can be
reduced.

The synaptic weight increase and decrease constants A+ and A− also influ-
ence output neuron firing. Increasing A+ or decreasing A− leads to increased
firing, while decreasing A+ or increasing A− leads to decreased firing.

The synaptic change windows, τ+ and τ−, also affect the firing. In general
the infucence is in the direction of their associated weight change constants, but
it is not always the case. Also changing the windows has less influence than
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changing the weight constants. Note that the biological intepretation is that
τ+ = τ− = 20.0ms..

There is also an affect from changing the length of presentation time. Durint
training, the synaptic weight is reduced from a feature to its prior category, and
this is reduced less when the time between presentations is greater. Moroever,
neurons are dynamic, when they fire they are set to a reset voltage. If they have
voltage above or below the resting voltage, that leaks away moving the voltage
toward resting. With a longer example time, the neurons have returned to closer
to their resting state at the beginning of the next presentation.

The goal is to have a system that categorises well. So, the categorisation
results also matter. By following the gradient so that all tests have categorisation
neurons firing, but many with only one spike, parameters can be set to find a
good result on the training set. One such parameter set is shown in the second
row of table 1.

Two other systems are shown for comparison. The first [11], in the third row is
a spiking net using a compensatory Hebbian rule; the neurons have adaptation.
As it uses randomness, the average results of a two fold test are shown. The
second [20] uses a specialised afeed forward neural topology and a variant of
STDP that incorporates a learning signal; training and testing are separated in
their evaluation, and in table 1.

Table 1. Categorisation Results: WBC refers to the Wisconsin Breast Cancer task.

h

Task Epochs Example Maximum A+ τ+ A− τ− Train Test
Time Weight m Result Result

Iris 5 30 0.005 0.004 20.0 0.003 20.0 86.67% 90.6%
Iris 6 50 0.003 0.005 20.0 0.002 20 92% 90.6%
Iris [11] 93.53%
Iris [20] 95.5% 95.3%

WBC 6 50 0.002 0.006 20.0 0.009 20 95.14% 95.7%
WBC [20] 96.2% 96.7%

4.1 Unsuccessful Extensions

Several other options were explored, though no significant benefit was found for
the Iris categorisation task. The first was to use a pairwise feature combination
categorisation as part of a three layer topology. This is shown in figure ??. r

In the pairwise combination, each feature pair was also used to learn to cat-
egorise the training data. None of these pairs ever did as well as the full system.
All nine sets of categorisation neurons, one for each of the six pairs and one
for the full set, then influenced the respective output neurons in the firing layer.
Different weightings were explored so that some feature pairs had more influence
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JĴ

@
@
@
@
@
@
@R

HHH
HHH

Hj-

�
��

�
��

�*

�
�
�
�
�
�
��





















�

Fig. 2. The three layer feature Iris categorisation topology. The Input box consists of
404 neurons representing four features. The lines from the input boxes to the middle
layer represent 303 plastic synapses, since the middle boxes represent three neurons for
the categories. The arrows from the middle to the output layer represent nine static
synapses. Note that the original system is just the Input box and the Full box.
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than others, but the best result was always dominated by the full system, and
was never better than the full system. This does however provide a mechanism
to show how influential pairs are. When exploring a new categorisation domains,
different single, pair and higher order combinations can be explored to show that
some combinations are particularly influential or not very useful.

Another exploration was a parameter search of initial synaptic weight i. The
default value was 0, the value can only be positive, and should be less than the
maximum synaptic weight m. A larger value of i does lead to more neural firing,
but it seemed to lead to poorer results. Perhaps this was because forgetting was
weak, or that higher i put the system in a bad part of the parameter space.
Higher i should, however, make the system converge more quickly (see section
5.

Presentation of training data was in the same order each epoch. So, the
system would synapses would only be adjusted downward on particular pairings
and some might be missed. Changing this to randomising the presenation order
each epoch led to an increase of firing. The synaptic weights are adjusted up
each presentation, but only down on random presentations. This warrants more
exploration.

These methods have only been explored on Iris categorisation. They may
have positive effects on other categorisation tasks, or indeed further exploration
may show that these have benefits.

4.2 Wisconsin Breast Cancer Categorisation

A modified system was developed for a second task, the Wisconsin Breast Cancer
categorisation task, again from the UCI benchmark [1]. An item refers to a
patient and is represented by nine relevant features, and the output is a binary
value referring to whether the tumour was benign or malignant. There were 699
items, with 241 malignant category items. The data set was split into two with
the training set having an extra item and an extra malignant item.

Each feature had a range from 1 to 10, one feature had missing values, and
one feature had one value that was not represented. So, each input feature was
represented by 10 neurons and the two output categories by one neuron each.
When an item was presented, only one neuron was stimulated for each feature,
and the missing feature was simply ignored; one of the benefits of this approach
is that missing features are readily ignored.

A simple exploration of the parameter space began with the parameters from
the Iris data set (line 2 of table 1). This exhibited a great deal of firing during
testing, so the Maximum Weight w was reduced. This left little firing, so A+ was
increased. Somewhat surprisingly, increasing A− also improved results leading
to several training parameter sets that got 95.14%. One was chosen, and the
results are displayed in the first WBC line of table 1. Below that the results
reported from another spiking system [20] are shown.
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5 Discussion

This paper has shown an exploration of a standard Hebbian STDP learning rule
based on a standard biological leaky integrate and fire neuron with a simple
well connected feed forward topology. The presentation mechanism of turning
on the input neurons one step before the output neurons is clearly biologically
impossible. Similarly, the uniformity of the initial feed forward topology is also
biologically implausible. While the results are below the state of the art, and the
tasks are simple, the results are quite near the state of the art. This shows how
powerful the strictly Hebbian STDP learning mechanism is.

STDP, with the topology and presentation mechanism used above, has a
result that is a type of covariance mapping. The synaptic weight from a neuron
representing an input feature will increase if it is used as a member of the
category. If it is also used for another category, it will decrease, so the weight
roughly reflects the likelihood the feature discriminates between the categories.
If it is involved in two categories, the weight will be lower, and if in three lower
still. The feature breadth mechanism used in the Iris task supports learning from
fewer examples, and generalisation to unpresented data.

STDP is strictly Hebbian, so is an entirely unsupervised mechanism. Rein-
forcement can be included by adding extra topology to encourage neurons to fire
at appropriate times; this is a solution that has been included in spiking net-
works [2, 20]. Adjusting synaptic weights to reflect desired outputs, as is done in
supervised rules such as back propagation [14] does not seem to have a biologi-
cal basis. This supervised learning is a powerful mechanism, particularly for feed
forward networks. However, the brain is not feed forward but highly recurrent.

This paper has used a simple two layer feed forward approach, though a third
layer was explored in section 4.1. Learning here is based on particular inputs.
Another approach would be to extend across layers with different times so that
input could cascade through layers. For example, the feature approach in section
4.1 could be extended to allow learning between the second and third layer with
firing in the third layer specified after the clamped firing in the second. Other
precise timing mechanisms can be developed [?], but it must be remembered that
in the brain, most neurons fire more or less continously at a low rate. Closely
timed mechanisms will not work as models of actual biological processing.

The learning networks that have been described in this paper are not stable
in the sense that further learning will change the weights. Eventually, given
enough presentation epochs, the system will become largely stable with weights
not changing at the end of each epoch. Weights that are only associated with one
category will go to the maximum weight m, those that are not associated with
a category will reamin 0, and ones that are associated with multiple categories
will be lower. These systems have not gotten to this stage, so will change with
further training. Indeed, they are changing during testing. A brief exploration
indicates keeping synapses constant during testing does have an effect.
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6 Conclusion

This paper has shown that simple well founded neural models with Hebbian
rules can be used to learn effective categorisers. These biologically realistic com-
ponents can be combined in feed forward networks and learn from a simple
presentation mechanism. Further exploration of this mechanism may lead to
further machine learning improvements. However, it is unlikely that they will
overcome the limitations of Hebbian learning compared to supervised learning.

One of the key differences between the brain and networks described in this
paper and deep nets is that the brain is highly recurrent. Feed forward nets, even
the simple systems described in this paper, are capable of learning sophisticated
categorisers. On the other hand recurrence is not well understood, and modelling
it is difficult.

One machine learning benefit that may arise from using brain based systems
is handling time. The recurrence allows persistent firing that can act as short
term memory allowing the system to learn time based tasks more effectively .

Modern machine learning has been inspired by the brain, and has used ideas,
such as visual fields, to improve performance. However, it has used mechanisms,
such as supervised learning, that are not used in the brain, though there are
attempts to integrate backpropagation with biology [12]. These non-biological
mechanisms are mathematically solid and have led to improved systems, but still
have not led to Turing test passing AI [19]. Perhaps this is because learning one
task, such as face recognition, can take advantage of large marked up data to
set millions of parameters in a deep net. Passing the Turing test, on the other
hand, requires a system that can solve a practically infinite number of problems.
Furthering understanding of how the brain does these tasks by modelling the
brain at the neural level, may be the best way to develop a Turing test passing
AI.
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