
1

Natural Language Processing and Requirements

Engineering: a Linguistics Perspective

By Dr. Christian R. Huyck (c.huyck@mdx.ac.uk)

&

Feroz Abbas

Abstract

This paper presents discusses some of the advantages that Natural Language Processing technology can

bring to Requirements Engineering. This includes a discussion of ambiguity and underspecification. These

problems are associated with Natural Language and can lead to misunderstandings in design specifications.

Natural Language Processing techniques can easily detect these problems and suggest solutions.

This paper also presents a prototype system used for detecting ambiguity. This system has been

evaluated and though it is clearly a prototype, it is capable of detecting ambiguity. This shows that one NLP

tool for Requirements Engineering is viable.

Some sentences may be syntactically ambiguous, but all humans would view them as unambiguous. A

mechanism for detecting syntactically ambiguous but semantically unambiguous sentences is suggested. This

mechanism has the advantage of helping to develop a domain model of the document; this domain model can

be used for Natural Language Processing, but can also be used as a primary component of the document

specification.

Introduction

Natural Language Processing (NLP) has recently reached a stage of

maturity where it is more and more industrially viable [Church 95].

Areas of research such as Machine Translate (MT), Speech Recognition,

and Text Extraction are now in commercial applications. NLP is no

longer merely a research task focused on simple examples. It now works

2

with real people talking on the phone to machines, newspaper articles

being scanned and manuals being corrected by machine.

Speech Recognition is a profound success. You can give instructions

on the telephone to an answering machine by voice. Machine

stenographers are available on a PC to translate speech into a letter.

These systems function almost as well as humans, they are always

available, and much less expensive.

Both MT and Text Extraction (TE) are commercially viable, however, a

full-fledged translation of an important document is rarely left up to

a machine. Instead, an expert translator passes the initial document

through the MT system and then corrects the machine translation. This

speeds the translation process by as much as 10 times. Text Extraction

from Natural Language (NL) documents in a given domain functions at a

high degree of precision and recall. Though this is below human

functioning, it is quite close, and functions in a fraction of the time

[MUC-6 1995, MUC-7 1998].

Can these successes be applied to Requirements Engineering (RE)?

Others [Ryan 93] have noted that NLP will not solve all of RE’s

problems. RE is more than a simple interpretation of NL text.

Requirements Acquisition is a complex process. This process

involves a large amount of communication involving NL. NL is both

ambiguous and underspecified. Simple NLP tools may be able to aid in

communication between the Requirements Engineer and the Domain Expert,

and aid in developing and maintaining appropriate RE documents.

In this paper we present the prototype of an NLP tool for ambiguity

detection. This functions by using standard NLP parsing techniques to

flag ambiguous sentences. This shows that NLP techniques can be used

to aid RE.

Furthermore, NLP systems interact in sophisticated ways with the

Domain Model. This Domain Model is both a key product of the RE

3

process, and a key component in the process. Additionally, this Domain

Model is a key component to the NLP system. Everything seems to depend

on the Domain Model. Ideally, the Domain Model will be built by the

Requirements Engineer with help from the NLP system.

Requirements Acquisition

The Requirements Acquisition task is an iterative process of

discovery, refinement, and modelling leading to the creation of an

artefact, the specification. This can on occasions be the subject of a

contract between the system supplying organisation and the end user

(customer)[Pressman 1997]. Typically the task involves at least 2

parties, a systems professional (Requirements Engineer) and a systems

user (Domain Expert).

The process of interaction between these two parties is an

information intensive activity and will involve the use of both spoken

and written language. At its simplest a transcript (possibly verbatim)

of an interview is converted into a written document and this document

is then subjected to stepwise refinement, again possibly through

further dialogue. The specification will eventually be written in a

natural language assisted by some formal or semi-formal "artificial

language".

Requirements Acquisition can lead to a document or documents that

outline the requirements. However, a large amount of the information

may not be written down, and is merely inside the Requirement

Engineer’s head.

Communication involves one party trying to transmit his internal

model to another party. The transmission does not necessarily (and

rarely if ever does) contain the complete model. To the extent the

internal model is specified, the process of communication has

succeeded.

4

In the case of RE, more than simple one-way communication is needed.

The Requirements Engineer often works with the domain expert to develop

the planned system. The Requirements Engineer is actually

participating in developing the model because the Domain Expert may not

have knowledge of implementation details. Communication still takes

place, but it is important that many unspoken assumptions are written

down so that both speakers have a similar internal model of the problem

and the proposed solution.

An NLP system is not going to replace the Requirements Engineer.

However, it is possible that NLP systems can act as tools for him. They

can translate NL into and from formal languages. NLP systems can help

maintain the documents, and aid the expert in communicating with the

users. These systems can speed the RE process, and help to find

problems with the specification.

Ambiguity and Underspecification

The continued use of natural language to specify requirements is

often accompanied by warnings of the inherent ambiguity of natural

language. However, it is possible the problem will have arisen because

the act of converting spoken discourse into its written counterpart

could result in loss of information content. Another possibility is

that this act created incorrect information.

Ambiguity is a problem that is difficult for NLP systems to handle.

Given a sentence that has multiple interpretations, how do you select

the correct interpretation? Humans, while processing NL, often overlook

ambiguities. The correct interpretation is obvious to humans because

they have access to information, such as semantics, that is not

typically used in NLP systems.

When all readers derive the same interpretation, ambiguity is not a

problem; when different readers derive different interpretations, the

5

text can lead to problems, particularly in RE documents. For example,

a sentence has two interpretations, X and Y. The Domain Expert means

interpretation X, but the Requirements Engineer reads the sentence as

interpretation Y. There may be a major problem due to this

miscommunication. While ambiguity is a problem for the NLP

interpretation of text, it is also a strength because NLP systems can

easily find ambiguities. These ambiguities can be pointed out to the

writer and can be corrected. This eliminates confusion in documents.

An underlying assumption in many conversations is that the

participants are co-operating with each other. This principle was

first set out by Grice [Grice 1975]. It is by no means obvious that

this principle applies to all exchanges between Requirements Engineers

and the Domain Experts, particularly in situations where the prospect

of new systems is unwelcome. The existence of assumptions provides a

further opportunity for misunderstandings to arise.

In other words, the way we communicate assumes a vast amount of

‘shared’ knowledge of how the world is. This poses problems when we

attempt to use computers for NLP. This is underspecification in NL.

This underspecification can also lead to problems when the ‘obvious’

interpretation differs between the Requirements Engineer and the Domain

Expert. Again, this weakness in NLP systems can be turned into a

strength, because NLP systems can easily find examples of

underspecification and point them out to the Requirements Engineer.

Tools for Interacting with Requirements Documents and Domain Experts

 While designing an Information System, many documents may be

created. These documents are often interdependent. Moreover, these

documents change over time leading to the problem of conflicting

documents. Document dependencies along with NLP techniques can aid in

maintaining these documents; NLP lexical techniques can be used to

6

explain jargon; and NLP parsing techniques can be used to show

ambiguities in design specifications.

One of the most common and dangerous problems in documents is that

two people give different interpretations to the same string of words.

This different understanding can lead to long-term confusion in the

project. Technical writers are trained to avoid these ambiguities, but

even the best text can be ambiguous. Ambiguity is a common problem for

NLP. Humans tend to unconsciously remove a great deal of ambiguity

while interpreting a sentence, but it is difficult for machine parsers

to remove these ambiguities. However, it is easy for NL parsers to

flag ambiguities. Once flagged, the writer can easily remove the

ambiguities leading to a less ambiguous document.

An Ambiguity Flagging System

As a test of our ideas, we developed a simple system to detect and

flag ambiguity in Requirements Specifications. This functioned by

parsing the Requirements Specification, and flagging any sentences

which had multiple syntactic interpretations.

When considering ambiguity, one thinks of syntax and semantics.

Where syntax is concerned with the grammatical arrangement of words in

a sentence, semantics deals with meanings of words and sentences. The

prototype handled syntactic ambiguity.

The system was based on the LINK parser [Lytinen 92]. LINK uses a

chart parser [Allen 87]. The input to the LINK system is a grammar, a

lexicon, and sentences. LINK produces a chart describing all legal

grammar rule applications over the given sentence.

The system was tested on randomly chosen sentences from a

Requirements Specification written in natural language. Any sentences

would have worked, but it is best to test sentences that are from the

desired format. The Specification consisted of 10 sentences derived

7

from the Flight Crew Operating Manuals of the A320 airbus. These

sentences were used in [Ladkin 95].

The program makes use of complex set of unification-based grammar

rules [Shieber 86]. The grammar was a modified version of the grammar

used for [Huyck 98]. It was transformed from the initial format to one

more suitable for chart parsing. During testing of the Specification

sentences, the grammar was modified to increase its coverage. The final

grammar consisted of 53 grammar rules. While this grammar was not a

complete description of English, it did have substantial coverage.

In order for the grammar rules, and hence the system, to work, a

lexicon was required. The particular one utilised was a relatively

large lexicon, which formed the foundation of the system, and upon

which it was dependent.

The charts corresponding to the sentences contained every plausible

node combination (combinations validated by the grammar) in a sentence,

as well as the total number of arguments and constituents for certain

parts of the sentence. This included the total number of possibilities

including the first and last nodes, that is, the entire sentence

including the full stop. If a complete sentence had more than one

possibility, then it was considered ambiguous.

We wanted the system to display sentences that were ambiguous, but

ignore ones that were not. A sentence was ambiguous if it had more than

one complete interpretation. It was not ambiguous if there were one or

zero interpretations1.

Each word has one or more senses, as it may be utilised in different

situations. For a Requirements Specification document, the total number

of senses may be very large.

1 Some sentences had zero interpretations because the grammar would

not necessarily give an interpretation for each sentence.

8

The word ‘saw’ was included in the lexicon, and is an interesting

example, as it had 3 possible meanings. The first was a past tense of

see, the second was the object saw and the third was the use of that

object. This yielded 1 noun and 2 verbs, hence illustrating lexical

ambiguity, not just by its multiple occurrence, but also because 2 of

the occurrences were verbs.

Results

We were expecting each sentence to have at least one interpretation.

However, when the program was executed the system perceived only 2 of

the 10 sentences to be ambiguous. These were:

- ‘A hydraulics failure occurs if both the green and yellow hydraulic

pressures are insufficient.’

- ‘Hydraulics are normal if both the green and yellow hydraulic

pressures are OK.’

According to the particular grammar rules utilised, the first had 2

interpretations and the second had 8. The other 8 sentences had no

complete interpretations.

The reason that the results were not as expected, and perhaps

unusual, is due to the incomplete coverage of the grammar rules.

The grammar had many rules but most did not apply to the 10 sentences.

As a result, there were not enough possible combinations to generate

complete interpretations of the sentences that we tested. This clearly

suggests that in order to achieve accurate results, more time needs to

be invested into the development of grammar rules.

9

As one can see, ambiguity is a real aspect of text-based Natural

Language Processing. It is easy to speculate that with a more

comprehensive grammar, the results would have been more accurate.

However, by introducing a larger grammar, the amount of prospective

ambiguity will also increase, thus creating even more problems.

Semantics Improves the System

An improvement on the prototype is to flag only sentences that are

‘truly’ ambiguous. That is, to flag sentences which different people

might interpret differently.

Some sentences are syntactically ambiguous, but virtually every

person would interpret them unambiguously [Ford et. al. 1982]. For

example, Ford et. al. presented 20 subjects with syntactically

ambiguous sentences. One sentence was:

The women discussed the dogs with the policemen.

Example 1.

All 20 subjects gave one interpretation to the sentence : the women

discussed with the policemen. The other interpretation has the women

discussing dogs that were with the policemen.

A tool that can flag ambiguous sentences is useful; however, a tool

that can flag only truly ambiguous sentences is much more useful. It

would reduce the need for the user of the tool to ignore many suggested

changes. That is, a tool that flagged only sentences to which

different people might give different interpretations would be better

than a tool that flagged all ambiguous sentences.

10

Such a tool could take advantage of the semantic cohesion that

people use while parsing sentences. For example, in Example 1,

policemen are good participants in a discussion. They are much less

good at being things that accompany dogs. This is not to say that they

cannot accompany dogs, but they are much better at discussing as far as

the participants of the study were concerned. Ford et al. presented

many sentences all of which have two semantically plausible

interpretations. Example 2 is syntactically ambiguous sentence that

has only one semantically plausible interpretation.

I saw the girl with the boy.

Example 2.

In this example the boy is accompanying the girl. Another

interpretation is that the boy was used to see the girl as in the

sentence "I saw the girl with the telescope". This second

interpretation is not very semantically plausible2.

This tool would need to have a sophisticated semantics knowledge

base. While much of this knowledge could be domain independent (eg.

humans are good actors), much of it would be domain dependent.

Consequently, developing this semantics knowledge base would aid in the

development of the general domain knowledge base used in the RE

process. This domain description could be a key component of the

Requirements Specification. It is a formal description of the domain.

Conclusion

Ambiguity and underspecification are two key problems in

Requirements Engineering documents. An ambiguous piece of text may be

2 Other interpretations are plausible when the lexical ambiguity of “saw” is considered. “Saw” could be the action of
cutting using a saw as opposed to the action of seeing. See section prototype undone

11

interpreted in one manner by the Requirements Engineer, and in another

manner by the Domain Expert. This misunderstanding can lead to real

problems. Similarly, NL text leaves things unsaid; it is

underspecified. It is up to the reader to fill in the assumption.

When the Requirements Engineer and the Domain Expert fill in the

assumptions differently, there can be real problems.

NLP systems may help to solve this problem. They can flag ambiguous

texts, and note where underspecification occurs. The Requirements

Engineer can then either remove the ambiguity or underspecification, or

at least agree with the Domain Expert as to the correct solution

between ambiguities, or the missing information in underspecified text.

Our prototype shows that this is technically viable, though more work

is needed to make it an industrially viable program.

Recent advances in NLP have shown that NLP is at a state where it

can be used in real world applications. While NLP systems are not the

"silver bullet" that will solve the RE problem, NLP can usefully be

used as an aid to RE.

Simple NLP tools can easily be used by Requirements Engineers to

simplify their work and to act as simple checks. The prototype

described in this paper can be either a stand alone system or it can be

use as part of a suite of NL and RE tools. Obviously this would involve

further work, but the prototype is an existence proof.

More advanced NLP tools could be used to help solidify the Domain

Model, and to act as translators between various RE documents and

formal models. These "more advance NLP tools" are currently just ideas.

We have not implemented a system to automatically acquire Domain

Knowledge from a Requirements Specification. However, we should be

able to develop such a tool, and other tools. These tools will

increase the efficiency and effectiveness of Requirements Engineers.

12

Bibliography
Abeysinghe, G. and Huyck, C. 1999. Process Modelling with Natural

Language Input. International Conference on Enterpise Information
Systems. Setubal, Portugal.

Advance Research Projects Agency. 1995. Proceedings of the Sixth
Message Understanding Conference, Columbia, MD. August 1995. San Mateo,
CA: Morgan Kaufmann Publishers.

Advance Research Projects Agency. 1998. Proceedings of the Seventh
Message Understanding Conference, Fairfax, VA. May 1998. San Mateo, CA:
Morgan Kaufmann Publishers.

Allen, James. 1987. Natural Language Understanding. The
Benjamin/Cummings Publishing Company, Inc. Menlo Park, CA.

Chomsky, Noam. 1966. Syntactic Structures. Mouton and Co. The Haque

Church, Kenneth W. and Lisa F. Rau. 1995. Commercial Application of
Natural Language Processing. In Communication of ACM 38:11 pp. 71-80.

Ford, Marilyn, Joan Bresnan and Ronald Kaplan. 1982. A competence-
based theory of syntactic closure. In The mental representation of
grammatical relations, ed. Joan Bresnan. Cambridge, MA: MIT Press

Grice, H.P. 1975. Logic and Conversation. In Syntax and Semantics
3: Speech Acts. Cole, P. and Morgan, J.P. (eds.) Academic Press

Huyck, Christian. 1998. The MUC7 Plink System. In Proceedings of
the Seventh Message Understanding Conference, Fairfax, VA. May 1998.
San Mateo, CA: Morgan Kaufmann Publishers.

Ladkin, P. B. Analysis of a Technical Description of the Airbus A320
Braking System, High Integrity Systems, 1(4):331-349, 1995.

Lytinen, Steven. 1992. A unification-based, integrated natural
language processing system. Computers and mathematics with
Applications, 23 (6-9), pp. 403-418.

Pressman, Roger. 1997. Software Engineering: A Practitioners
Guide Fourth Edition.

Ryan, Kevin. 1993 The Role of Natural Language in Requirements
Engineering. Proceeding of the IEEE International Symposium on
Requirements Engineering. IEEE Computer Society Press.

Shieber, Stuart. 1986. An Introduction to Unification-Based
Approaches to Grammar. CSLI Stanford, CA.

Sommerville, Ian. 1996. Software Engineering. Addison-Wesley. ISBN
0-201-42765-6

Yule, George. 1996. The Study of Language. Cambridge University
Press ISBN 0521 56851

