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Abstract Networks of spiking neurons can have persistently firing stable bump
attractors, to represent large number spaces (like temperature). This can be done
with a topology that has local excitatory synapses, with surround inhibition, but
with any particular topology there are critical points in the weight space. Acti-
vating large ranges in the bump can lead to streams, that show repeller attractor
dynamics, however, these streams can be merged by overcoming these repeller dy-
namics. A simple associative memory can include these bump attractors, allowing
the use of continuous variables in these memories. This is a step toward a more
complete cognitive associative memory.

1 Introduction

How does the brain represent concepts that are continuously valued, like height,
weight, and temperature? How can these be included in the brain’s associative
memory. For example, what is the neural basis of the representation of hot coffee?
Moreover, how can coffee be considered cold at one temperature, and another
drink, say a coke, be considered warm at the same temperature?

The authors firmly believe that concepts, like hot and coffee, are represented
in the brain by Cell Assemblies (CAs) (see section 2.4). Associations are repre-
sented either by topological connections or by CAs in the brain. In the simulations
described in this paper, basic semantic concepts, like coffee are represented by a
simple version of CAs called binary CAs.

Other concepts, like temperature, are represented by continuously valued net-
works that fall into a category called Winner Take All (WTA) networks, or more
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precisely, bump attractors (see sections 2.1). These bump attractors support an-
other simple version of CAs that differs from binary CAs. In essence, a network of
n neurons can support n of these CAs.

While well studied, these bump attractors have an unusual problem when they
are activated by a large field; they split into streams of firing neurons (see sections
3.4 and 4.1). This paper proposes a neural topology for a particular associative
memory involving hot coffee. The multiple stream problem is resolved, leading to
a complete solution for this particular hot coffee associative memory. The memory
is generalisable.

Motivation and goals

The authors’ overall motivation is to understand the brain and the mind that
emerges from it. It is an understatement to say that this is an enormous task, so
a smaller version is to understand relatively broad cognitive tasks, in this case,
associative memory with components that have continuous values. It should be
noted that the authors are not claiming that these simulations are good neuron
by neuron representations of the a human brain or even a small part of it; instead
these are simplified models. None the less, the point neural models are commonly
used, albeit simple, models of biological neurons. Similarly, the topologies are
relatively sparse, so that they could reasonably be subsets of the actual biological
topology. In this paper, continuously valued features are represented by discrete
neural steps. The granularity can be increased arbitrarily.

The goal of this paper is to broaden the reader’s and the authors’ understand-
ing of CAs, associative memory, and neural processing. A particularly important
aspect of this understanding is to show that stable bump behaviour can support
persistent firing, and thus CAs. Moreover, this stable bump behaviour that is
known to work as an attractor, also works as a repeller. Finally, the paper (and
associated code ! should provide topologies, and an underlying theory for new
topologies, that could be used as improved associative memories in, for example,
neural agents.

2 Literature Review

A great deal of literature relates to this paper, but this review concentrates on four
bodies. The first is Winner Take All Networks, and bump attractors in particular
(section 2.1). There has been a great deal of mathematical analysis of this relatively
simple form of neural topology. The main cognitive component of the paper is the
associative memory (section 2.2) that allows in grounding concepts representation
in the brain (section 2.3). Finally, the bridge between the two is the Cell Assembly
(section 2.4).

2.1 Winner Take All Networks

The brain is a part of the central nervous system, which processes multi-modal
information. Although there are several sources of stimuli (coming from inside
and outside of the body), the brain selectively analyzes this huge amount of in-
formation. The information is often ambiguous, so the brain must select one of

1 Code can be found at http://www.cwa.mdx.ac.uk/NEAL/wta.html.
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the possible options. In simulated neural and connectionist systems, one model
to select between options is a winner take all (WTA) system. One connectionist
system that uses this model is the self organizing map (Kohonen, 1982). The map
is made up of several nodes, and when an item is presented, the nearest node wins.

The stationary bump, which is another mechanism proposed for feature selec-
tivity in the brain (Somers et al., 1995; Laing et al., 2001), can be used in a spiking
neuron network. The bump activity is an example of WTA neural behaviour be-
cause a group of co-firing neurons can be considered as winners of competition via
inhibitory synapses. Adopting a general point of view, both WTA network and
bump activity of multiple neurons are a type of pattern formation process in a
population with excitatory and inhibitory neurons (i.e., they work on the patterns
of a stable grid (Wilson and Cowan, 1973) and on the process of activity dependent
neural group selection (Edelman, 1987)).

In the typical stationary bump model, distance is considered either in one or
two dimensions. There are local excitatory synapses, and more broad inhibitory
synapses. The recurrent neural network is able to select particular neurons using
inhibitory synapses that sustain the competition between neurons (e.g. Chen’s
surround inhibition (Chen, 2017)).

There is evidence that excitatory cells (i.e., principal neurons) are associated
with specialized inhibitory cells (i.e., interneurons or secondary cells) that synapse
to principal cells as well as other interneurons. The proper dynamics in the neu-
ral network can only be sustained if the excitatory behaviour of principal cells
is modulated by the stopping function of secondary cells. If there were only ex-
citatory neurons, their positive spikes could lead to an excitation that produces
more excitation (an avalanche effect potentially leading to simulated epilepsy),
and therefore, it would be difficult to observe transiently active groups of co-firing
neurons such as, for example, CAs (see section 2.4).

This type of stationary bump is widely used in neural simulations. For example,
it is used to manage a robot’s direction in a path integration task (Kreiser et al.,
2018).

2.2 Associative Memory

It is widely agreed that in the brain (and mind) concepts do not exist in isola-
tion, but instead are associated with each other. These associations are part of
the underlying concepts, making an associative memory. This is a long standing
psychological theory (Quillian, 1967).

This associative memory is the basis of priming effects (Collins and Loftus,
1975). If a concept is activated, it spreads its activation to associated concepts.
The associative memory can be thought of as a symbolic Semantic Network, and
Semantic Nets are widely used in Al for knowledge representation (Brachman and
Schmolze, 1989).

Early versions of associative memories in simulated biological neural nets typ-
ically refer to associating vectors of firing neurons (Willshaw et al., 1969). An
input vector of neurons, when fired once, causes an associated output vector to
fire once. This work however is not particularly well suited for bridging the gap
between actual neural behaviour and the emerging psychological behaviour of, in
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this case, associative memory, because individual concepts are not represented by
a vector of neurons firing once, but by persistently firing cell assemblies.

2.3 Concepts Representation in the brain

Continuous concepts are mental representations able to ground physics dimensions,
like time, space, temperature, pressions, force and so on. Those concepts share a
common mathematical structure that is processed by specific anatomical regions.
Nieder and Dehaene (2009) made a review about a broad range of methodologies
in humans and non-humans describing that the numerical information is encoded
in the prefrontal and posterior parietal lobes. From a more general persepctive,
continuos concepts are abstract ideas opposed to the concrete ones, but this dico-
tomy is too simple to be related with the complex notion of a concept represented
in the brain. In fact, Ghio et al. (2013) setted a psycholinguistic experiment by
using auditory and visual neuroimaging founding that the abstract-concrete di-
chotomy is insufficient to account for the entire semantic variability within the
two macro-domains.

Moreover, quantity related concepts helps in representing multifaceted ideas
shaped with different features, for example animals, tools and objects. For exam-
ple, Martin (2007) collected the evidences from functional neuroimaging studies
about the storage in the cortex of salient properties of an object, like movements,
functions, shapes, etc, and they found out that those features are stored in sep-
aratly sensory and motor systems, suggesting that object concepts emerge from
a weighted activity of property-based brain regions. Handjaras et al Handjaras
et al. (2016), instead, investigated modality independent and category based or-
ganization of semantic knowldege in human brain; they concluded that thare are
patterns of neural activity spreaded in a large semantic cortical network that com-
prised parahippocampal, lateral occipital, temporo-parieto-occipital and inferior
parietal cortices, that are correlated with domain linguistic production and were
both independent from the modality of stimulus presentation.

The concept representation regarding this paper is focused on three main con-
cepts: i) the continous-like phisical scale of the temperature, ii) the discrete rep-
resentation of beverages (coke and coffee) and iii) the crisp judgments about the
drink thermal state (cold, warm and hot).

2.4 Cell Assemblies

In his book, Hebb (1949) developed his famous synaptic learning rule, and used
that rule to propose the CA as the neural basis of concepts. That is, semantic
concepts, such as coffee are represented by CAs. A CA is a relatively small group
of neurons that have high mutual synaptic strength, which is formed by Hebbian
learning. When some of the neurons fire, that mutual synaptic weight supports
firing in the other neurons in the CA, and this allows a cascade of firing so that
the neurons in the CA can fire persistently for a considerable amount of time
(seconds). This firing is the neural basis of short term psychological memory.

In the intervening 70 years, there has been significant and growing evidence of
the existence of CAs in brains (Singer et al., 1997; Harris, 2005; Buzsaki, 2010),
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and there is evidence of CAs in all major cortical areas (Huyck and Passmore,
2013). Neurons in a CA fire persistently, once activated, and fire synchronously.

While the neurobiological evidence is accumulating, there are not very good
neural simulations of CAs. While the authors have spent considerable time simu-
lating CAs, and used them in many tasks, recent work has made extensive use of
binary CAs (Huyck and Mitchell, 2018). In these simulated CAs, the neurons are
either mostly firing, or none are firing, so it is binary, either on or off. This can be
implemented with a well connected topology of neurons. Once the neurons start
firing, they will fire persistently until some external source shuts them off. This is
obviously a poor model of CAs because, among many reasons, in a normal case,
CAs would stop firing on their own, like normal short term memories stop on their
own.

None the less, binary CAs have been used in simulations of associative memory
(Huyck and Ji, 2018). In this case, three concepts are associated, and when two
become active, the associated third comes on. That is a 2/3 associative memory.
This is an example of work in attractor networks to form associative memory
(Lansner, 2009). Using spiking point neural models starts to bring together more
biologically accurate simulations to manage more complex, and psychologically
accurate neuropsychological simulations.

The elevated firing of a CA is the neural correlate of a short term or working
memory item. In the case of the 2/3 associative memory items, two CAs, instanti-
ating two concepts, are firing at an elevated rate, and they cause the third to fire
at an elevated rate, retrieving the concepts associated with both of the first two.
There is evidence that bump attractors instantiate CAs for continuously valued
phenomena. For instance, recordings of pre-frontal cortical neurons of monkeys in
oculomotor delay response tasks is consist with bump attractors (Wimmer et al.,
2014) representing position. Similarly, single cell recordings of grid cells, are con-
sistent with 2-D continuous attractors (Yoon et al., 2013). Bump attractors have
been used to model hippocampal place cells (Stringer et al., 2002), and head di-
rection cells (Redish et al., 1996). While these models, and indeed the models used
in this paper have no short term plasticity, it seems that there is a sound basis for
supporting the use of the importance of this type of plasticity in continuous attrac-
tor neural models for short term memory (Seeholzer et al., 2019). Here we propose
a relatively simple neural model that represents continuously valued concepts, and
uses them as a component of an associative memory.

2.5 Learning

While spiking neural networks possess many benefits, such as parallelism, perhaps
the main benefit is their ability to learn. Learning in biological neural nets can be
divided into three categories: structural plasticity, long term plasticity, and short
term plasticity.

Structural plastiticy is the growth or death of neurons and synapses, or synap-
tic movement from one post-synaptic neuron to another (see (Butz et al., 2009) for
review); it is a change in gross topology. Though structural plasticity is more pre-
velant in the young brain, it does occur in the mature brain. Long term plasticity
is the increase (potentiation) or decrease (depression) of synaptic efficiency; this
is typically considered in computational models to be permanent, but biologically
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seems to be merely long-term. undone Short term plasiticity is a short lasting
increase (potentiation) or decrease (depression) of synaptic efficiency. undone

Clearly structural plasticity has an effect on long and short term plasticity,
since synaptic weight cannot be modified if there is no synapse, and there can be
no synapse without a neuron. It seems likely that long and short term plasticity
have an effect on structural plasticity and each other. undone citations

The boundary between long and short term platicity is somewhat arbitrary.
undone

Hebbian activity dependant vs homeostatic Plasticity has two functions in the
brain, learning and retaining neural firing stability. Maintaining firing stability
requires there to be ongoing neural firing, but not too much firing. Plasticity
can lead to too much firing, and maintaining this homeostasis can come from, for
instance, synaptic scaling (Goel et al., 2019) synaptagensis (De Paola et al., 2006).

3 Materials and Methods

The overall goal of these simulations is persistently firing WTA networks (see
section 3.2). These are based on reasonably biologically accurate point neuron
models (see section 3.1).

3.1 Neural and Synaptic Models

The biophysical neuron model used in the simulations described in this paper is
a leaky integrate and fire model with a fixed threshold. Synaptic conductance is
transmitted at a decaying-exponential rate from the pre to post-synaptic neurons
(Gerstner et al., 2014). The simulations are coded in PyNN (Davison et al., 2007)
to specify the topology, flow of inputs, and recording. The neurons themselves are
simulated using NEST (Gewaltig and Diesmann, 2007).

The model used in this paper follows Fourcaud-Trocmé et al. (2003) (but also
see (Richardson and Gerstner, 2003; Gewaltig and Diesmann, 2007)). The activa-
tion is the current voltage Vj;. Equation 1 describes the change in voltage, Vj; is
the membrane potential and C}; is the membrane capacity. The four currents are
the leak current, the currents from excitatory and inhibitory synapses, and the
input current (from some external source). The variable currents are governed by
equations 2, 3 and 4. In equations 2 and 3 EF;,’ and E}.’ are the reversal poten-
tials; excitation and inhibition respectively change slow as the voltage approaches
these reversal potentials. In equation 4, Vy.s is the resting potential of the neuron,
and 7,7 is the leak constant.

dVar _ (“peak — Iy — 170" + Igat)

1

dt Cym ( )
I = Ggy x (Vi — By (2)
IV = Gra x (Vi — ET.) (3)

CM(VM - Vrest)
T™
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—
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In equations 5 and 6, Gg, and Gy, the results are the conductance in mS/cm2
to scale the post-synaptic potential amplitudes used in equation 2, and 3. ¢ is
the time step. The constant kg, and kj, are chosen so that Gg, (") =1 and
Grn(m(¥") = 1. The 7" and the 77" are the decay rate of excitatory and in-
hibitory synaptic current.

When the voltage reaches the threshold, there is a spike and the voltage is
reset. No current is transferred during the refractory period 7,cfrqct- In these
simulations vypresn, = —48.0mV, Ty fraer = 2.0 ms. The time step t is 1ms. Cpy =
1.0nF, vreset = —70.0mV, vpest = —65.0mV, EZY = 0.0mV, E7Y = —70mV,
" = 5.0ms, 774" = 5.0ms and 73, = 20.0ms. These are all the default values.
The particular parameters vipresh s Trefract, @and t, were selected as the authors have
used them for prior simulations; they are the parameters used in the binary CAs

for the semantic portion of the associative memory?.

3.2 The Winner-Take-All (WTA) Model: Stationary Bumps

This paper describes work on a linear WTA model, instead of a planar model or
hyper-planar model. A line of neurons is connected with local excitatory synapses,
and a surround of inhibitory synapses. There are many synaptic matrices that lead
to persistent behaviour once the initial neurons are stimulated. What is needed is
sufficient local synaptic excitatory strength to allow the neurons within the winning
group to fire persistently. This needs to be balanced with sufficient inhibitory
synaptic strength to prevent spread beyond the initial group.

One example of this is a 2-4 excitatory inhibitory network. The WTA model
is implemented in a neural network with 100 spiking neurons. Each neuron has
excitatory connections to the nearest two neurons on both sides (d <= 2) and
inhibitory connections to the next nearest 4 neurons on both sides (3 <= d <= 6).
This is also called a stationary bump (Laing et al., 2001), or a bump attractor.
For the sake of explanation, the WTA spiking neural network approximates the
continuous value activation of a temperature scale in which every neuron represents
a single degree from 0° to 99° C.

Table 1 describes the behaviour of this network as the inhibitory and excita-
tory synaptic weights vary in the range 0.01 - 0.1 uS (microsiemens) in steps of
.01. Initially, three neurons are forced to spike, representing input from the envi-
ronment. (Three neurons are chosen as it is typically thought that several neurons
are needed to cause another to spike (Churchland and Sejnowski, 1999), so this
is the minimum input needed to (ignite) start a CA persistently firing.) After the
initial stimulation, each simulation is run for 1000ms. The value in the cells of the
table is the number of neurons that are firing at the end of the simulation.

2 Note that the model expressed in equation 1 about the exponential integrate-and-fire neu-
ron is a particular case of the AdEx model by removing the adaptation current (w) (Gerstner
and Brette, 2009).
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-0.01 | -0.02 | -0.03 | -0.04 | -0.05 | -0.06 | -0.07 | -0.08 | -0.09 | -0.10
0.01 0 0 0 0 0 0 0 0 0 0
0.02 0 0 0 0 0 0 0 0 0 0
0.03 0 0 0 0 0 0 0 0 0 0
0.04 0 0 0 0 0 0 0 0 0 0
0.05 0 0 0 0 0 0 0 0 0 0
0.06 100 100 100 9 7 7 7 5 5 5
0.07 100 100 100 100 13 7 7 7 7 5
0.08 100 100 100 100 100 85 9 7 7 7
0.09 100 100 100 100 100 100 100 9 7 7
0.10 100 100 100 100 100 100 100 9 7 7

Table 1 Number of neurons firing at the end of 1000ms. of simulation when three adjacent
neurons are forced to spike in a 2-4 network. The horizontal axis is the weight of each inhibitory
synapse, and the vertical the weight of each excitatory synapse.

In the first rows of table 1, there is insufficient excitatory synaptic strength to
enable the neurons to continue to activate each other. In the excitatory 0.06 row,
there is enough spread of activation to enable the neurons to fire persistently. In
the first columns (e.g. cell .06 -.02) there is insufficient inhibition to prevent the
neural activation spreading, and all of the neurons fire. On the right however (e.g.
cell .08 -.09), a small reverberating population fires throughout the simulation (in
this case 7 neurons). Note that when more than three neurons are initially fired,
lower excitatory weights (e.g. weights .05 -.03) cause persistent firing.

The dynamics of the network, with high excitation and inhibition, is interesting.
Table 1 shows that a persistent stable firing occurs after three adjacent neurons
are spiked. This persistent spiking is similar to the behaviour of a binary CA.
However, when a larger range of neurons are initially spiked (as may be the case
in an associative memory), there is further interesting behaviour. Table 2 shows
how larger inputs cause streams, or multiple bumps, of neurons to fire.

Table 2 shows how many sets of adjacent neurons persistently fire. Zero means
no neurons are persistently firing and D means that all of the neurons fire persis-
tently. One means that all of the neurons that are firing persistently are adjacent
to each other; they are a stream. This could be inferred from table 1. The bottom
part of the table refers to 75 neurons being initially spiked (25°C - 99°C). As in
the top portion, some excitatory inhibitory weight pairs lead to no persistence,
and some lead to all of the neurons firing.

In the bottom half of the table, those with one in the cell have more than
75 neurons persistently firing, but not all 100. Most of the table cells show two
streams firing. These two streams are always on the edge. The edge neurons inhibit
the interior neurons, as do the interior neurons themselves so that they do not fire
a second time. The edge neurons have fewer incoming inhibitory connections, so
they can persistently fire. After the initial burst, the interior neurons do not fire,
the two streams do not influence each other, and they fire persistently as if they
were ignited by two individual sets of three inputs. It is also interesting to note
that several of these cells have more than two streams; this table shows four,
six and seven streams. Again these are all quite thin, with approximately seven
persistently firing neurons, and they have a relatively small number of non-firing
neurons in between them.
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3 Input
-0.03 | -0.04 | -0.05 -0.06 -0.07 | -0.08 | -0.09 | -0.10

0.05 0 0 0 0 0 0 0 0
0.06 D 1 1 1 1 1 1 1
0.07 D D 1 1 1 1 1 1
0.08 D D D D 1 1 1 1
0.09 D D D D D 1 1 1
0.10 D D D D D 1 1 1

75 Input
0.05 1 2 2 2 2 0 0 0
0.06 D 1 4 2 2 2 2 2
0.07 D D 1 7 2 2 2 2
0.08 D D D D 7 2 2 2
0.09 D D D D D 6 2 2
0.10 D D D D D D D 4

Table 2 Table of persistently firing streams of neurons for a 2-4 stable bump topology. The
top refers to input of three adjacent neurons, and the bottom to an input of 75 contiguous
neurons. The value in the cell represents the number of persistent streams; D (divergent) refers
to all of the neurons persistently firing.

Note that it is possible to have local excitation with inhibition to all other
neurons. When there are a small number of inputs, this performs largely the same
as, for instance, a 2-4 stationary bump. However, with a larger number of inputs,
say 75, the inhibition from the initial firing prevents all the neurons from firing. In
table 2, the 75 input cells would all be 0. Let’s call this topology with inhibition
to all other neurons a 2-n topology. It is possible to set the weights so that a
2-n topology leads to persistent firing, but the width of the stream would be very
large. For instance, a 2-n topology with 0.08 excitation and 0.005 inhibition has a
persistent stream 68 neurons wide when 75 neurons initially spiked, and 56 neurons
wide when 3 neurons are initially spiked.

3.3 Simple Hot Coffee Network

The basic simulation that has driven the development of this paper is an associative
memory of beverages with a semantic value for temperature, and an underlying
temperature in celsius. The gross topology of the spiking network that implements
this memory simulation is shown in figure 1. There are two beverages, Coffee and
Coke, and three temperature values Hot, Warm and Cold. These are all represented
by binary CAs.

The input temperature from the environment is represented by a stable bump
network of 100 neurons. The topology used in the remainder of the paper is a
2-4 topology with excitatory connections from a given neuron to the two adjacent
neurons on either side, then four inhibitory neurons beyond. So, neuron 20 has
excitatory connections to neurons 18, 19, 21 and 22, and inhibitory connections to
14-17 and 23-26. The weights are .08 excitatory and -.08 inhibitory. This network
represents the temperature values between 0 and 99.

There are also neurons that represent the temperature of the individual bev-
erages. These networks are used in the associations. The Inhibition neurons take
input from the beverage temperature neurons, and in return inhibit them. This
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Coffee

Coffee Temperature

Inhibition Input Temperature
‘Warm

Coke Temperature

Fig. 1 Hot Coffee Gross Topology.

Beverage | Physical Temperature | Semantic Temperature

Coffee 0-24 Cold
Coffee 25-69 ‘Warm
Coffee 70-99 Hot
Coke 0-9 Cold
Coke 10-24 Warm
Coke 25-99 Hot

Table 3 Beverage to Physical and Semantic Associations

prevents the spread of activation from one beverage to another. For instance, if the
input temperature is 75-77, and Coke is queried, the associated Coke Temperature,
will come on, igniting Hot; now that the Input Temperature and Hot are firing, they
would ignite Coffee without the inhibition.

The arrows represent several synapses from a given set of neurons to another
set to support an association. For example, each Input Temperature neuron excites
its associated Coffee Temperature neuron. As these synapses are meant to associate
CAs, in themselves, they are insufficient to cause neurons in another CA to fire.

Synapses inside simple CAs are not represented in the figure. Being binary
CAs, the neurons in the semantic CAs have internal synapses as does the bump
attractor Input Temperature net.

The individual CAs can be ignited by external stimulation. When this happens
they all persist, and do not cause any other CAs to fire. There are the five semantic
CAs and the Input Temperature CAs.

The basic temperature associations that were used are described in table 3. The
temperatures and associated labels seem about right to the authors, and include
a variety of ranges, which is good for expository purposes.

The basic idea is a two of three (2/3) associative memory. That is, if two of the
concepts are firing, they should ignite the third. This largely works on the 18 basic
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inputs. For instance, an input temperature of 36° and Coffee causes the Warm CA
to ignite and fire persistently. In this case, the Input Temperature and Coffee CA
cause the associated Coffee Temperature neurons to ignite, which in turn leads to
the ignition of warm.

There are two types of atypical case to mention. The first case is the activation
of a low input temperature (< 10°) along with Cold or a high input temperature
(> 70°) with Hot. In this case, both beverages are activated, which is of course the
correct result.

The second is the activation of two semantic CAs, for example, Hot and Coffee.
Here the full range of beverage temperature neurons fire, but they fire at a low
rate. In this case, the Coffee Temperature neurons from 70-99 fire. While this topol-
ogy, using weakly connected beverage temperature neurons, in a sense solves the
problem, a better result might be the prototypical beverage temperature neurons
firing persistently. For instance, for Hot and Coffee, the neurons around 85° might
fire.

An obvious modification is to replace the internally unconnected beverage tem-
perature nets with bump attractor nets. However, a straight forward switch elicits
a flaw. If for example Hot Coffee is stimulated, all 30 neurons (70-99°) fire, but
the stable state that the Coffee Temperature network settles into is two streams
of neurons, one from 70° and one to 99°, fire persistently with those in between
silent. This is similar to the two streams of table 2.

3.4 Full Hot Coffee Network

While it seems reasonable for the full range of temperature neurons to fire due
to direct semantic information, it is somewhat inconsistent with the firing be-
haviour from direct temperature input. Perhaps a better result would be to have
a prototypical or average temperatures fire persistently. So, in the case of Hot
Coffee semantic input, the neurons that represent coffee at 81° to 88° might fire
persistently.

It is relatively simple to modify the simple hot coffee topology to get the full
range of neurons to fire initially, and then to get persistent activity. However, in
large ranges, there are two streams of activity at the ends of the range. For example,
in the Hot Coffee case, neurons 70° to 74° and 95° to 99° fire persistently. This
raises the issue of attractor repeller dynamics of stable bump topologies, which
the authors have not seen discussed in the literature. Note that having all neurons
inhibit all other neurons does not resolve this problem, as it results in very wide
streams of neurons. This may be a property of the biologically unrealistic neuron
model used with both excitatory and inhibitory connections (Eccles, 1986). A
more sophisticated topology using different types of inhibitory neurons (Hirsch
and Gilbert, 1991) is another possible avenue of exploration. The attractor repeller
dynamics can be broken into two related issues.

Firstly, can the two streams be brought together? A mechanism, implemented
with a separate population, can force the two streams toward each other (see
section 4.1.2). The second population is activated by the first in a manner that
only the neurons that correspond with the two firing streams fire. These have
inhibitory connections to the original nets that increase with distance, so that the
firing streams are moved towards each other. However, when the streams approach
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each other, there is an enormous amount of inhibition sent to the neurons between
the streams.

This is the second issue, when close, the streams repel each other. This can
be overcome with a second inhibitory mechanism that is similar to a larger width
stable bump (see section 4.1.1).

When the two mechanisms are combined, the initial wide range of temperatures
still breaks into two streams. However, the two streams are then forced together,
and then merged into one stream.

Finally, the new merge topology is used in the full hot coffee topology. These
results are described in section 4.2.

4 Results

In this section, a topology for replacing two adjacent streams of firing neurons
with one stream in between is described. Results on ongoing spiking and energy
behaviour are shown, pointing to the repeller dynamics and how they are over-
come. A separate modification to the initial topology that merges two distant
streams is then described. Again, the ongoing spiking and energy behaviour are
shown. Finally, the two mechanisms are combined (see section 4.1.3) and put into a
modified hot coffee topology (see section 4.2) to complete the associative memory.

4.1 Bump Attractor Repeller Dynamics

Merging the two streams that emerge from presenting a broad input to the sta-
ble bump consists of two subproblems: the first is overcoming the repeller effect
around the two streams (section 4.1.1). This has been solved using a rather ex-
treme topology with quite heavy excitatory and inhibitory weights. The second
and easier problem, at least for these simulations, is moving distant streams to-
ward each other (section 4.1.2). Finally, once these two problems are addressed,
they need to be combined into a single network (section 4.1.3).

4.1.1 Overcoming the Repeller

It is important to show that the stream in the bump attractor is both an attractor
and a repeller. A rastergram is insufficient to show this, but figure 2 includes the
energy and rastergram of a single stream, and of two streams that are near to each
other.

With a single stream, note that the neurons in centre of the stream spike more
frequently than those on the outside (figure 2A). However, the rastergram does
not show the effect on non-spiking neurons. The energy diagrams (figures 2B and
2D) do. In figure 2 it can be seen that the neurons adjacent to the stream are
excited but not to the firing threshold, and those beyond are inhibited. Those in
the stream are, of course, excited; their voltage changes from the reset voltage
—T70mV toward the firing threshold —48mV. Those further away are unaffected
and remain at the base level of activation, —65mV as are all neurons before the
initial input.
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Figure 2A and 2B represent three neurons being sent initial spikes from outside
the system to ignite the stable bump, as in the associative memory simulations.
The size of this bump, the number of neurons that fire persistently remains largely
the same as more neurons are initially spiked (not shown) until 14 neurons are
sent initial spikes. When 14 neurons are initially spiked, two streams are generated.
This behaviour is represented by figure 2C and 2D.

Note how the initial neurons are not the only ones in the streams. The streams
have repelled each other and moved to include new neurons not initially stimulated.
This behaviour is amenable to study by thermodynamics or statistical mechanics.

The inhibition in the neurons between the streams is really quite high even
when compared with the inhibition on the neurons on the outside of the stream.
So, what is needed is a burst of energy into those central neurons with inhibition
to the outside, but only in the case where the two streams are quite close together.

So, an extra set of neurons is used that only fires when two nearby streams are
firing. There are the same number of neurons in the new Overcome population as
in the original stable bump population, and they are aligned. The neurons in the
Overcome population get excitatory input from the corresponding neurons below
in a small window. Where the two windows overlap, the neurons fire. If only one
stream is firing in the bump, or if the streams are quite distant, no neurons in the
Overcome net fire.

When the Owvercome neurons fire they send excitation to the Bump neurons
directly below, and inhibition more distantly. In this case, the Overcome neurons
excite in a window of three about themselves, and inhibit the next eight. This is
quite similar to a 3-8 bump topology.

The result of this is that the interior neurons fire, and then remain persistently
firing. Figure 3 shows this. The bottom figures (C and D) are the raster and energy
plots of the bump attractor. Note that the initial firing behaviour leads to a split
into two streams in figure 3C. Energy slowly builds in the appropriate neurons
in the Owvercome network 3B, causing a single set of neural firing that shifts the
behaviour in the stable bump attractor.

4.1.2 Merging Streams

When the temperature range is quite large, the two initial streams do not influence
each other. For example, in the simple hot coffee associative memory, Hot Coffee
has a temperature range of 30°, and the streams are from 70° to 74° and 95°
to 99°. (Note that there are edge effects at 0° and 99°, and behaviour there is
different than in the middle of the bump attractor.) As there is no theoretical
limit to the range of temperatures for a specific semantic category, the 3-8 bump
attractor approach, or indeed any X-Y bump attractor approach will not work. In
this case, the largest range is 75° (Hot Coke). This can be solved with an inhibitory
topology increasing with distance, activated by the two firing streams.

As in the overcome case, there is an extra population of neurons of the same
size, which is called the Merge net. It is important that these neurons do not
fire unless there are two streams firing, so each of the Bump neurons has a small
excitatory connection to each of the merge neurons. There are also direct one to
one excitatory connections from the Bump net to the Merge net so that the neurons
associated with the firing streams fire; so, these nets are also aligned.
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Fig. 2 A rastergram of a single stream (A), energy signature of that stream (B), rastergram
of two adjacent streams (C), and the energy signature of adjacent streams(D).

Inhibitory synapses from the Merge neurons to the Bump neurons are distance
biased with more distant neurons being more inhibited. Thus the outside neuron
of the neurons in the opposing stream is more inhibited than the inside neuron,
and this, metaphorically, pushes the streams together. There are no synapses to
nearby neurons.

There is a difficulty that as the distance increases, the inhibitory strength
becomes too large and the streams stop each other. The inhibition described in
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Fig. 3 Results from the Overcome topology initially spiking neurons 10 through 23. A raster-
gram of the inhibitory network for the Overcome simulation(A), energy signature of the in-
hibitory network for Overcome (B), rastergram of the bump network for Overcome (C), and
energy signature of the bump network for Overcome(D).

this paper, increases exponentially with distance. It is sufficient to cope with 75°
of difference, but will not work with much larger differences.

Figure 4 shows the behaviour of this system. Figure 4A shows the spiking be-
haviour of the inhibitory Merge net. Its firing is sparser than the bump attractor
4C, but follows it. Note that once the inside edge of the stream stops being in-
hibited, because it is near enough to have no more inhibitory synapses, it quickly
moves because the inside is not inhibited, but the outside is. Also note that the
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Fig. 4 Results from the Merging topology initially spiking neurons 70 through 99. A raster-
gram of spiking behaviour for the Inhibitory Network (A), energy signature of the Inhibitory
Network (B), rastergram of spiking behaviour for the Bump Attractor Network (C), and energy
signature of the Bump Attractor (D).

energy in the Merge net is high throughout the run after initial stimulation in
figure 4B. This is below firing threshold, but is due to the all to all synapses.

This then moves two streams toward each other. It does not however push
them together as they repel each other. Fortunately, this extra merge topology is
compatible with the overcome topology.
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4.1.8 Combining the Merging and Overcoming

A complete topology to move two streams into one combines the initial bump
attractor, the Merge net, to bring distant streams close to each other, and the
Overcome net, to bring the two adjacent, streams into one. The behaviour is that an
initial range of neurons fire, based on a range of temperatures from the associated
semantic values. If the range is long enough, two streams of neurons on either end of
the range fire persistently. The Merge net is activated, and causes the two streams
to move together. Once together, the merge net cannot overcome the inhibition
from the streams repelling each other, but the Overcome net fires, causing the two
streams to move into one stable state. As both the Overcome and Merge nets require
two streams in the bump attractor to fire, they do not fire, and the attractor is
stable.

This is shown in figure 5. Do note how there is no spiking in either the Merge
or Quercome net once the streams are merged. Figure 5D shows the energy of the
Bump net. Initially, it follows the change of energy from the merge mechanism;
once the streams are adjacent, the repelling force of the two streams is overcome
by the Owvercome net, and the resulting single stream is stable.

4.2 Full Hot Coffee Network Results

The full hot coffee network is still described by figure 1, but the Coffee Temperature
and Coke Temperature boxes are now three populations each, a stable bump at-
tractor, a Merge net, and an Overcome net. Note that the dynamics of these three
nets in isolation differ from those in the full topology because of the Inhibition net-
work in the full topology; the neurons in the bump attractors fire at a lower rate.
Extra excitatory and inhibitory strength are needed in the Overcome network as
the stable bump is firing at a lower rate due to the effect of the Inhibition network.

Now, as in the simple hot coffee topology from section 3.3, the basic one seman-
tic feature and one temperature input work properly, and quickly. For instance,
temperature input of 85° to 87° and the semantic value Coffee, turns on the seman-
tic value Hot. The ambiguous inputs (the semantic value Cold with a temperature
below 10°, and the semantic value Hot with a temperature above 70°) turn on
both semantic beverages.

The additional merging topology now cause the double semantic input queries
to generate the appropriate temperature outputs. Each of the six pairs (e.g. Cold
Coke, or Warm Coffee) produce a persistently firing output. Unlike the simple
topology, this output is self sustaining. That is, it is persistent in its own right.
Table 4 shows the association temperature range and the output results. It also
shows the time to converge, noting how wider ranges take significantly longer to
converge. However, small ranges (like Cold Coke) converge almost immediately
even when they would break into two streams (Warm Coke).

4.3 Associative Memory with Learning

undone using a Hebbian calculation, the network is presented triplets of inputs
(semantic beverage, semantic temperature, actual temperature), and the firing
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Fig. 5 Results from the full merging topology, initially spiking neurons 70 through 99. All
neurons below 60 behave identically. A rastergram of spiking behaviour for the Converge
Network (A), rastergram of spiking behaviour for the Overcome Network (B), rastergram of
spiking behaviour for the Bump Attractor Network (C), and the energy signature of the Bump
Attractor (B).

Semantic Pair ‘ Temperature Range ‘ Final Value ‘ Time to Converge

Cold Coffee 0-24
Warm Coffee 25-69

Hot Coffee 70-99
Cold Coke 0-9

Warm Coke 10-24
Hot Coke 25-99

10-14
45-49
82-87
2-7

14-19
60-64

Table 4 Semantic Pair Input and Temperature Output

1080 ms

7040 ms

463 ms

90 ms (one stream)
100 ms

13920 ms

1000
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behaviour is stored. From this behaviour, weights are calculated using a compen-
satory Hebbian learning rule.

4.8.1 One of Each Category

The first training mechanism was to present the system with one of each category
triplet. The triplets were: Hot Coffeec 80° to 82°; Warm Coffee 40° to 42°; Cold
Coffee 15° to 17°; Hot Coke 40° to 42°; Warm Coke 15° to 17°; and Cold Coke 4°
to 6 °.

These were each presented for 300 ms, and firing was stopped via inhibition be-
tween epochs. Firing behaviour was recorded and a compensatory Hebbian learning
rule was applied. Weights from the semantic temperatures to the beverage bump
attractors was calculated using a post- compensatory rule, and weights from the
beverage bump attractors to the semantic temperatures was calculated using a
pre-compensatory rule. The total target synaptic weight was 0.03 and 0.1 respec-
tively.

The system was then tested with all 18 pairs (e.g. Cold and Coke, Coke and 4°
to 6°, and Cold and 4° to 6°. In each case the correct remaining third member was
retrieved, and no spurious elements were retrieved. Unlike the original test from
section 3.3, a low temperature and Cold only retrieves one beverage, because they
are associated with different temperature inputs. Indeed, many temperatures not
presented are not associated at all.

4.3.2 The Full Range of Inputs

Next the full range of temperatures were presented with their appropriate semantic
temperatures and for both beverages. This included roughly 200 runs of the system,
with intervening inhibition to stop firing between epochs.

This also leads to a system with correct results. As in the simulations in the
prior section, all the base double inputs lead to correct results. The cold and hot
temperatures with semantic Cold and Hot lead to both beverages being retrieved.

undone

full range of temperature inputs (hot and warm coffee)

cold and temperature odd

hot coke result

5 Discussion

This paper has focussed on a particular stable bump attractor, and extending
an associative memory topology around it to account for associating two binary
concepts and one continuous concept; the particular attractor was a 2-4 attractor,
using a particular leaky integrate and fire model (Gerstner et al., 2014) simulated
at 1ms time steps. This basic attractor should be readily extendable to different
local connectivity, different neural models and different time steps. Moreover, the
overall associative memory will be generalisable. For instance, during development
of the system while trying to resolve the merge problem, a 1-10 attractor was
developed; unlike the six neuron streams that emerged from the 2-4 topology, the
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1-10 topology had 11 neuron streams. In general, the larger the basin, the larger
the stream.

This beverage association directly extends to more beverages. One could add
tea, hot chocolate, and orange juice by simply adding three sets of temperature
attractor nets, the three semantic concepts, and the relationships. Perhaps more
interesting and neuropsychologically plausible is the use of hierarchy in the con-
cept structure. The authors earlier work on associative memory (Huyck and Ji,
2018) made use of hierarchical relations. In this case, there could be higher level
categories, like fruit drinks, that had default values, that could later be refined.
It should also be noted that association in these simulations have been done by
synaptic connectivity; an independent concept is linked to two others by excitatory
synapses; in the brain, particularly salient associations can also be CAs.

Similarly, other continuously valued concepts like time, weight and height could
be used. A long time to hold your breath is not a long time to wait for your
friend. Another reasonable thing is to combine two continuous attractors with
binary semantic categories. For instance, one might combine weight and height to
determine when someone is skinny or chubby. Interestingly, this might also apply
in vowel recognition in the auditory cortex (Peterson and Barney, 1952) with the
primary and secondary formants producing the vowel.

The authors prior work with stable bump attractors (Nadh and Huyck, 2010)
shows that they can readily be extended from the one dimensional attractors
discussed above to two dimensions, and they can be further extended to higher
dimensions. The bump attractors here represent a large number of simple CAs.
These CAs can act as short term memories when firing, but CAs should do some
sort of calculation, and once stable these do no calculation (Tetzlaff et al., 2015).
However, the composite associations are also CAs, so Hot Coffee and 82° is a
CA composed of three other CAs. When the full hot coffee network is presented
with the semantic terms Hot and Coffee, the merge topology does a calculation to
convert the broad temperature range to a single coffee temperature CA. That is a
relatively complex calculation, though once in that state the CA does no further
calculation.

Therefore, one of the next directions regards using 2D or n-D bump attractors.
This could be done analytically, or could follow a particular anatomic topology. For
example, there is evidence that biological head direction cells are bump attractor
CAs since their activity does not stop when the light is turned off and the bump is
stable in the absence of input (Gerstner et al., 2014). The bump, in this biological
case, is a localized blob of activity emerging from an initial perturbation of its
network by a stimuli or memory recall operation.

The model could be extended from NEST with these particular neurons to
other platforms and other neural models. In particular, neuromorphic simulations
and emulations (e.g., SpiNNaker (Furber et al., 2013) or other neuromorphic hard-
ware) could allow for much broader use of these persistent bump attractors. Runs
on SpiNNaker of the bump attractor largely duplicate the results reported above
in NEST.

Another topic to be investigated in more detail is the role of inhibition. Taking
a macroscopic point of view, for example considering results from neuroimaging
(Biswal et al., 2010), there are functional systemic networks that persist in their
activation given a balance between positive and negative relations among different
brain regions. For example, during the resting state (that is when subjects do
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nothing with eyes open or closed), activation moves from one area to another
when measured by fMRI (Van Den Heuvel and Pol, 2010). Each region of interest
has CAs or portions of extended CAs, and the authors think that inhibition is used
to move from activation in one area to another. This inhibition is similar to that
in a bump attractor, and inhibitory effects probably occur at a range of scales.

Learning can be explored. Hebbian learning can be used to learn associations
between concepts. When three individual CAs are stimulated, Hebbian learning
can be used to associate them. In the case of bump attractors, some generalisation
can be used reducing the number of instances that need to be presented; if the
triple Hot, Coffee and 82-85° are presented, the adjoining temperature neurons will
also gain some association, so that 86-88° does not need to be presented.

The literature about bump attractors and WTA functionality also investigates
the thermodynamics of the network (see for example (Tkacik et al., 2015; Hahn
et al., 2017; Pena et al., 2018)). Using the framework of dynamical system theory
and related concepts (Meiss, 2007), this work could be extended by focusing on
energy properties of attractors and repellers, stability and instability of the bumps,
dynamics of pattern formation, and forking behaviour as bifurcation phenomena.

A note should be made about the terms winner take all networks and bump
attractors. It seems the literature often equates the two, but as commonly used,
winner take all refers to a single winner amongst multiple competitors. Take for
instance the winner in a British Parliamentary election; there may be many com-
petitors, but the one with the most votes wins. This is not what is being modelled
in our bump attractor. If several neurons in different areas were given different
stimulation, the one with the largest would not typically win.

This paper has described a spiking associative memory with associations be-
tween two binary CAs and a bump attractor. Activation of two of the three asso-
ciated concepts is sufficient to ignite the third. When a large range is presented
to the bump attractor, as in the case when the temperature range associated with
two semantic values is large, extra neural topology forces the range into its middle,
with those neurons firing in a self-sustaining persistent manner. This example can
be readily duplicated to account for other similar associative memories.

The simulations in this paper have centred on stable bumps to represent large
valued properties, beverage temperatures in particular. These have been included
as components in associative memories, leading to an, as far the authors are aware,
novel problem of large valued inputs to the bump. While bump attractors are a
common and long standing model, these large valued inputs force a reduction in
the number of inhibitory connections so that the bump can have a small number of
persistently firing neurons. This has the added benefit of using fewer synapses O(n)
instead of O(n?) for well connected inhibitory nets. Large numbers of inputs do lead
to streams, and our topology for merging the streams does have O(n?) synapses.
This linear bump is almost the same as a ring attractor, with the ends included,
which does seem more likely to emerge biologically for linear phenomena. We
reiterate that these models are not good neuron for neuron models of the hot coffee
representation. However, by using the combination of simple bump attractors for
the linear phenomenon with binary cell assemblies for semantic primitives, the new
issue of broad input to the bump has been raised. It is hoped that this will inform
future work that moves from these relatively simple neural models and topologies
to more biologically and psychologically informative models.
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Developing simulations of simple neural circuits furthers understanding of their
behaviour, as is the case with persistent bump attractors. These can be combined
with other simple circuits to further understanding of more complex behaviour,
such as associative memory. Progress in this manner will hopefully lead to a deeper
understanding of more complex circuits, such as CAs, and eventually to the full
brain.
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