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Cell assemblies (CAs) are central to many higher order cognitive processes such as perception,
recognition and recollection. These processes stem from the fundamental cognitive tasks of
memorisation and association, which CA models are able to perform with a viable degree of biological
realism. This paper describes a virtual agent that uses CAs that emerge from fatiguing leaky integrate
and fire neurons via learning from dynamic interaction. Learning is continuous and the topology is
biologically motivated. The agent is able to visually perceive, learn and play a simplified game of Pong.
It can learn from a user playing the game, or playing on its own. The agent’s memories are encoded in
the form of overlapping CAs that enable it to generalise its associations to account for previously unseen
game moves. The trained agent hits the Pong ball correctly over 90% of the time. This work furthers the
understanding of associative memory and CAs implemented in neural systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Associative memory is a fundamental cognitive process. Concepts
in memory, and different types of associations between them are
acquired via learning. Associations can vary semantically, for
instance hierarchical associations, sequential associations, contain-
ment associations, spatial associations, and higher level semantic
associations. These concepts and associations that form associative
memory are critical to cognitive processing. Many connectionist
accounts for associative memory exist, but cell assemblies (CAs) [1]
provide a biologically and psychologically realistic basis for
associative memory.

This paper describes a virtual agent modelled in simulated CAs
capable of playing a simplified version of the popular arcade
game, Pong. The agent is able to learn to play the game by
observing a human play, or on its own. The agent learns to
associate input from the environment with actions, thus learning
game moves.

The agent is made entirely from fatiguing Leaky Integrate and
Fire (fLIF) neurons that have a reasonable resemblance to biological
neurons. Unlike many simulations, but like human neurons, learning
remains on at all times.

The agent learns by encoding shared, overlapping associative
memories. This allows generalisation behaviour to emerge, which
further assists the agent in game play by enabling it to carry out
actions in novel situations.
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The paper is organised as follows: Section 2 overviews CAs;
Section 3 discusses the fLIF neural network architecture where
CAs emerge; Section 4 details the simulation and findings; and
Section 5 discusses the impact of the simulation and highlights
the findings.

2. Background

Human associative memory is a remarkable process. Through-
out life, concepts continue to be acquired, learnt and associated.
Any given concept is associated with many other concepts, and
retrieval of an associated concept can be based on a combination
of a range of base concepts with a range of contexts. Many
associative memory models exist, e.g. [2-4], but Hebb’s CA theory
[1] provides an account that is supported by biological and
psychological evidence. CAs exhibit dynamics that provide a
unified explanation for long term memory and various short term
memories as opposed to higher level box models of memory.
There is extensive evidence that CAs are the basis of human
associative memory and many other cognitive phenomena [5-10]
and they have been used in computational models of associative
memory [11-14].

2.1. Cell assemblies

CAs are reverberating circuits of neurons that form the neural
basis of concepts. Hebb’s CA theory postulates that objects, ideas,
stimuli and even abstract concepts are represented in the brain by
the simultaneous activation of large groups of neurons with high
mutual synaptic strengths [1,11]. CAs are learnt by a Hebbian
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learning rule, whereby modifications in the synaptic transmission
efficacy are driven by correlations in the firing activity of pre-
synaptic and post-synaptic neurons [15]. When external stimuli
are presented to a network, synaptic strength between neurons is
adjusted so as to gain more strength if they undergo repeated and
persistent activation or firing, gradually assembling themselves
into a CA. A CA thus formed is bound to the object that generated
the stimuli, a neural representation of that object; the behaviour
of the CA causes psychological behaviour.

Such formation of CAs accounts for long term memory. When a
stimulus similar to previously experienced stimuli occurs, it may
excite a sufficient number of neurons of an existing CA to cause the
spreading of activation within the CA, activating it fully due to
recurrent activity and high mutual synaptic strength. The CA can
remain active even after the stimulus is removed and this
reverberating behaviour accounts for many kinds of short term
memories. Ambiguous stimuli can cause contention between similar
CAs, where lateral inhibition between those CAs causes competition,
with one eventually winning. Thus, the CA hypothesis provides a
functional account for a biologically viable associative memory
mechanism.

There is extensive evidence of CAs in mammals based on a
range of recording techniques and experimental paradigms (see
[5,7] for reviews). CAs can also account for various psychological
phenomena such as sensing [16] and determining action [17],
besides different types of associative memory [18].

2.2. (CAs and associative memory

Even though CAs account for memory formation, their precise
neural dynamics are far from perfectly understood. In auto-
associative memories, an initial state is allowed to settle into a
stored memory, allowing subsequent noisy input to retrieve a
stored pattern. The Hopfield Model, which is a network of units
that are well connected with bidirectional weighted connections,
that are used to store a set of binary patterns (typically using a
Hebbian calculation), illustrates this property [19]. When an
initial set of neurons is ignited, in a discrete version of the system,
activation spreads through the system based on the weighted
connections. In most cases, the system will settle into a stable
state with no neurons switching between on and off. If the input
pattern is close to a stored pattern, it will settle into that pattern’s
state, thus functioning as a content-addressable memory or an
auto-associative memory.

Neurons may also belong to more than one CA. Hopfield
patterns that share on-bits are models of CAs that share neurons.
As mentioned in Section 2.1, neurons in a network may belong to
different CAs, and if they are repeatedly co-activated by different
versions of the same stimulus, they tend to become associated [1].
This is based on the notion that events that occur together
repeatedly should somehow belong together. Every time these
events occur in conjunction, they drive certain subgroups of
neurons to fire in correlation, resulting in the association of the
respective events [11]. A more complete review of CA based
associative memory models is [20].

Repeated co-activation of neurons can lead to the formation of
CAs. Similarly, repeated co-activation of multiple CAs result in the
formation of multiple and sequential associations, and even new
CAs. When an external stimulus activates a CA, it may excite
neurons shared with a different CA that is not directly stimulated,
activating it. This forms the rudimentary, neural level explanation
of associative memory.

In prior work, associative memory has been explored with
orthogonal and overlapping CAs. Orthogonal CAs were used to
encode spatial cognitive maps, many-to-many, and context

sensitive associations [18]. With orthogonal CAs, a neuron belongs
to at most one CA, but with overlapping CAs, a neuron may belong
to several CAs. Learnt overlapping CAs can form hierarchical
categories from instances of individuals [21]. The simulations
mentioned in this paragraph use a similar neural and topological
architecture to the one described below.

3. The fLIF CA architecture

A computational model based on fLIF neurons, using a Hebbian
learning mechanism can self-organise to form CAs. Similar to
many existing models, the basic architecture of such a mechan-
ism, explained below, is a simplification of the mammalian neural
architecture.

3.1. The fLIF neuron

The fLIF neuron model is an extension of the Leaky Integrate
and Fire (LIF) model [22,23]. fLIF neurons share many attributes
with their biological counterparts. Like the biological neuron, the
fLIF neuron integrates coincident pre-synaptic potentials until a
critical threshold is reached. On exceeding the threshold, the
neuron produces an action potential, or fires. This potential
further propagates via the neuron’s axonal terminal to incident
post-synaptic neurons, while the firing neuron loses its activation.
The neuron leaks potential if the firing threshold is not attained
for prolonged periods. This leaking behaviour of fLIF neurons is
similar to that of the biological neuron. This can be represented as
follows:

The activation A of a neuron i at time ¢ is

Ai(t) = Adt=1) +> w )]

0 jeVi

The current total activation A is the sum of incoming activation
and remnant activation from the previous time step t—1 divided
by decay factor 6 > 1. The incoming activation is the sum of total
neurons that fired at t—1 of all neurons je V;,V; being all pre-
synaptic neurons of i that fired at t—1, weighted by the
connection from neuron j to i.

When the accumulated activation A exceeds the threshold 0,
the neuron fires, losing its potential and thereby resetting A to
zero. Firing is a binary event, and activation of wj; is sent to all
neurons i to which the firing neuron j has a connection.

Fatiguing causes the threshold to be dynamic, 0;,1 = 0;+F;. F;
is positive (F.) if the neuron fires at t and negative (F_) otherwise.
An increase in the threshold causes the total amount of activation
required for neuron firing to increase. Hence, successive firing
reduces the ability of the neuron to fire. Similarly, the threshold
decreases with each step the neuron does not fire, but is never
less than the original threshold.

3.2. Learning

Learning in the fLIF network is dictated by a correlatory
Hebbian learning rule [24], whereby synaptic connection weights
are modified based on the following equation:

A+WU:(]—WU)*;L (2)
A_Wij =W;j; * - 3)

wy; is the synaptic weight from neuron i to j and 4 is the learning
rate. During each step, weights change based on the state of pre-
synaptic and post-synaptic neurons. If both neurons fire, the
weights increase as per the Hebbian rule (Eq. (2)). If only the
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pre-synaptic neuron fires, weights decrease as per the anti-
Hebbian rule (Eq. (3)). Thus w;; changes and approximates k, the
likelihood of j firing if i fires. Learnt CAs may have excitatory
connections with each other based on the connection rule
(Eq. (4)), but their inter-synaptic weights are generally low
because neurons in different CAs seldom co-fire.

Each neuron is either excitatory or inhibitory, where all
synapses leaving the neuron are either excitatory or inhibitory,
conforming to Dale’s principle [25]. A similar learning rule applies
to inhibitory neurons that makes the synaptic weight approx-
imate k—1 where k is the likelihood that the post-synaptic neuron
fires when the pre-synaptic neuron fires.

Once learnt, external activation acting on a CA causes it to
inhibit connected but inactive CAs in the same subnet via learnt
inhibitory connections. Similarly, simultaneous co-activation of
connected CAs increases the connection strength between them,
creating associations.

3.3. Network architecture

The Pong agent described in this paper has a modular
architecture, where the agent’s network is divided into smaller
subnets. Learning occurs within and across these subnets that are
a part of the larger fLIF neural network. The neurons do not have
self-connections and they synapse uni-directionally.

Intra-subnet excitatory neurons have distance-biased synaptic
connections similar to biological neurons [26]. The distance-
biased connectivity makes connections to neighbouring neurons.
In addition, each excitatory neuron has a long distance axon
which synapses to one random area of the subnet. Thus,
excitatory neurons have connections to nearby neurons and
neurons in another area of the subnet.

The subnets have a toroidal topology to eliminate border
effects. The local connectivity rule for excitatory neurons besides
the long distance connection is given by Eq. (4). There exists a
connection between neurons i and j of a network only if G; = 1:

Gi=1 ifr<(/(dxv)

Cj=0 otherwise 4)

where r is a random number between 0 and 1, d is the city block
distance between the pre- and post-synaptic neuron, and v is a
constant, the connection probability. This indicates that connec-
tions in a network are influenced by distance between neurons
and the connection probability and stops if d > 5 as this has been
observed to work well. The parameter v is 0.8 for Visuallnput and
ControlNet and 2.0 for the rest. Thus excitatory neurons in
Visuallnput have about 40 connections to other neurons in the
net, and PaddleNet neurons have about 20 connections.
Parameters vary across different subnets as shown in Table 1.
These have been determined largely by a process of manual
parameter exploration and have been observed to be fairly robust.
Inter-subnet connections are described in Section 4.1.

Table 1
Network parameters.

4. The Pong simulation

The Pong agent visually perceives a simplified version of the
classic arcade game of Pong running autonomously or being played
by a human. It learns by continuously encoding game moves as
massively overlapping CAs. The game consists of a vertically
movable paddle and a Pong ball. The goal of the game is to move
the paddle along the Y-axis so as to hit the incoming ball and
prevent it from crossing the paddle’s Y-axis field. The agent learns to
play the game by encoding spatial information, that is, its Y-axis
position relative to the ball's Y-axis position. The agent is always
learning and its behaviour is modified dynamically by its own
actions. This in turn causes categorical behaviour to emerge, which
further assists the agent in game play. CAs are categorisers, each
being activated by a range of similar inputs, and the highly
overlapping CAs in this simulation support generalisation.

Fig. 1 shows the visual field as seen by the agent. The ball is in
the mid field and the paddle on the left, seen as regions of
neuronal activation.

4.1. Network setup

Fig. 2 shows the model’s network setup. All subnets have
unidirectional connections, except for PaddleNet and BallNet, as
indicated by the solid arrows. Visuallnput represents the visual
stimuli coming from the game; Paddlelnter is the intermediate
subnet that shows the paddle’s position, but is inhibited (turned
off) during testing; BallNet receives activation from the ball in the

Fig. 1. Visual field of the agent showing the paddle and Pong ball.

2 Learning 0 Threshold F. = F_ Fatigue 0 Decay Excitatory neurons (%)
Visual 0.0 6.0 0.6 1.2 80
Control 0.0 1.5 0.2 1.2 0
Inter 0.0 45 0.6 1.2 90
Paddle 0.1 35 0.9 1.5 70
Ball 0.1 4.5 0.9 1.3 70
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Fig. 2. Pong agent’s network setup.
Table 2

Pong subnet sizes.

Subnet No. of neurons Rows Columns
Visuallnput 10000 100 100
ControlNet 200 20 10
Paddlelnter 1000 100 10
PaddleNet 1000 100 10
BallNet 1000 100 10

visual input. Neurons in both Paddlelnter and BallNet receive
activation via excitatory connections from Visuallnput. PaddleNet
integrates activity from Paddlelnter and associations from BallNet;
and ControlNet inhibits Paddlelnter so as to shut off visual
perception of the paddle during testing.

Visual input is a direct mapping of the neuronal activation in
Visuallnput with neurons directly mapped to the paddle and ball
subnets. In Fig. 2, the shaded areas in Paddlelnter, PaddleNet and
BallNet show activation received from the visual input. Each
excitatory neuron in the paddle area of Visuallnput (the five left
most neurons) connects randomly to 10 neurons in the corre-
sponding row of Paddleinter with a weight of 6.0. The next 90
neurons in the row of Visuallnput connect randomly to 10 neurons
in the corresponding row of BallNet with a weight of 6.0.
Excitatory Paddlelnter neurons connect to the 10 PaddleNet
neurons with weight 6.0. So, the activation in the paddle and
ball subnets is Y-axis mappings of the paddle and ball in the visual
field, respectively. That is, they are representatives of the vertical
positions of the paddle and ball in the game at all times. The
dotted arrows in Fig. 2 from the visual field to the subnets indicate
this. Every time the paddle or ball moves, their positions are
updated in the paddle and ball subnets in real time by the neurons
firing in the Visuallnput subnet. Due to fatigue, not all neurons
associated with the paddle and ball fire. Each ControlNet neuron
has 100 synapses to randomly chosen Paddlelnter neurons with
synaptic weight —8.0, enabling the ControlNet to inhibit it. The
negative weight causes the neuron to inhibit post-synaptic
neurons. In the test mode, PaddleNet moves the paddle.

Learning takes place only within and between PaddleNet and
BallNet. Initial inter-subnet connections are random low weight
excitatory and inhibitory connections.

The network parameters of the Pong agent are presented in
Table 1 and the subnet sizes in Table 2. For further details, the

source code for the simulation is available at http://kailashnadh.
name/research/files/CApong.zip.

4.2. Human trained game play

The simulation begins with a human playing the game. The
paddle is controlled via keyboard input. The goal of the game is to
prevent the ball from coming in contact with the wall on the
paddle’s side, by moving the paddle along the Y-axis and hitting
the ball. As the paddle and ball move, their vertical positions are
mapped in Paddleinter, PaddleNet and BallNet, respectively, by
neural firing.

Since there is two way learning between PaddleNet and BallNet,
the recurrent neuronal activation from Visuallnput causes them to
remain co-active. Repeated activation of a certain region causes
the synaptic strength between active neurons to increase, forming
CAs.! Co-activation causes the synaptic strength between active
CAs in PaddleNet and BallNet to increase, thus associating them.
For example, when there is no human input, if neurons at the
bottom of the PaddleNet are firing, the paddle will move to the
bottom of the screen in the game. Since the CAs in the paddle and
ball subnets represent the vertical position of the paddle and ball,
respectively, the position of the paddle and ball in relation to each
other is learnt. This, in essence, encodes the player’s action of
moving the paddle relative to the ball and hitting the ball by
aligning the paddle’s position to it.

Formation of basic CAs (within a given subnet) is driven by
external stimuli. As particular neurons are activated via environ-
mental stimuli, the CAs that correspond to those neurons are
strengthened, with neurons that are less central being weakened.
For example, in BallNet, excitatory neurons have strong connec-
tions to neurons in the same row, slightly weaker connections to
adjacent rows and strengths declining as the distance extends.
Inhibitory neurons have a similar pattern with neurons many
rows away receiving net inhibition from a given row. Activation
from a CA (internal stimulation) may also spread over the
overlapping region to form bigger CAs. This behaviour results in
the formation of overlapping CAs that change dynamically.

Based on the player’s moves, associations of CAs in paddle and
ball subnets vary. For instance, consistent behaviour reinforces
certain associations and causes the rest to weaken via learnt
inhibition. Every time the positions of the paddle and ball change,
neuronal activity in the paddle and ball subnets shift accordingly.
If the movement is minimal, it causes the activity in the subnets
to shift only slightly thus overlapping with the antecedent CA.
That is, new vertical position mappings form by the amalgama-
tion of positions close to each other.

In the test mode, the ControlNet inhibits Paddlelnter which
relays stimuli from visual input to PaddleNet. This in effect stops
the agent’s view of the paddle by disabling visual stimuli from the
paddle so that paddle movement occurs solely from the internal
state. Stimuli from the ball area in its visual field continue to
activate CAs formed in BallNet based on the ball’'s motion. The CAs
that become active in BallNet in turn activate the ball-paddle
position CAs learnt in PaddleNet.

Neurons in PaddleNet act as motor neurons and move the
paddle; movements in the game are a direct mapping of the
vertical position of the spikes that occur in PaddleNet. Since
the CAs in the paddle and ball subnets encode position variables,
the paddle moves in accordance with the ball. If the action of
hitting the ball was reinforced by the human player, the paddle

1 CAs are persistent as is evident when the system is well trained and input is
turned off. Activity persists in BallNet and PaddleNet for roughly 70 cycles, where
one cycle is 10ms in simulated time.
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Fig. 3. Pong agent’s game score in human trained game play mode.

will correctly move up to the ball and hit it. Since the system is
always learning, all learnt movements the agent makes in turn
modify its own behaviour.

Due to the absence of a reward system, it is possible for erratic
training to reinforce sub-optimal game moves. So, if the human
intentionally misses the ball during training (inverting the game),
the agent will also initially miss the ball.

A simple scoring system keeps track of the agent’s perfor-
mance recording hits and misses. As there is a considerable
amount of randomness in the initial network topology, and in
human trained game play, the game was run 25 times, each with a
different network configuration. A human player played for 4 min,
and the agent played on its own for another 4 min. In all trials, the
agent hits the ball more times than it missed. Fig. 3 shows the
score distribution, where the score is the total number of
successful hits.

4.3. Autonomous game play

In the autonomous game play mode, the agent acquires game
moves on its own. As there is no human intervention and no pre-
existing memory, initially, the paddle stays idle at the starting
position despite the ball moving around in the field. Movements
are still driven by the PaddleNet as described in Section 4.2.

ControlNet inhibits the paddle vision so that only the ball’s
position is perceived. This is necessary to prevent the agent from
viewing the paddle, so that learning only occurs from the visual
stimulus of the ball crossing the paddle’s field and not the Y-axis
position of the stationary paddle itself.

When the ball crosses the paddle’s Y-axis field, its neuronal
activation is mapped to PaddleNet. This is due to the paddle
staying stationary initially. At this point, ControlNet is shut down
automatically, releasing the inhibition on paddle vision, enabling
the agent to visually perceive the position of the ball which is now
in the paddle’s field. As explained in Section 4.2, the paddle moves
in relation to the neuronal spikes in PaddleNet. In this case, the
spikes are caused by the ball entering the paddle’s visual field. The
paddle quickly moves along the Y-axis to the position of the ball,
where activation in PaddleNet and BallNet remain co-active for 50
cycles after which ControlNet inhibits the paddle vision. The co-
occurrence triggers learning of the position of the paddle in
relation to the ball, as explained in Section 4.2. The ball then
bounces off and this process repeats as it comes back to the
paddle’s side again. After a few repetitions, enough position CAs
are encoded in PaddleNet and BallNet that the agent is able to

Hits (238) ——
Misses (68) ---»---

o
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O
U) -
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Trial

Fig. 4. Pong agent’s game score in autonomous game play mode.
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Fig. 5. Percentage of hits over time.

move the paddle in correspondence to the ball’s Y-axis position
and successfully prevent it from hitting the wall.

The game was run as 25 trials each with a different network
configuration for a duration of 4 min, where the agent autono-
mously acquired game moves while engaged in game play. In
most trials, the agent missed the first few hits until enough
learning was done and then started scoring significantly better.
Fig. 4 shows the score distribution across 25 trials.

Fig. 5 shows the average behaviour of 10 different network
configurations playing autonomously over the first 500 hits or
misses. The behaviour improves over time and is still improving
at the end. The average performance after 500 interactions was
86%, and an average using a moving window of the last 100
interactions was 90%. The worst net had 72% with 500 interac-
tions though it was 88% on the moving window. On the moving
window case, the best net still only hit 95% at the end.

5. Conclusion and discussion

The agent, based solely on simulated fLIF neurons, learns to play
the Pong game fairly well. It has been shown that the system learns
associations between visual inputs and actions while the agent is
observing or playing the game. The associations are dynamic,
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changing over the course of a game. Nonetheless, they are stable,
forming over all tested subnets, and persisting throughout each run.

The underlying architecture is based on reasonably biologically
faithful fLIF neurons. Like biological neurons, the simulated
neurons always learn. Moreover, the distance-biased topology,
sparse connectivity and use of excitatory and inhibitory neurons
are biologically plausible features. The authors would not argue
that there is a direct relation between the neurons in the
simulation and particular neurons in the brain; for instance, the
Visuallnput net is an extreme simplification of the human visual
system, as is the motor output driven by PaddleNet. Nonetheless,
it seems plausible that there is a relation between the simulated
neurons involved in the associative learning (PaddleNet and
BallNet) and biological neurons involved in learning to hit the
Pong ball; of course this mapping would be complex.

The gross topology of the network (Fig. 2) provides connec-
tions between the possible actions (paddle positions) and the
possible inputs (paddle and ball positions). For independent
learning, the trace left by the ball when missed provides a driver
for moving the paddle. The connections are very weak and diffuse
initially. At a coarse level, associations between the actions and
inputs are learnt from co-presentation. At a finer level, the
synapses that support these associations are learnt via neural co-
firing driven by co-presentation.

Similarly, the actual concepts that underlie input and action
are formed dynamically from input. That is, initially, there are no
CAs, but they are learnt via presentation of game instances. CAs
both form and become associated in this simulation.

Once overlapping CAs are formed, these provide generalisation
that enables the system to perform in novel situations. Other
simulations have involved orthogonal CAs [18] with each CA
having distinct neurons. It seems unlikely that biological CAs are
orthogonal [27]. One of the benefits of overlapping CAs is that by
their nature, they provide generalisation. For example, in a given
run of the Pong game the ball may never come to a particular
position in Visuallnput, so a particular set of neurons in BallNet
will never be active. However, some of those neurons may be
activated when a nearby position is reached, and this will allow
them to increase their mutual synaptic strength. When that
particular position is first presented to the system, the CA has
already formed. Existing associations already provide support for
the novel situation.

Since the CAs only encode Y-axis positions, the agent does not
necessarily predict the position of the ball during game play. It
recalls the paddle’s position relative to that of the ball’s, learnt in
previous runs that enables the agent to align the paddle with the
Y-axis position of the ball. The overlaps provide a way to extend
the learnt positions novelly. If the game were changed so that the
paddle needed to be in a different place, e.g. the opposite position
on the Y-axis, for each ball position, that would be learned as
effectively. A more complex setup would be likely to allow
predictive behaviour to emerge. The horizontal movements of the
ball and the variations in angle would be taken into account, and
meta learning, based on a reward mechanism where positive and
negative reinforcements [28] for correct and incorrect moves,
respectively, would be integrated.

These CAs have been described as massively parallel because
each neuron participates in a large number of CAs. In these
simulations, CAs persist with about 50 neurons firing persistently,
so each neuron is in roughly 50 local CAs, and a larger number
across subnets. Fig. 6 illustrates the successive activation of CAs
formed in PaddleNet at an interval of five cycles from cycle 400 to
425 in a particular run. Each of the six rectangular strips is a
snapshot of the state of PaddleNet at a particular step, with the
seventh one being a composite of all states. Activation levels of
neurons are visible as shades, where the darkest regions are CAs

400 405 410 415 420 425 COMPOSITE
||
-
L}
i IHFF
e g
| B |

Fig. 6. Visualisation of active CAs in PaddleNet at specific intervals.

with firing neurons and white regions are inactive neurons. The
visualisation shows the paddle moving up, where activation is
seen to spread across multiple CAs. The active CAs are not discreet
and overlap with preceding and succeeding ones as illustrated by
the composite image, where no physical gaps can be seen
between them.

One of the problems with simulated CA formation is that when
one CA becomes active, it may lead to the activation of associated
CAs, which in turn lead to a cascade of activation with the whole
network becoming active, i.e. simulated epilepsy [29]. In the
simulations described in this paper, the spread of activation is
limited and counterbalanced by inhibitory connections prevent-
ing this.

If it is reasonable to speculate on particular brain areas
associated with particular subnets of Fig. 2, then the PaddleNet
subnet can be considered to be similar to place cells that are
known to occur in the Hippocampus of rats [30]. Similar results
with humans indicate that neurons in the hippocampus reflect the
position of the person [31]. The behaviour of the simulated
neurons in the overlapping CAs that enable the agent to move
about in the game is also similar to the behaviour of hippocampal
place cells that are involved in spatial encoding [6]. That is, if the
system described above were a model of a person acting as a Pong
paddle, the neurons in PaddleNet subnet could correspond to some
Hippocampal neurons.

The Hebbian learning mechanism used to create associations
between ball and paddle positions is a general mechanism. There
are, however, cases where the learning mechanism alone fails. For
instance, when an action is associated with a condition and the
environment indicates it is a bad association, the co-firing still
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supports the association. This particular problem has been solved
by a more complex system to support appropriate associations
and firing [28]. Nonetheless, the associative nature of the Hebbian
learning mechanism is the default. So when a sensory stimuli and
action co-occur, they are associated by default.

The simulations presented in this paper exhibit the learning of a
large number of associations that enable the agent to play the Pong
game. These are learnt in a simulation that has a relatively high
degree of biological plausibility. The continuous overlapping nature
of the CAs that are learnt allows the system to generalise and thus
generate reasonable performance, showing one benefit of over-
lapping CAs. This work is another step toward understanding the
underlying neural mechanisms of associative memory.
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