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Abstract

Using a reasonably accurate fatiguing leaky integrate and fire (FLIF) neural model, and
biologically plausible compensatory Hebbian learning rules, simulations categorise benchmark
machine learning data. The FLIF model is a simple, efficient point model with discrete cycles
roughly corresponding to 10 ms. of biological time. The model is applied to the yeast
categorisation task and the results are compared with those of other mature machine learning
algorithms, including a new Kohonen net. Synaptic weights are changed following a compensa-
tory Hebbian rule that includes the total synaptic weight of a neuron. The neural model leads to
spontaneous neural firing that enables neurons not directly stimulated by the environment to
be included in the neural categorisation circuit. The network is sparsely connected, and broken
into two subnets, with the first subnet directly stimulated by the environment, and using com-
pensatory learning based on the strength leaving the neuron. The second subnet initially fires
only spontaneously, and uses compensatory learning based on the weight entering the neuron.
After learning, new items are categorised based on a Pearson measurement comparing the fir-
ing behaviour of the second subnet on trained items, and the test item. The simulation is self-
organising using only unsupervised learning. This ‘‘biologically’’ plausible learning mechanism
and network is close to the machine learning algorithms’ performance; the biological network
categorises 53% correctly, while the Kohonen net categorises 56% correctly. This neural simu-
lation is incomplete, but supports further developments in biological neural cognitive architec-
tures.
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Introduction

One long-term research goal is to create a simulated mind;
indeed there is a research effort with substantial support to
build a computer capable of simulating the brain at a rela-
tively fine-grained level (Markram, 2006). To create a simu-
lated mind from a simulated brain, it is essential to
understand the basic functions of the brain. This goal re-
lates to work in cognitive architectures leading to the goal
of a biological neural cognitive architecture.

One problem that a biological cognitive architecture
must address is how one set of neurons autonomously learns
from the behaviour of another set of neurons. Assuming
learning is done by a Hebbian learning rule and the first
set is directly stimulated by the environment, the second
set of neurons, not being directly stimulated by the environ-
ment, must fire spontaneously to allow synaptic strength to
them to grow.

Relatively coarse point models can be used to simulate
this behaviour, exploring spontaneous activation and model
Hebbian learning rules. As a bonus, these models can be ap-
plied to standard machine learning problems. A simulated
neuro-biological model that categorises yeast data is de-
scribed in the remainder of the paper.

Background

Modelling the brain has a long history, and both neurons and
learning have been modelled. Computational models of neu-
rons can be broadly grouped into compartmental models
and point models. Compartmental models break the neuron
into 3D parts, and then use models of electrical conduc-
tance to dynamically determine the neuron’s electrical
properties. An early example of these is the Hodgkin–Hux-
ley model (Hodgkin & Huxley, 1952). Almost without excep-
tion, these models are a more accurate reflection of biology
than are point models, but they are expensive to simulate.

Point models are widely used, with integrate and fire
models (McCulloch & Pitts, 1943) being an early and simple
model. These are also used in the Hopfield model (Hopfield,
1982). A widely used extension includes leak (Amit, 1989),
leading onto the fatiguing leaky integrate and fire (FLIF)
model described below.

Boltzmann machines are another type of point model
(Ackley, Hinton, & Sejnowski, 1985). They fire stochasti-
cally, but without input they fire on a regular basis. Increas-
ing input increases their firing rate. The FLIF model
approximates this behaviour without the stochasticity.

Many learning rules are Hebbian, and in all cases they are
local rules based on the behaviour of adjacent neurons. Bio-
logically, learning appears to be Hebbian, with the spike
timed dependent plasticity (STDP) having solid biological
support (Bi & Poo, 1998). Hebbian learning and variants
have proved to be quite powerful. For instance, it is possible
to separate independent and principal components with lo-
cal rules (Fyfe, 2005). Some form of decorrelation is neces-
sary so that all of the neurons do not become highly
connected, and Fyfe uses anti-Hebbian rules to decorrelate
the behaviour of co-firing neurons.

The standard Kohonen learning rule (Kohonen, 1997),
which is not Hebbian, uses a ‘‘Mexican Hat’’ function to

move neurons away from each other, decorrelating them.
STDP also decorrelates neurons when the pre-synaptic neu-
ron fires after the post-synaptic neuron. This has been used
in spiking models to duplicate the standard Kohonen map
(Rumbell, 2012).

Model

Broadly speaking, the components of the model used in the
simulation are the neural model, the learning algorithm,
and the topology (the way the neurons are connected).
The system can be found at http://www.cwa.mdx.ac.uk/
chris/hebb/yeast/yeast.html.

FLIF model

The FLIF neural model is a point model, which is in the fam-
ily of integrate and fire (McCulloch & Pitts, 1943) models,
with two dynamic variables, activation A and fatigue F. An
integrate and fire model is described by Eq. (1). The neuron
integrates activity from other neurons that fired in the last
cycle (Vi) weighted by the synaptic strength wij. It fires if
activity surpasses a threshold h.

h < Aj ¼
X

i2Vi

wij ð1Þ

The model is discrete and runs in cycles that roughly cor-
respond to 10 ms. of time. It is leaky as described by Eq. (2),
so if it does not fire in one cycle, it retains some of the acti-
vation for the next cycle. Without input, activation decays
from step t � 1 to step t, being divided by a constant D > 1.

At
j ¼ At�1

j =D ð2Þ

The neuron also fatigues each step it fires. Each neuron
has a fatigue value that is increased by a constant Fc each
step it fires. The neuron’s fatigue is added to the threshold,
producing a dynamic threshold where neurons that fre-
quently fire require more activation to fire.

When a neuron does not fire, its fatigue is reduced. In
earlier models this was reduced by a constant Fr in each step
that the neuron did not fire, but the fatigue value, F, never
went below zero. The new version allows fatigue to be neg-
ative. When a neuron is hypo-fatigued, it will fire when fa-
tigue is negative enough (�F > h). In this model, if the
neuron fired and fatigue was less than �.25, the fatigue
was halved as described in Eq. (3). Otherwise, it was in-
creased by Fc as usual.

Ftþ1
i ¼ Ft

i=2 ð3Þ

This leaves four parameters to describe the neural mod-
el. Threshold h is 2.2; decay D is 1.12; fatigue increase Fc is
0.45; and fatigue recovery Fr is 0.01. In past simulations,
these were free parameters for simulation, but these values
have been selected to fit the firing behaviour to biological
neurons. The particular neurons modelled were rat somato-
sensory neurons under a widely varying direct current injec-
tion regime. Similarly, the fatigue rule’s, inclusion led to a
closer fit to the biological firing behaviour (Huyck & Parvizi,
2012). Fit to neural spiking behaviour is over 90% with an
average difference of less than two cycles (17 ms.).
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In addition to an improved fit to neural data, this pro-
vides a mechanism for neurons not directly stimulated to
fire. For neurons to be included in a Hebbian circuit, they
need to fire. In earlier simulations, neurons were selected
randomly to fire spontaneously (Huyck & Bowles, 2004) to
enable them to be included in the circuit. In this neural
model, spontaneous firing emerges from fatigue, and thus
is theoretically simpler. This spontaneous firing is related
to Boltzmann machines (Ackley et al., 1985).

Compensatory learning

The learning mechanism is another component of the mod-
el. While evidence points to biological modification of syn-
aptic weights being Hebbian, this leaves a vast range of
possible rules. The simulations below use a compensatory
learning rule. In addition to the firing behaviour of the
two neurons a synapse connects, a compensatory rule takes
into account the total weight of the synapses in these neu-
rons, forcing the total weight toward a target total in con-
junction with the firing behaviour. The authors have used
a compensatory rule based on the total weight from the
pre-synaptic neuron’s synapses in earlier work to learn hier-
archical categories (Huyck, 2007). The simulations de-
scribed below make use of two variations of the
compensatory rule, one based on the total weight to the
post-synaptic neuron, and other prior rule based on the to-
tal weight from the pre-synaptic neuron; these are termed
post-compensatory and pre-compensatory.

Hebbian rules are typically a combination of a rule for
neurons co-firing, and one for when they do not. Eq. (4) is
used when the neurons co-fire, and Eq. (5) when the pre-
synaptic neuron fires and the post-synaptic neuron does
not. When the pre-synaptic neuron does not fire, the
weights do not change.

Dþwij ¼ R � T½ð1� wijÞ � 10ðWB�WjÞ� ð4Þ
D�wij ¼ �R � T½wij � �10ðWj�WBÞ� ð5Þ

In Eqs. (4) and (5), R is the learning rate, which is 0.01 in the
simulations below. WB is the neuron’s target synaptic
weight and Wj is the neuron’s total synaptic weight. T is a
threshold function capping its output at 1. Thus a synaptic
weight can change by at most the learning rate in a given cy-
cle, and this is often the case in the beginning of a simula-
tion as the initial synaptic weights are low. The synaptic
weights are restricted to have values between 0 and 1.

Topology

The topology is divided into two subnets (see Fig. 1). The In-
put subnet acts as a proxy for environmental stimulus. The
SOM subnet acts as a self-organising map, though it differs
from a Kohonen net (Kohonen, 1997). Each neuron in both
subnets is excitatory. The Input subnet has no internal con-
nections; its neurons do not fatigue and thus fire each time
they are externally stimulated, and only when they are
externally stimulated.

Each neuron in the Input subnet has 10 connections to
the SOM subnet. All connections are randomly assigned

without duplication or (in the case of the SOM subnet)
self-connections. Within the SOM subnet, each neuron has
20 connections.

Pre-compensatory learning is applied to synapses leaving
the Input subnet; WB is 5. Synapses between neurons in the
SOM subnet change by post-compensatory learning; WB is 1.

The Input subnet has 1080 neurons. The SOM subnet has
1000 neurons. This topology (size of input aside), learning
forms and target weights, duplicate an earlier simulation
for car data (Mitchell & Huyck, 2013).

Experiment

The authors have been interested in applying these types of
biological neural networks as a solution to machine learning
problems for some time. Networks where all neurons were
stimulated could effectively learn categories (Huyck & Or-
engo, 2005). However, these networks had problems with
categories that were not linearly separable, and could not
easily memorise large numbers of items.

In other earlier work (Cairns, Huyck, Mitchell, & Wu,
2001), the authors (and colleagues) applied a range of ma-
chine learning techniques to the yeast categorisation task
from the University of California at Irvine’s Machine Learn-
ing Repository (Asuncion & Newman, 2007). Recently, the
authors applied this compensatory solution to a relatively
large car categorisation task from the Repository. A straight
forward translation was made to apply this type of network
to the yeast problem.

Fig. 1 Biological neural net: circles refer to firing neurons.
The arrow represents all of the synapses from the Input to the
SOM subnet. The Input subnet represents 8 numerical inputs.
The SOM subnet represents one cycle of firing, with many
neurons representing this particular category. Several of those
neurons will also be part of the representation of other
categories.

Compensatory Hebbian learning for categorisation in simulated biological neural nets 5
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The initial solution was directly derived from the earlier
car categorisation problem. The car problem had discrete
input features, while the yeast problem consisted of a set
8 input features with values between 0 and 1, with two dig-
its of precision. There were 10 categories.

The input was encoded in a relatively obvious way. Each
input feature was given 110 neurons. When an item was pre-
sented, the 10 adjacent neurons to the value were stimu-
lated. For example, if the first feature had a value of .01,
the 2nd to 11th neuron were stimulated, and if it had a va-
lue of .99 the 100th to 109th neuron were stimulated. Dur-
ing training, each category was also stimulated with each
being represented by 20 neurons.

The SOM subnet contained 1000 neurons. Each training
and test item was presented for 40 cycles, and the
net allowed to run for a further 35, providing a 75 cycle
epoch. The first phase of training was 20,000 cycles; this
phase set the synaptic weights. During the second phase,
all training items were presented; the firing behaviour was
used as a basis for comparison for categorisation. This all
followed the earlier car categorisation work (Mitchell &
Huyck, 2013).

During the first phase of training, the model was allowed
to run freely, with the appropriate change of training input
for each new epoch. The idea was that 40 (10 ms) cycles of
input was roughly equivalent to 400 ms of physical time, and
thus was sufficient to activate a concept; however, the
activity did not persist, and thus these networks do not con-
tain Cell Assemblies (see concluding section). The 75 cycle
epoch provides time for neurons to fire spontaneously en-
abling their synaptic strengths to increase via Hebbian
learning, and become part of the classification mechanism.
The Input subnet’s learning rate is multiplied by 0.7 every
5000 cycles.

During the second phase of training, learning was turned
off, the model was reset at the beginning of each epoch,
and firing behaviour was recorded. In a given test of the en-
tire network, 268 items were presented during the first
phase and 1335 items were presented during the second
phase. Learning during the second phase led to degraded
(though reasonable) performance. All 8 input and 1 output
feature were presented during both training phases. During
the second training phase, reset zeroed each neuron’s acti-
vation and fatigue at the beginning of each epoch; this
made the initial state at each epoch in the second training
phase roughly equivalent. The 1000 dimensional firing vec-
tor provided the bases for categorising.

The testing phase was similar to the second training
phase. The test items were presented without the output
feature, and the firing behaviour and the category were
recorded. There was a reset at the beginning of each
epoch.

Categorisation was done by comparing the firing pattern
of the test item with the training items from phase 2 using a
Pearson’s Product Moment Correlation. The category of the
training item with the closest Pearson’s Correlation was
selected.

Following the earlier machine learning work (Cairns
et al., 2001), a 10-fold test was used. A particular net was
trained on 90% of the data and tested on 10%. This was re-
peated 10 times, each with a new net, to get a complete
10-fold test.

Results from earlier systems, shown in Table 1, show that
it is a difficult task. On 100 complete 10 fold tests, the aver-
age performance was 52.18% of correct categorisation. A
slightly different topology led to a slightly better result with
a high of 55.19% on one 10 fold test. This is below the super-
vised algorithms, but quite near them. It is also below the
SOM performance, despite having the FLIF network perform
better on the earlier car data.

In Cairns et al. (2001) Kohonen’s SOM was not used and
hence is included here. The parameters of the Kohonen’s
model used are as follows: 10 \ 10 hexagonal grid; neigh-
bourhood set at 2/3 reducing to a single node; and the
learning rate, a, initialised at 0.05 reducing to 0.01 over
1000 iterations. The Kohonen SOM was exposed to the same
10-fold test on yeast and the results are the mean of train-
ing and testing five times.

Discussion and conclusion

The FLIF neural model is a reasonably accurate biological
model. It is efficient to simulate, mostly because it has a
10 ms step while most other models simulate either contin-
uously or with a 1 or .1 ms step. The emergent spontaneous
activity allows neurons that are not directly stimulated by
the environment to be incorporated into neural circuits.

The compensatory learning mechanism is biologically
motivated. It merely limits the strength of synapses from
(in the pre-compensatory case) or to (in the post-compensa-
tory case) a neuron. In this particular topology, it rapidly in-
creases strength from the initial neurons. The SOM neurons
also increase in strength even when they initially receive lit-
tle activity because the post-compensatory rule spreads the
synaptic strength to neurons that do not have much, thus
increasing their participation in the circuits.

The resulting FLIF topology yields a self-organising sys-
tem that has several neurons representing a state. In Koho-
nen’s SOM, one unit represents a state. The multi-unit
representation allows more states to be remembered. The
Pearson measurement is one way to separate the states,
but a neural mechanism will be needed for an eventual bio-
logical neural cognitive architecture.

This simulation has separated pre and post-compensa-
tory learning, but there is no reason that a synapse cannot
use both components, or that this could change over time
in response either to age or some other feedback. Moreover,
compensatory mechanisms can be combined with STDP.

One of the main goals of the authors’ work in this broad-
er area is that the neurons will form Hebbian Cell Assem-
blies, (Hebb, 1949) that persist after stimulation. These
Assemblies provide a link between psychological short and

Table 1 10-fold categorisation results.

Algorithm Result (%)

Growing cell structure 55
MLP with Backprop 57
Genetic algorithms 55
Expanding range rules 56
FLIF neurons 52.81
SOM 56.00
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long-term memory and neural behaviour, but this simulation
does not exhibit Cell Assemblies.

Obviously, the work is far from complete. The topology is
simple and the number of neurons is very small. However
the compensatory mechanism could reasonably be a compo-
nent of a complete simulated biological neural cognitive
architecture.
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