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Abstract Since the Cell Assembly (CA) was hypothesised, it has gained sub-
stantial support and is believed to be the neural basis of psychological concepts.
A CA is a relatively small set of connected neurons, that through neural firing
can sustain activation without stimulus from outside the CA, and is formed
by learning. Extensive evidence from multiple single unit recording and other
techniques provides support for the existence of CAs that have these proper-
ties, and that their neurons also spike with some degree of synchrony. Since
the evidence is so broad and deep, the review concludes that CAs are all but
certain. A model of CAs is introduced that is informal, but is broad enough
to include, e.g., synfire chains, without including, e.g., holographic reduced
representation. CAs are found in most cortical areas and in some sub-cortical
areas, they are involved in psychological tasks including categorisation, short-
term memory and long-term memory, and are central to other tasks including
working memory. There is currently insufficient evidence to conclude that CAs
are the neural basis of all concepts. A range of models have been used to sim-
ulate CA behaviour including associative memory and more process oriented
tasks such as natural language parsing. Questions involving CAs, e.g., memory
persistence, CAs’ complex interactions with brain waves and learning, remain
unanswered. CA research involves a wide range of disciplines including biology
and psychology, and this paper reviews literature directly related to the CA,
providing a basis of discussion for this interdisciplinary community on this im-
portant topic. Hopefully this discussion will lead to more formal and accurate
models of CAs that are better linked to neuropsychological data.
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1 Introduction

The Cell Assembly (CA) hypothesis states that a CA is the neural representa-
tion of a concept (Hebb, 1949). The CA hypothesis (and indeed Hebb’s related
learning rule) has been increasingly supported by biological, theoretical, and
simulation data since it was made. The CA can act as a categoriser of sensory
stimuli, so the presentation of an object (for example an orange) to an indi-
vidual may cause a particular CA to become active, allowing the individual
to identify the object as an orange. Similarly, CAs can be activated without
direct sensory stimuli, so a person’s CA for orange will ignite when they think
about an orange.

CAs are composed of neurons, so they are an intermediate structure smaller
than the entire brain, yet larger than neurons. CAs provide an organising prin-
ciple for the study of mind and brain, though certainly not the only organising
principle. Moreover, CAs cross the boundary between psychology and neuro-
biology because psychological concepts emerge from the behaviour of neurons.

As the neural representation of a concept, the CA is extremely important,
but there is not general agreement on its definition, and the scientific commu-
nity’s understanding of CAs is incomplete. Many in the community support
the idea of CAs, but others are not confident that CAs exist. Perhaps this is
due to the range of disciplines that make use of the concept. This paper brings
together the community’s current understanding of this important concept.

This paper reviews evidence supporting the CA hypothesis, and evidence
that further explains CA behaviour, function, and structure. While our con-
clusion does ultimately rely on converging evidence, we have read a significant
fraction of the research literature and have actively sought evidence against
our conclusion that CAs exist in mammalian brains. A range of psychological,
biological and modelling evidence is used to develop a picture of current un-
derstanding of CAs. While there is a rich knowledge of CAs, there are many
unanswered questions involving CAs, and this paper discusses some of them.

1.1 Hebb’s Cell Assembly hypothesis

Hebb’s CA hypothesis (Hebb, 1949) states that a CA is a collection of neurons
that is the brain’s mechanism for representing a concept. This hypothesis ties
neurobiology to psychology in that the collection of neurons is a neurobiological
entity, and the concept that they support is a psychological entity. A simple
example would be that a person’s concept of dog is neurally implemented by
a set of their neurons, their dog CA. CAs encode elements of higher cognitive
processes like words, mental images and other types of concepts.

The standard model, derived directly from Hebb (1949), is that these neu-
rons have high mutual synaptic strength. When a sufficient number of them
fire, due to, for example, mention of the word dog, they cause other neurons in
the CA to fire, which in turn cause other neurons in the CA to fire, leading to
a cascade of neural firing. This neural circuit can persist long after the initial
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stimulus has ceased. The psychological correlate of this persistent firing of the
neurons in the CA is a short-term memory (STM); without further support,
this reverberation can persist on the order of seconds.

The high mutual synaptic strength is a result of Hebbian learning. The
neurons have co-fired in response to earlier stimuli, and this has caused the
strength of the synapses between them to increase. Thus the CA is typically
formed due to repeated presentation of similar stimuli, and thus represents a
long-term memory (LTM).

Knowledge of brain physiology and pharmacology has advanced greatly
since Hebb’s day, but, while taking account of more modern knowledge, the
CA hypothesis still rests on three theoretical ”principles” about CAs being
organized collections of neurons. These principles are:

1. A CA is a relatively small set of neurons, which encodes each concept.
With an estimated 1011 neurons in the human brain (Smith, 2010), the
authors suggest a range of likely CA sizes in terms of potentially constituent
neurons, as being 103 to 107 neurons per CA. At the lower end of the
range, we suggest CAs are more likely to be atomic1, whereas at the upper
end of the range we imagine super-CAs composed of many sub-CAs at
many levels; e.g. one might consider a cognitive map (Buonomano and
Merzenich, 1998; McNaughton et al, 2006) as such a super-CA. Note also,
at the individual neuron level, it is assumed that a neuron may be a member
of different CAs.

2. The neurons of a CA can show self-sustaining persistent activity.
This persistent activity is often called reverberation. The basic idea is that
the neurons of a CA fire at an elevated rate after the initial stimulation
that ignited the CA. (Please note, we consider that when substantially
activated, neurons emit a spike or ”fire”, whereas activated CAs are said
to ”ignite” (Braitenberg, 1978), and potentially remain ignited and active
for seconds.)

3. A CA’s set of neurons, which represents a particular concept, is learned.
Typically this learning is assumed to be through synaptic weight change.
However, neural death, neural growth, synaptic death, and synaptic growth
may all play a part in the growth of the CA, all within a Hebbian learning
framework.

These principles are the basis of the standard model, which is further dis-
cussed, along with some of its variants, in Section 2.6. Important activities
occur in the brain at a range of time scales, and the CA provides coherence
on at least two of these scales, seconds for STM, and years for LTM.

1.2 What’s in the rest of the paper

Section 2 provides a relatively brief summary of the neural data that supports
the existence of CAs in human and other mammalian brains. This section is

1 An atomic CA is not composed of other CAs.
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driven by neural behavioural data linked to psychological behavioural data,
and this data provides compelling evidence that CAs do exist in mammalian
brains. Though the CA model is informal, this section also introduces a stan-
dard model and some of its variants, while discussing one model that is clearly
not a CA.

The existence of CAs leads to a series of questions about their location,
function, and form. Section 3 reviews current understanding of these ques-
tions and their, tentative, answers; this and later sections are necessarily more
speculative. One psychological system that is of particular interest is working
memory, and Section 4 deals with its relations to CAs in some depth. These
questions are more complex than the existence question, and thus their an-
swers depend more on analysis of psychological behaviour, arguments from
theory, and simulation. These complex questions, combined with the diffi-
culty of analysing the behaviour of CAs composed of thousands or millions
of neurons, currently leave modelling as the best method of addressing these
questions about CAs. Section 5 reviews models of CAs, and computational
systems that use them.

CAs do not provide all the answers to understanding the brain, nor are they
fully understood. In the hope of advancing the understanding of CAs, section
6 discusses some current questions about CAs, particularly some questions
involving learning. It also notes that CAs may vary from concept to concept,
and within one concept over time. The concluding section, 7, summarizes.

The primary concern of this paper is the functioning of humans both psy-
chologically and neurally. However, this functioning is similar to that of other
animals, in particular other primates and other mammals. Consequently, much
of the evidence is drawn from animal studies.

Before turning to evidence of CAs in the brain, a final problem we faced
building this review is that not all the potentially relevant papers actually
mention CAs, or near synonyms such as neuronal ensembles. In this review,
we tend to cite papers that are explicitly about CAs, and we can only cite
a sample of the papers we have looked at, and these, realistically, are only a
fraction of the published literature. The papers that were included were highly
cited, seminal, central to our arguments, and usually some combination of the
three. We also frequently omitted second papers from authors, as the first
provided the link to the body of work.

2 Existence of Cell Assemblies

Hebb proposed CAs as a solution consistent with the physiological and psy-
chological data available in the 1940s. Since that proposal, there has been a
vast amount of scientific evidence uncovered supporting his hypothesis that
the neural basis of concepts are sets of neurons that remain persistently active
and are formed by some sort of Hebbian learning mechanism.

The basic structure of the brain is a loosely coupled net of neurons where
neurons are firing constantly at a low rate. Other cells, such as glia, are widely
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considered to have little cognitive effect at the level of individual concepts.
This neural structure is capable of supporting CAs with the CA igniting when
only a small subset of its neurons initially fire (see Section 2.1).

CAs require population coding (principle 1), which is also called ensemble
coding. A relatively small set of neurons is the basis of each CA, with neurons
able to participate in multiple CAs. The evidence supports the use of pop-
ulation coding throughout the brain (Averbeck et al, 2006a, and see Section
2.2), a review article shows that population coding accurately correlates with
a range of cognitive states (Schoenbaum, 1998), and a vast range of specific
studies support different aspects of population coding.

There is a large body of evidence for persistent activity (principle 2) (see
Section 2.3) and for a fourth principle, synchronous neural firing correlated
with cognitive states, (see Section 2.4). This evidence provides very solid sup-
port for the existence of CAs. The data related to learning (principle 3) pro-
vides further support for the existence of CAs (see Section 2.5). A set of
neurons that adhere to these four principles are a CA.

Several articles provide reviews of different sorts of evidence for CAs. A
wide range of data is presented showing that neural firing behaviour supports a
CA model (Harris, 2005). Spike trains show structure that is not present in the
stimulus, and they are not strictly controlled by sensory input; spikes are coor-
dinated, and firing behaviour correlates with internal cognitive states. A range
of data, including imaging data such as PET and MEG, but also behavioural,
lesioning and event-related potential data, suggests that CAs for words are
distributed in brain areas that are semantically specific (Pulvermuller, 1999).
For instance, the CAs for action words include neurons in motor cortices. Some
of the evidence from the sources in these reviews is recounted in the remainder
of this section.

2.1 Anatomical data

When developing his hypothesis, Hebb considered several anatomical theo-
ries that still have substantial scientific support. Two in particular are that
neurons are constantly active throughout the brain, and that large amounts
of cortex can be removed with apparently little effect. Since 1949, there have
been many advances in the understanding of neuroanatomy, with, for instance,
more modern evidence showing that each neuron tends to fire about once a
second (Bevan and Wilson, 1999; Bennett et al, 2000), providing a large range
of background activity.

When a neuron fires, it sends activation to neurons to which it is connected,
and neurons that have received a great deal of activation fire (Churchland and
Sejnowski, 1999). Particular sets of neurons are driven at particular times,
leading to firing rates as high as every 5ms (Ylinen et al, 1995). Most neurons
lose their activation when they fire, and need more activation to fire again
(Krahe and Gabbiani, 2004). Almost all of the synapses of a neuron connect
to a unique neuron, and there are rarely as many as three synapses to one



6 Christian R. Huyck, Peter J. Passmore.

neuron from a given neuron (Braitenberg, 1989). Several neurons need to fire
as input to a neuron to make it fire (Churchland and Sejnowski, 1999; Bruno
and Sakmann, 2006).

Since many neurons are required to make another neuron fire, and there
is a large amount of background activity, a large number of neurons need
to fire to make another neuron reliably fire. However, many neurons firing
together can make many other neurons fire, so groups of neurons will tend
to fire together. Sparse connectivity supports population coding (see Section
2.2). Furthermore, since neurons can be removed with little cognitive impact,
the cognitive elements must depend on a large distributed set of neurons.

Similarly, connectivity and firing support persistent activity (Section 2.3),
because an initially firing set of neurons can cause a second set to fire, which
can in turn cause the first set to fire. Of course, this behaviour need not be
limited to two non-overlapping sets of neurons, so the neurons in both sets can
fire at an elevated rate.

Broadly speaking, the cortex is an enormous collection of neurons that is
not easily separable into smaller structures (Braitenberg, 1989). At a coarse
grain, the cortex has a laminar architecture, that is a roughly 2000 cm2 sheet
with six thin layers (Martini, 2001), and this paper mostly considers cortical
CAs (but see Section 3.1.4). Neuroscientists have divided the cortex into areas
(e.g. Brodmann areas), and when there are feed forward connections from one
area of the brain to another, there are almost always connections back from
the second to the first (Lamme et al, 1998). These recurrent connections could
support CAs that cross brain areas and thus integrate features over a range
of complexities and modalities.

2.2 Cell Assemblies and population coding

The first principle of the CA hypothesis is that each concept is represented by
a set of neurons. With population coding, a particular concept is coded by a
set of neurons that fire at an elevated rate when the concept is perceived or is
in STM.

An alternative to population coding is that a single cell represents a con-
cept, commonly known as the grandmother cell (Barlow, 1972). However, a
single neuron can not represent a concept because neurons die, and one would
lose the concept of one’s grandmother if that grandmother neuron died. Evi-
dence available to Hebb also eliminates this possibility; the loss of large areas
of cortex would remove many concepts, and background neural activity would
cause the concepts to pop on and off. More recently, the growing understand-
ing of the prevalence of neural death (Morrison and Hof, 1997) shows that the
grandmother cell hypothesis is untenable.

The other extreme alternative to population coding is that all of the neu-
rons code for each concept, and particular firing behaviour determines which
concept is active. Hebb argued against this sensory equipotentiality using the
effects of learning (see Section 2.5). Subsequently, substantial direct evidence
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has supported population coding over equipotentiality, e.g., a review shows
population coding is used in a wide range of brain areas (Schoenbaum, 1998).

Much of the evidence for population coding, and other phenomena, is de-
rived from the widely used technique of placing electrodes in or near a neuron
to measure its electrical potential. The electrodes can measure depolarisa-
tions and thus neural spiking. Direct recording of neural activation levels and
spikes is, to a large degree, an ideal way of understanding the behaviour of
a neuron because it shows when neurons spike, and it is widely believed that
spiking is how most information is passed between neurons. Electrodes have
been used for neural recordings for quite some time (e.g. Hubel and Wiesel,
1962; Fuster and Alexander, 1971). The use of electrodes and other single
unit recording technology has improved and continues to improve. Still with
current technology, it is only possible to measure about 1000 neurons simul-
taneously. Improved techniques, for instance optical techniques (see Wallace
and Kerr, 2010, for a review), are expanding the number of neurons that can
be simultaneously recorded. These single unit recording techniques can work
in vitro or in vivo, enabling measurement of neurons in behaving animals, and
are leading to a better understanding of CA dynamics. Unfortunately, these
measurements are intrusive, so only in rare cases can performing neurons be
measured in vivo in humans using single unit recording. Moreover, the rela-
tively small number of neurons recorded means that it is difficult to record
relatively precise dynamics of a large number of neurons in a living animal.

One piece of evidence for population coding using single unit recording
involves neurons in the macaque visual cortex that show population coding
of shape (Pasupathy and Connor, 2002) with specific neurons spiking rapidly
when specific curves are present at particular angles from the centre of the
object. Note that, in this case, firing behaviour is directly linked to environ-
mental stimuli. Several neurons respond to the same feature, but the sampled
neurons collectively allow a vast number of objects to be uniquely identified.
Population coding allows neurons to respond differentially to a range of stim-
uli, and collectively they can accurately represent a range of stimuli despite
the noise of neural response (Averbeck et al, 2006a).

Population coding supports a diverse range of group behaviour. The sim-
plest behaviour is that a set of neurons all respond to a particular stimulus,
this is a group of grandmother cells. In a more complex form, two groups of
cells can code for specific features, say lines of two given angles; activation of
varying numbers or varying degrees of each set can represent an intermediate
feature (Hubel and Wiesel, 1962). The degree of overlap is a topological issue
(see Section 3.2) that enables a range of behaviour including continuous valued
categories (see Section 3.3).

There is a vast amount of evidence of population coding. Many of the pa-
pers described below show population coding (e.g. Sakurai et al, 2004; Nicolelis
et al, 1995; Sigala et al, 2008, and many papers mentioned in Section 3.1).
These are just some of the thousands of experiments showing sets of neurons
with elevated spike rates during specific cognitive events.
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Fig. 1 A Reverberating Circuit(reproduced from (Hebb,1949)).

While a range of neurons may respond to a particular stimulus, it is not
entirely clear if all responding neurons contribute to the perception. There
is evidence (Purushothaman and Bradley, 2005) that only the most active
neurons participate. If only some of the firing neurons are involved in the
perception, the population coding uses fewer neurons.

Population coding does exist without CAs. For example, neurons in the pri-
mary visual cortex use population coding but their elevated activity does not
persist when environmental stimulus ceases (Hubel and Wiesel, 1962, though
see Section 3.1.2). The connection between these visual cortical neurons may
be insufficiently strong to support reverberation. There does seem to be some
confusion in the literature about this issue with, in some cases, the term Cell
Assembly referring to population coding without reverberation (e.g. Lieben-
thal et al, 1994). In this case, the authors would prefer the term neuronal
ensemble, ensemble coding, or indeed population coding, all of which refer to
both reverberating and non-reverberating sets of neurons.

2.3 Persistent activity

The second principle of the CA hypothesis is persistent activity; the CA rever-
berates (Sakurai, 1998b). A CA can remain active after environmental stimulus
ceases, and this reverberation enables the CA to act as an STM (see Section
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4). Figure 1 reproduces Hebb’s illustration of this reverberation. In the figure,
the nodes represent neurons, and the numbers represent order of neural firing,
and is meant as an illustration. In measured CAs, this figure is an extreme
simplification; hundreds of neurons may spike in any given millisecond, each
neuron may spike many times in a second, and any two neurons may not have
the same order of spiking in subsequent spikes.

The standard mechanism for showing persistence is neural firing measured
by single unit recording, and there is extensive evidence of persistence. One
review shows sustained activation in a range of brain areas including premo-
tor and inferior temporal neurons (Funahashi, 2001). For example, prefrontal
neurons of monkeys showed elevated firing, associated with particular tasks,
which persists during delay portions of those tasks (Assad et al, 2000). Persis-
tent activity has also been shown in rat motor cortex that correlates in task
specific ways (Isomura et al, 2009). Rhesus monkeys display persistent neural
firing that correlates with duration (Sakurai et al, 2004), so sets of specific
task general neurons maintain specific durations.

Firing behaviour has been linked to cognitive states. For example, rhesus
monkeys show elevated neural spiking in the prefrontal cortex and medialis
dorsalis for times up to a minute while attending and recalling a place for
reward (Fuster and Alexander, 1971). Sets of neurons respond to the cue,
while other sets respond during the delay, and a third set responds during
both cue and delay. As this is not hand or item specific, this suggests sets of
neurons that support rehearsal.

There is a range of neuron types, though a discussion is beyond the scope
of this paper (but see Klausberger et al, 2003, for example). While typical
neurons (e.g. pyramidal) fire relatively regularly given a constant input, other
neurons are bursty going through phases when they fire frequently, and then
not at all. Bursty neurons oscillate on scales of less than once per second as
shown by single unit recording, and this type of persistent activity occurs
throughout sensory, motor and association cortices (Steriade et al, 1993). In
vitro recordings of rat cortical cells showed persistent firing of stimulus specific
cells lasting on the order of 10 seconds (Larimer and Strowbridge, 2009). Many
cortical and subcortical regions exhibit this type of behaviour (Seamans et al,
2003). Similarly, spiny neurons change between up and down states at a similar
rate, and particular neurons have correlated changes (Stern et al, 1998).

There are a wide range of techniques that, unlike single unit recording, are
non-invasive, for example fMRI, MEG, and EEG are all widely used. Unfor-
tunately, none directly measures the behaviour of single neurons; instead they
measure the behaviour of a large number of neurons. For example, fMRI mea-
sures blood flow in a region of the brain which corresponds to elevated neural
firing rates in brain areas showing the aggregate behaviour of many thousands
or millions of neurons. As these techniques are non-invasive, humans can be
measured relatively easily. fMRI has been used to show persistent activity
in human prefrontal cortex that corresponds with the duration of a working
memory (Curtis and D’Esposito, 2003). Persistent firing is indicated by fMRI
when people locate the source of a sound (Tark and Curtis, 2009). This occurs
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in the frontal eye field even though the location is behind the subject, so there
is no direct sensory stimulus.

Transcranial magnetic stimulation is a non-invasive procedure that raises
activity (neural firing) in specific areas of the brain. If it is done before stimu-
lus, the stimulus is recognized faster, but if it is done during processing, pro-
cessing is interrupted (Silvanto and Muggleton, 2008). Before stimulus, this
is consistent with raising all neural activity in the area which speeds recogni-
tion by helping the winning CA ignite faster. During processing, the increased
activity causes competing CAs to ignite inhibiting already ignited CAs.

2.4 Correlated activity and functional connectivity

There is evidence that neurons that react to the same stimulus or cause the
same action fire synchronously. Modellers have used the saying “neurons that
wire together, fire together”. If two isolated neurons fire at an elevated rate,
there is no particular reason for a relation between the firing times, but as
neurons that are directly connected affect each other’s firing, their mutual
firing timings may be correlated. If a large number of neurons are responding to
a particular stimulus, they should have correlated firing. Simulation evidence
shows that these synchronously firing sets of neurons can be learned using
Hebbian learning (Levy et al, 2001).

Correlated activity is not one of Hebb’s principles. von der Malsburg (1981)
introduced correlated activity as an extension of the basic CA theory of the
day, proposing it as a solution to the binding problem (see Section 5.2.2). Ex-
tensive mathematical, simulation, and biological evidence indicate that neu-
rons involved in processing the same percept have correlated activity. This
enables synchrony to act as evidence that a particular set of neurons popula-
tion code a concept (e.g. Bressler, 1995; Sigala et al, 2008); if they are persis-
tent, and the concept has been learned, synchrony is evidence that particular
neurons are firing in support of the same cognitive event.

A review article indicates that correlated firing occurs in virtually all brain
areas, and can be used to coordinate activity across areas (Bressler, 1995).
For example, it has been shown that frontal cortical neurons in monkeys fire
synchronously in response to a particular object (Abeles et al, 1993). This
synchrony is statistically significant, but not precise to the millisecond level.

Another example shows neurons in the monkey prefrontal cortex coding for
task order. Neurons had highly correlated elevated firing rates for particular
events in a sequence, and different elements had an orthogonal set of neurons
(Sigala et al, 2008). Similarly, there is highly correlated activity in neurons in
the prefrontal cortex showing associations between sensory modalities (Fuster
et al, 2000). Neural firing in the rat anterior cingulate cortex was measured us-
ing multiple single unit recordings, and the neurons tracked each aspect of the
task by entering collectively distinct states. Neurons were correlated with spe-
cific other neurons in a task and state dependent manner. This indicated that
the correlated neurons were members of particular CAs (Lapish et al, 2008)
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because they population coded for a concept, persisted, and were learned; that
is, CAs were involved in higher order cognitive processing.

Externally measured neural firing in the rat hippocampus can be used to
determine the location of the rat, and there is synchronous firing of neurons
associated with a particular location. However, firing synchrony is statistically
more significant than the correlation of single neurons with location, so the
best determinant of a neuron firing is not location but the firing of particular
other neurons (Harris et al, 2003).

The evidence for synchronous firing is so significant that it is has been
called functional connectivity (e.g. Gazzaley et al, 2004). Though the synapse
between two neurons cannot be easily traced, they are functionally connected
because they fire synchronously. Synchronous firing has been called a signature
of assemblies of cells as components of a coherent code (Singer et al, 1997).

Another link between CAs and synchrony is that percepts can be induced
by synchronous presentation (Usher and Donnelly, 1998). When an ambigu-
ous stimulus is presented, flashing a subset of the stimulus at 16ms intervals
leads the subject to label the stimulus as an element of the category consistent
with the subset. The subjects do not notice the flash and report a constant,
ambiguous, stimulus. The visual psychophysics experiments of Usher and Don-
nelly (1998) are claimed to demonstrate that a global, cortically based, visual
binding and segmentation mechanism is sensitive to stimulus asynchronies as
low as 16ms. They attribute the effect to synchronous neural activation repre-
senting spatially separated stimulus elements. Although Usher and Donnelly
admit that further research is ”required to test and reveal the nature of the
synchrony-binding mechanism”, asynchronies of such short duration suggest
that if their mechanism is CA based (they do not discuss CAs) then a CA
architecture that can comfortably handle differences of a few milliseconds is
necessary and the obvious candidate mechanism is the synchronous neural fir-
ing of CAs that maintains the genuine asynchrony in the laboratory stimulus.

A third link between synchrony and CAs is shown using voltage sensitive
dyes. These dyes respond to the voltage of cell membranes and thus can show
the activity of neurons; they are imaged using sensitive fast cameras providing
a picture of the membrane potential of many neurons in a few mm square area,
evolving rapidly (< .1ms) (Shoham et al, 1999). Experiments using these dyes
showed neurons in early visual areas spontaneously and synchronously firing
in the absence of visual stimulus; the firing is correlated with firing of stimulus
specific response (Grinvald et al, 2003). Note that synchrony in this case is
not linked with persistence, but population coding.

Synchrony can also support interactions between CAs. Evidence for CAs
bound (see Section 5.2.2) by temporal synchrony has been reviewed (Freiwald
et al, 2001); for example, neurons responding to a single moving bar respond in
synchrony as a gamma wave (Gray and Singer, 1989). It has been shown that
neurons across different brain areas collaborating in a task are synchronized,
but are unsynchronized after the task (Roelfsma et al, 1997)).

Since binding can induce synchrony, if two neuron, or sets of neurons, are
firing synchronously it does not mean they are part of the same CA. However,
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it does imply they are in some sense working together. However, the more
circumstances that the neurons fire synchronously, the more likely the neurons
are to be part of the same CA.

Brain waves come in different forms (e.g. theta waves) and emerge from
populations of neurons firing roughly synchronously. These oscillations are
related to a long standing theory of brain wave propagation (Beurle, 1956).
A review describes how different frequencies have different cognitive effects
(Buzaski and Draguhn, 2004), with slower frequencies used to recruit larger
groups of neurons. Theta waves are slower than gamma waves, and it has
been proposed that they are used in working memory operations (Auseng
et al, 2010). Theta waves also support internal state consistency when rat
hippocampal ensembles that represent location switch from the representation
of one location to another on the theta wave (Jezek et al, 2011).

One way of looking at CAs is that all neurons contribute relatively inde-
pendently. Another way is that waves of firing create a form of short-term
memory. This dynamical CA hypothesis (Fujii et al, 1996) fits in with a syn-
chrony theory (von der Malsburg, 1981).

The variety of waves provide different mechanisms for supporting indi-
vidual CAs and for linking CAs. These linking mechanisms are not well un-
derstood, but it seems these waves are a measurable property of interactions
between CAs.

2.5 Learning data

The third principle of the CA hypothesis is that CAs are learned. Hebb used
the prevalence of learned response in making decisions to derive this princi-
ple. The importance of learning fits in with the long-standing recognition of
the importance of learning to the functioning cognitive being (James, 1892).
Hebb’s famous learning rule was introduced in this context, and subsequently,
substantial physical evidence that this type of learning occurs has been found.

Hebb noted the importance of learned behaviour. For example, eye blink
to a moving object is a learned response, though it is practically immune to
extinction (Riesen, 1947). Later learning is based on earlier learning with early
learning tending to be permanent. More recent neurophysiological evidence of
neurons becoming tuned to specific categories has been unearthed (see Keri,
2003, for a review).

There is substantial evidence of change in neural response in adult animals
that is correlated with cognitive learning. For example, recording of two areas
of rat motor cortex showed increasing correlation of particular neurons as a
task was learned (Laubach et al, 2000). This enabled prediction of success or
failure of the animal performing the task from the behaviour of recorded neu-
rons alone. Another study of adult monkeys shows recorded temporal cortical
neurons becoming tuned to specific category relevant features while learning
categories, and humans behaved similarly on the tasks (Sigala et al, 2002).
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Similarly, gerbil primary auditory cortical neurons become tuned to rising or
falling modulated tones (Ohl et al, 2001).

Another type of evidence comes from simultaneous activity, where learning
induced functional connectivity persists for at least days in rats that have
learned particular tasks (Baeg et al, 2007). This connectivity increases rapidly
during early phases of learning, and then approaches an asymptote.

There is evidence that the hippocampus plays a special role in the consol-
idation of memories (Sutherland and McNaughton, 2000). Also stimulation of
in vitro hippocampal cells creates temporally separated CAs (Olufsen et al,
2003). This implies that many CAs must include neurons in several cortical
areas including (at least in early stages of learning) the hippocampus.

Items learned under high arousal persist longer, but are more difficult to
access initially. This is consistent with a CA being formed; the CA formed
under high arousal is difficult to access initially since many of its neurons are
in a refractory state (Kleinsmith and Kaplan, 1963). One computational model
explains this via a CA based simulation (Kaplan et al, 1991).

While an even brief review of the literature on sleep is beyond the scope
of this paper, sleep does play a role in learning. For example, hippocampal
place cells in rats that are highly active during exploration show higher firing
rates during the next sleep cycle (O’Neill et al, 2008). Neurons that co-fire in
prefrontal cortex and hippocampus during activity, co-fire again in subsequent
sleep and rest periods (Nitz and Cowen, 2008; Maquet, 2001; Sutherland and
McNaughton, 2000).

There is a great deal of evidence of learning in adults, but less on earlier
learning. Behavioural research suggests that the ability to recognize objects
improves throughout childhood and adolescence (Nishimura et al, 2009).

There is neural evidence using fMRI that shows the early visual areas
complete their development for retinotopic mapping and contrast sensitivity
by age seven, while later areas for place, face and object selection take longer
to develop (Grill-Spector et al, 2008). One study uses fMRI to show that the
area of cortex devoted to face and place grows from children to adolescents
and on to adults while the corresponding cognitive ability also grows (Golari
et al, 2007). This does not occur for object recognition implying the child (7
year old) has fully or nearly fully developed object recognition capacity.

Developmental studies have the problem of time. It takes longer to run a
developmental study compared to a relatively brief study to learn a particular
object or task. Overcoming this problem, one study of visual object recog-
nition of children up to age one uses event related potential as measured by
EEG. The study examined brain activity when presenting novel and familiar
toys and faces. Statistically significant changes occurred throughout the year,
though some types of activity plateaued; e.g., the mid-latency negative compo-
nent (assumed as an obligatory attentional response) plateaus at eight months
(Webb et al, 2005). This indicates some early brain changes that stabilize.

To this point, this section has used a converging evidence approach with
neural studies showing that some sets of neurons use population coding, some
persist, and some are learned. One study shows a set of neurons that does all
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three (Freedman and Assad, 2006). Neurons in Macaque middle temporal and
intraparietal areas were recorded showing that neurons responded with popu-
lation coding to the movement of objects in two particular sets of directions.
These neurons persistently fired during a delay. When the task changed so
that the monkeys had to respond to new sets of directions, the population of
neurons reorganised so that they responded to the new categories. Similarly,
primate prefrontal and caudate nucleus neurons population code for expected
reward or punishment (Histed et al, 2009). Many fire persistently throughout
the delay period, and as the task changes, the neurons’ behaviours change.

2.6 The standard model and variants

The authors consider the category of CAs a natural kind, and not one defined
by necessary and sufficient conditions. Thus a model can be used to indicate
the features that are central to CAs. However, there really is no such thing as
the standard CA model, but Hebb’s original idea is a good starting point. CAs
are typically considered to consist of neurons that maintain persistent activity
through strong connections with all neurons being roughly similar, largely as
described by Hebb (1949).

A first modification of the model was the introduction of inhibition (Milner,
1957). Hebb did not have solid evidence of inhibitory neurons or synapses, so
left inhibition out of the model. With subsequent biological support, inhibition
was added to the model, and supports competition between neurons or CAs.

Neurons are firing constantly, and this background activity has been ac-
counted for by Hebb’s standard theory. Background activity is not usually
sufficient to ignite a CA, but once sufficient additional firing has begun, activ-
ity in the CA passes a critical threshold, the CA ignites, and can then persist.

The authors also consider synchronous firing as part of the standard the-
ory. While not part of Hebb’s original theory, there is broad evidence for
synchronous firing in CAs, and that it occurs is widely agreed in the scien-
tific community. However, the degree to which synchronous firing is used to
dynamically bind CAs is not widely agreed.

A neuron that never co-fires with the neurons in a CA is not part of that
CA. For that matter, one that is always out of synchrony is also not part of
the CA.

In addition to a widely agreed standard model, there are several exten-
sions. There is biological evidence for three other mechanisms for sustaining
persistent activity: synfire chains, bistable neurons (Durstewitz et al, 2000),
and short-term potentiation (STP). In synfire chains, one set of neurons acti-
vates another, then the second set activates a third, and so on, until the initial
set is reactivated. These sets of neurons fire synchronously, leading to a chain
of synchronously firing neurons (Ikegaya et al, 2004). This differs from the
standard model because the CA is broken into independently firing subsets.

Bistable neurons are another less traditional form of persistence. Mentioned
in Section 2.3, some neurons move from states of rapid firing (up states), to
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states of no firing (Stern et al, 1998; Steriade et al, 1993). In another study,
unstimulated neurons moved to up states spontaneously, and synchronously
(Cossart et al, 2003); this behaviour is consistent with attractor basins2 that
can be used for STM. This bistability differs from the standard model because
neurons move into states where they fire repeatedly without input; in the
standard model the neurons require input to fire. Rested bistable neurons will
shift to an up state with sufficient input.

A third alternative to CAs as STM items is storage via STP, rapid synap-
tic modification that decays (Mongillo et al, 2008; Fusi, 2008). The memory
persists as long as the synaptic changes are sufficient to support subsequent
reactivation.

To a large extent, synfire chains, bistable neurons, and STP fall within a
loose definition of CAs. All use a small set of neurons for a concept, support
persistent activity, and can be learned. Of course all add a different flavour
to CAs. A CA based on synfire chains would have more cyclic, wave like
behaviour; bi-stable neurons require less input to a neuron to maintain persis-
tence; and STP allows CAs to form rapidly compared to the standard model.

There is an alternative to CAs that has some support in the academic
community. This model uses a holographic reduced representation so the same
active concept can be represented by two entirely separate sets of neurons. A
set of neurons represents a concept by its firing pattern (Plate, 1995). This
is consistent with population coding, but the firing can pass to another set
of neurons, and may never return to the original set. This passing of firing is
not entirely consistent with self-sustaining persistence, however it is related to
synfire chains.

Proponents (e.g. Eliasmith and Thagard, 2001) of this mechanism show
that representations of different concepts can be combined, thus solving the
binding problem (see Section 5.2.2). Simulated neurons can be used to repre-
sent concepts and the concepts can be bound using these mechanisms. How-
ever, the authors are unaware of any biological evidence supporting this type
of binding.

A further problem with holographic representations is symbol grounding
(Harnad, 1990); how does the neural firing pattern come to represent the par-
ticular concept? With CAs, the neurons have been grounded by interaction
with the environment (see Section 6). With holographic representations, differ-
ent sets of neurons need to represent the same concept, and it is not clear how
all of these sets might come to represent the same concept. Moreover, if one
concept is, for example, associated with a second concept, all of the different
sets of neurons in the holographic representation will need to be associated
with all the sets of neurons that represent the second concept. In short, learn-

2 Statistical mechanics can be used to describe CAs, with a set of firing neurons being an
attractor basin. The Hopfield model (Hopfield, 1982, and see Section 5.1.3) is a particularly
good example of attractor basins with a particular set of neurons firing and then continuing
to fire in response to a particular input. The firing pattern moves from the initial input
state, down an energy slope to a new firing state, which has attracted the activity.
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ing is the main difference between CAs and holographic representations. It is
not clear how holographic representations could be learned.

Holographic representation and associated binding may be compatible with
individual neural behaviour. However, the authors feel that it is at best as a
complement to the CA model instead of a replacement; it might perhaps be
used as a mechanism to create firing patterns of bound CAs in, for example,
language processing.

2.7 Cell Assemblies are all but certain

The evidence referenced in this section strongly suggests CAs do exist in the
brain. The prevalence of population coding throughout the brain has been veri-
fied; voltage sensitive dye techniques show this population coding, as do single
cell recordings. Evidence of persistence from single cell recordings includes
both persistence of regular spiking, and persistence of up bursty states; other
imaging techniques show persistent firing in areas, and transcranial magnetic
stimulation can disrupt cognitive behaviour by dynamically modifying neu-
ral behaviour in specific small brain regions. Functional connectivity indicates
that CAs exist by showing that particular neurons behave together. Finally,
though more difficult to analyse, learning data shows the firing of neurons in
response to particular cognitive states becomes more correlated over time.

The evidence for CAs is compelling, and many readers will find the support
for CAs unsurprising. In many fields, it is already assumed. For example,
persistent neural activity is currently being used to indicate working memory
(see Section 4).

None the less, the scientific community will be unable to fully confirm
the existence of CAs until all the neurons in a functioning brain can be dy-
namically monitored constantly. Even then it would take years to understand
developmental behaviour. Consequently, it is possible to argue that CAs do
not exist.

Even though there is substantial evidence for the existence of CAs, the
extent and behaviour of CAs is still not well understood. The next section
shows the broad extent of CAs and some of their functions.

3 Cell Assembly Details

The existence of CAs does not show that CAs are the basis of all concepts. Of
course, the term concept itself is ill defined, roughly meaning a mental unit.
Typical concepts include things represented by concrete noun symbols such as
dog, but the authors would expect animals that did not use symbols, but had
categories for dogs (e.g. a macaque or pre-verbal infant familiar with dogs)
would have a category for dog. Similarly, abstract nouns (like hope) and verbs
(like run) also label categories. Instances of categories (e.g. Dr Hebb), and
episodes (e.g. today’s lunch) are also concepts. Procedural tasks (e.g. hitting
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a tennis ball) might not be concepts, though once labelled, they probably do
become concepts with the explicit concept associated with the procedure.

Many questions about CAs remain unanswered, and several are addressed
here. The location of CAs in the brain is addressed in Section 3.1. The size
and shape of a CA is discussed in Section 3.2. CAs have three primary and
complementary functions; they categorise input, they are LTMs, and they are
STMs, but CAs are also involved in a range of other processes and some of
these processes are discussed in Sections 3.3 and 4.

3.1 Location of CAs

Population coding is common throughout the brain, but persistence is not.
That is, neurons may stop firing once the stimulus ceases. However, in higher
order areas (most of the cortex), persistence allows cognitive states to persist.
Once information is in the brain, it can remain active via CA reverberation.

The cortex can be divided into areas, and one commonly used division is
the Brodmann areas (Figures 2 and 3); evidence is provided below regarding
the presence of CAs in different cortical areas. In almost all cortical areas,
there are neurons that population code for specific features, and that persist
without external stimulus, implying that there are CAs in all cortical areas
except perhaps primary visual cortex. It is less clear whether there are CAs in
subcortical areas, but there is evidence for CAs in some.

3.1.1 Frontal and temporal lobes

Much of the frontal lobe is topologically distant from the sensory and motor
interfaces, with a chain of several intermediate layers of neurons needing to
fire to cause frontal neurons to fire caused by the environment. Among a range
of other functions, the frontal lobe is involved in working memory tasks (see
section 4). There is substantial evidence for CAs in all frontal areas. For exam-
ple, the prefrontal cortex generates persistent activity that outlasts stimulus
(Wang et al, 2006); single cell recordings of ferret medial prefrontal cortical
neurons shows persistent activity. Comparisons to visual cortex indicate that
the cellular features, synaptic properties, and connectivity properties of these
prefrontal neurons favour persistent activity.

Primary motor cortical neurons (Brodmann area 4 BA4) have CAs. Elec-
trode studies of owl monkey’s primary motor cortical neurons (BA4), and dor-
sal premotor cortical neurons (BA6) were used to guide a robotic arm (Wess-
berg et al, 2000); these neurons persisted throughout the action. Recordings
of neurons in motor areas of rats learning a reaction time task show elevated
activity during the task, with most of the recorded neurons active (Laubach
et al, 2000); analysis of firing can predict success or failure on particular in-
stances of the task; and behaviour is learned. A human unable to move or sense
his limbs for several years had electrodes implanted into his motor cortex. The
monitored activity of the neural ensembles enabled control of computer devices
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Fig. 2 Brodmann Areas, lateral surface of the brain (courtesy of Mark Dubin)

and via them external devices (Hochberg et al, 2006). The monitored neurons
individually behaved quite differently at different times implying they par-
ticipate in multiple CAs. Rhesus monkey motor cortical neurons are broadly
tuned to the direction of arm movement with many neurons participating in
a given action; when the action is delayed, the same neurons remain active
(Georgopoulos et al, 1986). This shows BA4, which is close to the motor inter-
face, has sound evidence for CAs, and these CAs need to persist to complete
the appropriate action.

A learned response of frontal eye field (BA8) neurons of monkeys was asso-
ciated with gaze target visual features (Bichot and Schall, 1999). These neurons
fired persistently while searching for the associated target. Prefrontal neurons
(BA9) of monkeys showed task specific firing during execution and delay por-
tions of tasks (Assad et al, 2000). Rhesus monkey prefrontal cortical neurons
stored action sequences in CAs (Averbeck et al, 2006b). Prefrontal cortical
neurons (BA9 and BA10) also fire during the delay portion of a task with spe-
cific neurons correlated with specific visual cues (Quintana and Fuster, 1999).
PET scans showed persistent elevated activity in premotor cortex (BA6), and
frontal cortex (BA10) when the subject had learned to associate a visual stim-
ulus with an auditory stimulus (McIntosh et al, 1998).

Orbitofrontal neurons (BA11 and BA12) of rats, measured by single unit
recordings, exhibit persistent firing specific to reward or punishment (Gutier-
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rez et al, 2006). Moreover, they fire in anticipation of the reward or punish-
ment. Ventrolateral prefrontal cortical neurons of the macaque correspond to
the inferior frontal gyrus in humans. These macaque neurons population code
and respond to semantically specific macaque calls and do so persistently (Ro-
manski et al, 2004). Macaque rostral inferior neurons (a homologue of human
BA44) fired in a delay period before the macaque grasped specific objects, with
neurons population coding specific actions (Gallese et al, 1996). Dorsolateral
prefrontal cortical neurons (including BA46) and ventrolateral prefrontal cor-
tical neurons (including BA45 and BA47) of monkeys responded in a cue task
with population coding and persistently for abstract rules (Wallis et al, 2001).

Like the frontal lobe, the temporal lobe is also topologically distant from
the sensory and motor interfaces. Though many areas contain CAs that persist,
CAs in this lobe, in general, are driven more by environmental stimuli than in
the frontal lobe. None the less, persistence after external stimulus has ceased
is evident throughout.

There is strong evidence derived from single neuron recording that inferior
temporal cortex (BA20) has CAs. One test of this area showed that neu-
rons population code for specific images and specific features (Desimone et al,
1984). Face specific neurons were found in the fusiform gyrus (BA37), with
neurons responding persistently, but the image remained present. In macaques
performing a shape matching task, these neurons population code for specific
shapes and spiking persists (Gochin et al, 1994). Similarly, shape specific neu-
rons fire during delay in a paired association task (Naya et al, 1996).

Single cell recordings of middle temporal neurons (BA21) show that they
collectively encode direction of motion of visual stimuli. Moreover, during a
delay task, neurons have elevated activity showing persistence (Bisley et al,
2004). This area is also called V5 (a vision area) and it responds to visual
stimuli, such as direction of motion, with population coding (Maunsell and
Van Essen, 1983). In macaques, these neurons are broadly tuned to moving
visual stimulus, and fire persistently and synchronously with neurons respond-
ing to different stimuli firing asynchronously (Kreiter and Singer, 1996). More
recently, persistence beyond environmental stimulus has been noticed (Ran-
ganath et al, 2005).

Responses from human neurons of the superior temporal gyrus (BA22)
and nearby areas were explored before surgery for epilepsy. These neurons
showed persistent activity for up to two seconds in response to auditory clicks
(Howard et al, 2000). This is a relatively rare example of a single unit study
of the human brain, and is strong evidence for human CAs.

Piriform cortical neurons (BA27) of rats, measured by single unit record-
ing, fired persistently with population coding in response to particular odours
(Rennaker et al, 2007). In the piriform cortex (BA27), Zelano et al (2009), us-
ing fMRI, found sustained activity associated with olfactory working memory.
Similarly, entorhinal (BA28 and BA34) and hippocampal neurons of behaving
rats fire persistently and synchronously (Chrobak and Buzaski, 1998), mea-
sured by single unit recording. Further studies showed that groups of neurons
in this area fired with graded responses (Egorov et al, 2002).
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Neurons from the parahippocampal gyrus (BA35 and BA36), hippocam-
pal formation, rhinal cortex and inferior temporal cortex (BA20) of monkeys
performing a delay task showed population coding and persistent firing during
the delay period (Riches et al, 1991). Hippocampal place cells (BA35) can be
used to predict the location a rat will move to in the next theta cycle (Dragoi
and Buzaski, 2006). Macaque temporal pole neurons (BA38) show population
coding for a complex stimulus, including presentation of opposed halves of that
stimulus, persisting for seconds after the stimulus (Nakamura et al, 1994).

Marmoset auditory cortical neurons (BA41 and BA42) population code
for tones, and fire persistently (Bendor and Wang, 2008). Postsubicular rat
neurons (BA48) population code for head direction. Moreover, persistent firing
has been induced by direct current injection (Yoshida and Hasselmo, 2009).

3.1.2 Occipital and parietal lobes

The occipital and parietal lobes contain primary and higher sensory areas.
While some researchers feel that even neurons in primary sensory cortices are
parts of CAs (Harris, 2005), there is evidence of persistence in higher sensory
areas, but less in primary sensory areas.

The occipital lobe consists of areas for early visual processing. There is evi-
dence for population coding in primary (BA17) (e.g. Hubel and Wiesel, 1962),
secondary (BA18) (Pogio and Fischer, 1977, e.g.) and association (BA19) vi-
sual cortices (e.g. Fischer et al, 1981), though there has been little evidence of
persistence with single unit recording. However, using fMRI, BA17 shows in-
creased activation when subjects recall visual stimulus (LeBihan et al, 1993),
and functional connections during delay tasks in visual cortices (BA18 and
BA19) (Gazzaley et al, 2004). Similarly, neurons in the primary visual cortex
of blind subjects are activated during Braille reading (Sadato et al, 1996).
Such studies suggest that there is input from higher areas to the lower visual
cortical areas, and that this input is able to fire neurons in these areas.

In the parietal lobe, there is evidence for persistence in all areas. So-
matosensory neurons (BA5 and BA7) of rhesus monkeys fired persistently
in expectation of executing a task (Quintana and Fuster, 1999). Owl monkey
posterior parietal neurons (BA7) were used to guide a robotic arm (Wessberg
et al, 2000); these neurons persisted throughout the action. Parietal neurons
(BA7) of rhesus monkeys fired while they considered and performed viewer
and object centred tasks (Crowe et al, 2008); in all cases, state was population
coded, and these neurons fired persistently. Single unit recordings of neurons
from the supramarginal gyrus (BA40) of macaques show population coding
and persistence associated with visual saccades (Nakamura et al, 1999).

fMRI studies show elevated activity in the angular gyrus (BA39) in re-
sponse to linguistic tasks (Booth et al, 2004). Single unit recordings showed
elevated firing rates in the parietal reach region during reach planning and
this was population coded for direction (Scherberger et al, 2005). Similarly,
fMRI showed elevated activity in the parietal operculum (BA43) in tacitly
modulated visual tasks (Macaluso et al, 2000).
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Fig. 3 Brodmann Areas, medial surface of the brain (courtesy of Mark Dubin)

Suites of rat primary somatosensory cortical neurons (BA1-3) respond to
whisker stimulus with latencies increasing in deeper cortical areas (Moore and
Nelson, 1998). While these neurons did not fire persistently after the stimu-
lus, anterior parietal cortical neurons (BA1-3) of rhesus monkeys that showed
elevated activity during tactile tasks showed elevated activity during delay
tasks (Zhou and Fuster, 1996). These single cell recordings show a form of
short-term haptic memory in early sensory processing.

The emerging view is that sensory cortex involved in relatively early pro-
cessing are also used for short term storage (Pasternak and Greenlee, 2005).
Thus CAs involve neurons in early sensory areas in parietal and occipital lobes.

3.1.3 Limbic and insular lobes

All Brodmann areas in the limbic lobe exhibit population coding and persistent
neural firing. Suites of macaque anterior cingulate cortical neurons (BA24) re-
sponded persistently and correlated with cognitive phenomena such as search,
order, and reward anticipation in a sequence learning task (Procyk et al, 2000).
Anterior cingulate cortical neurons(BA33) population coded for stimuli during
the delay period of a classical conditioning experiment (Kuo et al, 2009).

Rat anterior cingulate cortical neurons fire persistently during a delay task
(Lapish et al, 2008). Monkey cingulate motor neurons (BA23 and BA6) exhibit
persistent firing during the delay period of a delay task (Crutcher et al, 2004).
Rabbit posterior cingulate cortical neurons (BA29) fired persistently during a
delay period in a conditioned stimulus task (Talk et al, 2004). Rat retrosplenial
cells (BA26, BA29 and BA30) fired in relation to one or more of the variables
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location, direction, running speed, or movement. Some fired in anticipation,
implying ignition before external stimulus (Cho and Sharp, 2001).

Macaque posterior cingulate cortical neurons (BA31) population code for
direction of eye saccade, and firing persists beyond the movement (McCoy
and Platt, 2005). Macaque pregenual cingulate cortical neurons (BA32) fired
persistently with population coding for specific tastes (Rolls, 2008).

Using fMRI, Siegel et al (2006) noted varying levels of sustained reactivity
to emotional stimuli in the subgenual cingulate cortex (BA25) and amygdala.
Single cell recordings showed elevated firing rates in many neurons in BA25
when a macaque went to sleep (Rolls et al, 2003). Other neurons had elevated
firing for novel visual stimulus, which decreased as the stimulus was repeated.
As these elevated rates were less than 5 spikes per second, this is merely
suggestive evidence for CAs in this area.

The insular lobe is small with only three Brodmann areas. Population cod-
ing is shown in all three, but persistence is less evident. Rat gustatory cortical
neurons (BA13 and BA14) form distinct, population coded CAs that respond
to particular stimulus by undergoing coupled changes in firing rates over sev-
eral 100ms (Katz et al, 2002). Parainsular auditory cortical neurons (BA52)
of squirrel monkeys responded to specific tones, but there was insufficient evi-
dence to see if they persist for a significant time after the stimulus (Bieser and
Muller-Preuss, 1996).

This paper’s use of Brodmann areas to divide the cortex is intended to show
that CAs are prevalent throughout the cortex, except perhaps BA17. Clearly,
Brodmann areas can be subdivided, and other systems for partitioning the
brain exist. Moreover, in most cases, homologues of other animals have been
used to infer neural firing in the human brain. In some cases, e.g. premotor
areas, these areas are quite similar, but in language areas for example, the
function has changed. However, these invasive studies can be aligned with
imaging studies such as fMRI, and other techniques.

Most of the evidence presented here of CAs in cortical areas is based on
population coding and persistence, however, the evidence does not exhibit
learning. Methodologically, it is more difficult to find learning in particular
neurons than to record spikes. Single unit recording devices need to be placed
before the learning is done, and then the learning has to affect those neurons
being measured. There is evidence of learning (see Section 2.5), but this paper
has not provided references to learning in each Brodmann area, assuming that
the behaviour has been learned at some time.

The existence of CAs in all or almost all higher cortical areas aligns well
with Hebb’s idea of CAs as the basis of concepts. When a concept persists
in the brain after the stimulus ceases, an active CA supports this STM. It is
possible that some concepts are represented by some other neural mechanism
than CAs, however the authors are unaware of any sound evidence of such a
mechanism concept pair.



A Review of Cell Assemblies 23

3.1.4 Subcortical areas

While it is unlikely that CAs exist in every area of the brain and the nervous
system, there is evidence of CAs in some subcortical areas. However, as a
rough guide, CAs have less prevalence as areas get further from the cortex.

There is evidence for CAs in noncortical forebrain areas. Spiny neurons in
the striatum exhibit loosely synchronised up and down state dynamics that
indicate they are parts of CAs that include cortical neurons (Stern et al, 1998).
Neurons in the nucleus accumbens exhibited persistent states (O’Donnell and
Grace, 1995). Neurons in the rat amygdala fired persistently during fear (Repa
et al, 2001); moreover this response was learned over a series of several trials.

There is population coding in the thalamus. Neurons in the cat lateral
geniculate nucleus respond reliably to a particular stimulus (Reinagel and
Reid, 2000). Similarly, rat posterior medial neurons fired robustly in response
to whisker stimulation with neurons responding to multiple whiskers and mul-
tiple neurons responding to particular whiskers (Nicolelis et al, 1993). While
head direction neurons in the thalamus fire persistently (Stackman and Taube,
1998), there is little evidence of persistent firing in other parts of the thalamus.

The cerebellum is involved in eye blink conditioning. Classical condition-
ing experiments show that cerebellar neurons learn to respond to conditioned
stimuli, and persist during a delay period while conditioning (Christian and
Thompson, 2003). There is some evidence of CAs in the hindbrain. In this
case, reverberatory activity is maintained without sensory or other external
stimulus. However reverberation can be maintained via sensory stimulus, as
is usually the case in primary visual cortex (BA17) and with thalamic head
direction neurons. It is also possible the reverberatory activity is maintained
by non-sensory input to the nervous system, as may be the case with some
areas involved in emotion processing.

While this section has shown evidence that CAs are in many areas of the
brain, it has not shown the extent of CA involvement in those areas. It is not
clear that all neurons in, for example, the forebrain are part of CAs.

3.2 Topology of a Cell Assembly

Some aspects of the topology of a CA have extensive empirical evidence. CAs
overlap with particular neurons participating in multiple CAs (e.g. Georgopou-
los et al, 1986). CAs cross brain areas, so that some CAs are made of neurons
in multiple brain areas (e.g. Pulvermuller, 1999).

A great deal of the theoretical structure of CAs has been discussed (e.g.
Wickelgren, 1999). Central to this is the overlapping coding of CAs. The idea of
overlapping coding is that some, perhaps most, neurons participate in multiple
CAs. New concepts composed of pieces of old concepts will contain some new
neurons, though will also contain some of the neurons from the base concepts.

Overlapping encoding relates to population coding (see Section 2.2), where
a concept is composed of a large set of, but not the majority of, neurons. There
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is extensive evidence for overlapping encoding (e.g. Tudusciuc and Nieder,
2007; Georgopoulos et al, 1986). The degree of overlap varies from CA to CA.
For example, there is evidence that task specific CAs are largely orthogonal
in frontal areas (Sigala et al, 2008), while there is extensive overlap in CAs in
motor areas (Georgopoulos et al, 1986). Overlapping enables more CAs, but
it also supports sharing of information between CAs. If two CAs share many
neurons, they are probably closely related. An interesting mathematical model
includes overlap in CAs for optimal decisions (Bogacz, 2007). A similar infor-
mation theoretic work suggests that less overlap is better in sensory systems
(Field, 1994). Note that the earlier use of atomic assemblies does not imply
that a CA is orthogonal to other CAs, merely that it is not composed of other
CAs.

A range of imaging and non-imaging data suggests that CAs for words are
distributed in brain areas that are semantically specific (Pulvermuller, 1999).
For instance, the CAs for nouns with strong visual associations include neurons
in visual cortices. Similarly, concrete nouns can be predicted via fMRI from
the brain areas active when the subject thinks of them (Just et al, 2010). Syn-
chronous activity of neurons in behaving rats (Nicolelis et al, 1995) indicates
that neural ensembles across several brain areas collaborate to integrate sen-
sory information and determine action. However, it is not entirely clear when
CAs cross brain areas. Moreover, the nature of CA processing and formation
across laminar levels and brain areas is poorly understood (but see Douglas
and Martin, 2004, for a proposal).

Orthogonality and CAs in multiple brain areas raise the question of how
many neurons are in a CA. The answer to this question has less evidence, but
single unit recordings show hundreds of neurons firing at elevated levels for a
remembered concept (Histed et al, 2009). This is close to the lower range of 103

neurons in a CA that the authors suggested while introducing principle 1. This
answer also raises the question: are there different types of CAs? As proposed
in Section 1.1, smaller CAs are more likely to be atomic. That is, they cannot
be decomposed into other CAs. Larger CAs are likely to be composed of other
CAs, and can act to support composite structures such as cognitive maps.

It also seems likely that some neurons are more central to a particular CA
than others. These central neurons may fire more frequently than less central
ones, and may have closer links to other neurons in the CA, so membership of
a neuron in a CA can be thought of as graded instead of binary.

Other topological issues such as neural type, involvement across laminar
layers, and precise neural dynamics are poorly understood. However, it is likely
that topological parameters will vary between CAs and within a CA during
its life time.

3.3 Function of Cell Assemblies

From a cognitive perspective, CAs fulfil a wide range of cognitive roles. As
Hebb stated, CAs are LTMs and STMs. Persistent firing beyond sensory stim-
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ulus is a STM. The formation, via Hebbian learning, of a set of neurons, which
can persistently fire, is an LTM. CAs vary in the degree that they are stim-
ulated by the environment or from other parts of the brain. As commonly
understood, CAs are ignited, in appropriate circumstances, by sensory stimu-
lus, and categorise that stimulus. These prototypical CAs can also be used as
STMs that can be ignited by internal processes such as working memory. In
current day thinking, STM, LTM and categorisation are the primary functions
of CAs.

Neurons in CAs can function without persistence, firing persistently or
transiently based on sensory stimulus. By the principles introduced in Section
1.1, if a set of neurons can persist or occasionally persists without a sensory
stimulus, it is a CA. None the less, the CA concept is more continuous than
binary. Sets of neurons that are population coded and stimulus responsive, but
rarely ignite due to internal processes are to a lesser degree CAs; for example
neurons in early visual areas rarely persist without sensory stimulus, and thus
are less prototypical examples of CAs. While prefrontal neurons associating
a tone with a colour (Fuster et al, 2000) are members of a prototypical CA,
as they persist without stimulus for seconds during delay tasks, are quickly
learned and population coded. Beyond these factors, CAs vary by their ignition
speed, duration of persistence, size, and learning properties.

As categorisers, CAs take a vast range of possible inputs and categorise
them as the same thing; e.g. pictures of different dogs, their bark, the name,
or even their smell can activate one’s dog CA. An example from the literature
involves inferior temporal neurons that respond to particular shapes in a wide
range of similar rotations (Logothetis et al, 1995). A similar work shows that
medial temporal neurons respond to particular objects from all angles and even
different pictures (Quiroga et al, 2005). This goes beyond specific objects with
specific neurons firing for specific tasks (Sakurai, 1998a). Note that categories
do not need to be discrete as bump sensors have been used to model continuous
categories (Wang, 2001). Also, categorisation may involve systems beyond the
CA, gaining continued and directed input from senses, and contextual evidence
and control from higher areas.

There is evidence that episodes are encoded by CAs (Dragoi and Buza-
ski, 2006). For example, rat hippocampal place neurons (O’Neill et al, 2008)
fire at an elevated rate during sleep after the associated places are visited,
and places that were visited in sequence co-fire. Moreover, particular rat hip-
pocampal neurons fired when the rat was at particular locations when running
a maze, and in similar order during cognitive rehearsal of running the maze
(Pastalkova et al, 2008). This showed internally generated CA sequences, that
also predicted task performance errors. CAs involving mouse hippocampal
place cells could even predict future paths (Dragoi and Tonegawa, 2011).

Top-down and bottom-up evidence (Engel et al, 2001) can be combined
to ignite a CA. Anticipation can lead to priming in a CA that in turn leads
to more rapid recognition or disambiguation when a sensory stimulus is pro-
vided. When ambiguous sensory information supports the ignition of different
CAs, top-down information can support a particular CA, and thus it alone of
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the options ignites. Synapses connect sensory areas to higher areas and vice-
versa, so information flows between sensory and higher areas, supporting the
combination of evidence (Lamme et al, 1998).

Beyond categorisation, STM and LTM, CAs support a range of other ac-
tivities. They support working memory (see Section 4), associative memory,
figure-ground separation, and imagery; single unit recordings of human neu-
rons responded to both the presentation of pictures and the task of imagining
the picture (Kreiman et al, 2000).

CAs support associative memory (Diester and Nider, 2007). Individual
CAs are associated with other CAs via excitatory synapses from neurons in
the first CA to neurons in the second, and via shared neurons (Sigala et al,
2008). Evidence comes from monkey cortical neurons, where monkeys were
trained to associate pairs of pictures. Recordings of neurons in the anterior
temporal cortex showed one set that responded to both pairs of stimuli, and
a second that responded to one; the second type of neuron had elevated firing
during the delay phase of picture presentation when the associated cue was
presented (Sakai and Miyashita, 1991). There is also extensive simulation of
CAs supporting associative memory (see Section 5.2.1). Similarly, association
leads to priming. There is evidence that semantic priming via pictures for
action words leads to an effect on error rates (Setola and Reilly, 2005). “This
suggests the possibility of a broader account of priming effects in terms of
CAs.” That is priming, and the closely related concept of associative memory,
emerge naturally from a network of CAs.

It is well known that primates can make use of cardinality and this is sup-
ported by CAs. Monkeys were trained to associate particular pictures with
particular cardinalities, providing a label. Particular neurons in the prefrontal
cortex were recorded and responded more or less identically to the label and
cardinal category (Diester and Nider, 2007). This type of association may pro-
vide a basis for symbol grounding in humans. Symbol grounding is particularly
important as it shows how symbols gain their meaning (Taddeo and Floridi,
2005), and symbols are very important in modern society and in artificial in-
telligence. Indeed there is growing support for a neural basis to symbols in the
larger cognitive science community (e.g. Gallese and Lakoff, 2005).

Hebb discusses figure ground separation as one of the benefits of CAs. The
figure is activated by CA ignition and this causes it to psychologically pop
out. Some evidence shows that edge detecting neurons in BA18 respond when
the edge is part of the figure but not when they are part of the ground (Qiu
and von der Heydt, 2005). This is consistent with the higher order information
(e.g. from V3) boosting the activity of neurons in the figure at a lower level.

One very important aspect of CAs is that they are active. CAs that encode
symbols are active symbols (Hofstadter, 1979; Kaplan et al, 1990). When a
CA is active, it influences other CAs, by spreading activation or inhibition to
them. This enables one CA to prime many others, inhibit many others, and
be involved in other types of processing simultaneously. This active processing
can also involve dynamic binding (see Section 5.2.2).



A Review of Cell Assemblies 27

It appears that motion is driven by central pattern generators (CPGs)
(Butt et al, 2002). CPGs consist of neurons, and they must be triggered.
Neuron firing in the motor cortex also causes actions (Brecht et al, 2004). So,
neurons in the motor cortex must interact with CPGs. For example, CPGs
are involved in walking. It is not clear whether the neurons in the CPG are
part of the CA; are those CPGs involved in walking part of the walk CA?
However, on a continuum, those neurons are at most weakly part of the CA.
The neurons in the motor cortex may or may not persist, and those that do
not are weakly part of the CA. Those that do (Laubach et al, 2000) are clearly
part of the CA. Moreover, CAs, like CPGs, persist, so CAs can be considered
CPGs (Yuste et al, 2005).

CAs are involved in a wide range of cognitive processes, but it is not clear
when and how they collaborate. There is some evidence about their collabora-
tion in working memory tasks (see Section 4), and evidence from simulations
(see Section 5).

4 Short Term and Working Memory

While it is simple to say CAs are involved in complex psychological systems, for
example, associative memory, and to provide evidence that they are, building
an accurate simulated neural model of associative memory is extremely diffi-
cult, and one can argue that associative memory cannot be truly understood
without such a simulation. A good simulation provides explicit details of basic
processes, and shows how more complex behaviour emerges. Progress is being
made on a range of cognitive tasks, but the neural implementation of these
tasks, like associative memory, is not well understood. This section will make
a speculative description of one complex psychological system, the working
memory system, and its task specific use.

One of the basic assumptions of Hebb’s CA hypothesis is that an active
CA is the neural basis of an STM. In the intervening 60 years, a related form
of memory, working memory, has been studied extensively. Working memory
combines short-term buffers and central executive processes (Jonides et al,
1993). Psychological evidence exists that the working memory and STM are
separate systems with STM supporting working memory (Engel et al, 1999).

Central executive processing is largely based in the frontal cortex, and
working memory leads to behaviour that is more complex than simple STM,
while retaining access to a wide range of memories stored outside the frontal
cortex (see Constantinidis and Procyk, 2004, for a review of region specific
involvement). Executive processing is under voluntary control, and its mech-
anisms are an active area of research (Miyake et al, 2000).

An active CA is an STM as evident during sensing, where CAs are ignited
from the environment with little input from frontal areas. However, frontal
areas can also access these areas during sophisticated processes such as memory
retrieval (Buckner and Wheeler, 2001). During memory retrieval, frontal areas
may begin with, for example, a goal-directed attempt to remember. This, in
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essence, query is sent to other areas of the brain in an attempt to retrieve
the memory. For example, parts of the medial temporal lobe are involved in
storing events. If the memory is retrieved, there is enhanced firing in the medial
temporal lobe (Henson et al, 1999); that is the CA ignites.

There is not universal agreement on the psychological basis of working
memory, but one popular model uses the central executive, the visuospatial
sketchpad, and the phonological loop (Baddeley, 2003). The sketchpad and
the loop act as limited capacity buffers, and the executive controls decisions.

There is growing evidence that working memory and LTM are closely re-
lated (see Burgess and Hitch, 2005, for a review of models). In this description,
STM is maintained by neural firing (a traditional active CA) or short-term
potentiation, and LTM by long-term potentiation. Different working memory
subsystems can be used to perform different types of tasks such as retaining
lists of words or lists of digits. Of course, STMs can be retained as LTMs, but
the actual neural mechanism is not entirely clear, though it seems to involve
the hippocampus (see Section 6).

The sketchpad, loop, and executive need to be implemented neurally. One
computationally simulated model that could apply to the loop uses neurons
with highly weighted synaptic connections to model a concept (a CA), in-
hibitory neurons to limit activity, and short-term synaptic depression for item
order (Deco and Rolls, 2005). Once a sequence is presented, it will repeat.

There are working memory limitations, and while these limits are not en-
tirely clear, one body of evidence supports one item as the focus of attention
and a few others in STM (Nee and Jonides, 2008). Simulations of these limita-
tions use winner take all effects (see Section 5.2), e.g. with a global inhibitory
neural pool (Deco and Rolls, 2005).

Neurons involved in working memory in frontal areas are responsive to a
broader range of inputs, while in more lateral areas they are more domain
specific (Goldman-Rakic, 1996). For example, fMRI revealed that visual areas
retained fine-tuned orientation features in a delayed orientation task (Harrison
and Tong, 2009). Individual recording of macaque inferior temporal and pre-
frontal neurons during delayed matching to sample tasks shows how the two
areas interact through working memory (Miller et al, 1996). The task is for
the monkey to recognise an object, hold it in memory and then respond (for a
reward) when a variant of the object is later presented. Neurons in both areas
respond to visual stimulus though a larger percentage of the inferior temporal
neurons were responsive. Only the prefrontal neurons fired at an elevated rate
during the delay period. That is the CA for the remembered object persisted
in the prefrontal area, but the linked CA in the inferior temporal area did not.

The working memory system is a re-entrant network (Goldman-Rakic,
1995) based in the prefrontal and hippocampal regions, that still communicates
with other areas of the brain. During a working memory task, CAs in prefrontal
areas are coactive with domain specific CAs in anterior areas (D’Esposito,
2007), and the two are dynamically bound. This evidence is largely based on
imaging studies, but is consistent with a CA igniting when the memory be-
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comes active. It resembles the AI theory, the society of minds, where different
experts (brain areas) cooperate to achieve very complex tasks (Minsky, 1986).

There are a number of working memory tasks (see Durstewitz et al, 2000,
for review). One task with a computationally simulated neural model is a
variant of the Wisconsin Card Sorting Task. The neural model uses a store of
a single item, but this item is replaced when a dynamic gating mechanism is
signalled by error feedback (O’Reilly et al, 2002). A theory of working memory
was proposed (Cowan, 1988) and has evolved. This theory explicitly uses CAs
as the neural basis of STM and LTM. The role of CAs in working memory
models is central and understanding of CAs continues to evolve.

5 Cell Assemblies and Models

Single unit recording is the best current method for understanding individual
in vitro neural behaviour though only a relatively small number of neurons
can be recorded at a given time. Lesioning, voltage sensitive dye techniques,
transcranial magnetic stimulation, fMRI and other imaging techniques all give
us a better picture of neural behaviour, but all are incomplete. Computational
models fill the gaps that these techniques miss.

While there is extensive data to support the existence of CAs in the brain,
and extensive data about the behaviour of individual neurons, groups of neu-
rons, and psychological properties that emerge from behaving CAs, CAs them-
selves are still not well understood. Consequently, there are a wide range of
theories as to how CAs behave. Some of this is closely tied to psychological
data, and other theories are more speculative. In particular, it is very diffi-
cult to see complex human behaviour (e.g. language processing, or problem
solving) at the neural level in the functioning brain. There is a long history of
CA models, including computational models; for example, an early simulation
showed that CAs emerged (Rochester et al, 1956) in response to environmental
stimuli. While they persisted, this particular model could not show that one
CA could activate another, but this model suffered from the lack of inhibition
as this was not in the underlying theory at the time.

5.1 Basis of model

Models are based on axioms. One relatively simple way to model CAs is to
assume that they are based on some relatively simple mathematical formulas.
The more popular method is to base them on neural behaviour; of course,
neural behaviour is very complex and also needs to be modelled.

5.1.1 Mathematical models

One set of models of CA behaviour is based on a relatively coarse set of as-
sumptions, modelling CAs by a set of behaviours determined by mathematical
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Fig. 4 Derived from (Kaplan et al, 1991). The CA is at rest for the first 100 ms. then
externally stimulated for the second 100ms. This leads to the ignition of the CA with a high
degree of activity, and the persistence beyond stimulation. Different CAs have a different
length of persistence.

equations. The benefits of the mathematical approach include making the set
of assumptions explicit, and simulations computationally inexpensive.

The TRACE equations are an example of this (Kaplan et al, 1991). This
model takes advantage of neural parameters, but uses these to develop a model
of a CA that has particular properties including activity, fatigue, short-term
connection strength, long-term connection strength and external input. These
equations are used to model learning new concepts and the duration of con-
cepts in STM. Figure 4 shows a model ignition curve with neurons in a CA
receiving some input, but then, via a cascade of firing, causing more neurons
to fire. The CA persists long after the stimulus has ceased. Note that the lined
CA persists longer than the dotted CA.

In another model, CAs are represented by variables including activity and
connectivity that are used to drive behaviour (deVries, 2004). In this case,
behaviour is binding objects to their locations.

Another mathematical model is based on graph theory. It considers neurons
as nodes of a graph, and synapses as the arcs in that graph. Using a range of
biologically realistic parameters for number of neurons, synaptic strength, and
synapses per neuron, the number of neurons in a CA can be derived (Valiant,
2005). Moreover, this model supports associative memory (see Section 5.2.1).
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5.1.2 Neural models

Any CA model based on neurons needs to define the neuron model. This
section gives a very brief review of neural models (see Burkitt, 2006, for a
more extensive review).

Simple or point neural models include integrate and fire neurons (Abbott,
1999; McCulloch and Pitts, 1943), leaky integrate and fire neurons (Amit,
1989), fatiguing leaky integrate and fire neurons (Huyck, 2007), and Boltzmann
machines (Ackley et al, 1985). A particularly interesting point model gets
a wide range of spiking behaviours from two parameters (Izhikevich, 2004).
These are spiking models because the neurons simulate a spike to transfer
information from one neuron to another. Models can also involve continuously
valued output, e.g. the Spike Response Model (Gerstner and Kistler, 2002).

More precise simulation of neural behaviour is done by compartmental
models (e.g. Hodgkin and Huxley, 1952), of which there are a wide range
(see Brette et al, 2007, for a review). Compartmental models are expensive to
simulate, but with fewer compartments there is less computation.

5.1.3 Topology

The neurons have to be connected, and biologically they are connected by
synapses from one neuron to another. Topology involves the neurons, the con-
nections, and properties of the connections. For simple neural models, the
main property is synaptic weight, but this is relatively simplistic.

A great deal of simulation has taken advantage of unrealistic topologies
where all neurons are connected to each other, and connections are bidirec-
tionally weighted (e.g. Hopfield, 1982). This allows the system to move to a
permanently stable state and the use of relatively simple statistical mechanics
(Amit, 1989). This stable state, or attractor basin, is often considered a CA,
and its persistence makes it consistent with the basic idea of a CA. Moreover,
the CAs can be calculated by a type of Hebbian learning. Many simulations
take advantage of this type of connectivity (e.g. Amit, 1989; Sougne, 2001).
However, perhaps due to this lack of realism, the Hopfield model is falling out
of favour as a model for processes in the real brain.

In the brain, neurons are not connected to every other neuron, but a sin-
gle neuron has thousands or tens of thousands of synapses (Churchland and
Sejnowski, 1999). There is some evidence for small world topologies (Bullmore
and Sporns, 2009), and random topologies (Bertschinger and Natschlager,
2004; Valiant, 2005) have also been used in simulations; both have the benefit
of existing mathematical expertise, and both are more realistic than full con-
nectivity. Finally, more realistic topologies can explicitly copy known biological
topology (Douglas and Martin, 1991).
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5.1.4 Learning

Learning is important for CAs, and Hebbian learning rules are used widely
in simulations. There are however a wide range of plausible Hebbian rules. A
complete discussion of these rules is beyond the scope of this paper, as is a
complete discussion of the underlying biology of learning (but see Section 6).

Typically learning is modelled as a permanent change in synaptic weight.
However, learning can reasonably involve neural growth, neural death, synap-
tic growth, synaptic death, and transient synaptic weight change. Synapses
that only rarely cause the post-synaptic neuron to fire can be pruned, and
neurons that rarely cause their post-synaptic neurons to fire can be pruned.
New neurons can be added, and their synapses can grow based on the success
of nearby synapses. These are all forms of Hebbian learning.

A full-fledged Hebbian learning rule typically increases the synaptic weight
when the two neurons co-fire, and decreases the weight when one fires and the
other does not (see Gerstner and Kistler, 2002, for a review). These rules model
the biological actions of long-term potentiation and depression.

In addition to permanent changes in synaptic weight, changes can be tem-
porary. There is sound evidence for both short-term depression and potentia-
tion (Zucker and Regehr, 2002; Hempel et al, 2000), but these two mechanism
are used less in current models.

Co-firing requires the neurons to fire at the same time, and biological evi-
dence shows the timing involves the order of neural firing (Bi and Poo, 1998).
If the presynaptic neuron fires first, and the postsynaptic neuron fires within
20ms there is an increase in strength; if they are reversed, there is a decrease.

A related problem is that for Hebbian learning to support the spread of a
CA into new areas requires the neurons in the new area to fire. Background
neural firing can support movement into new areas, but this requires the neural
model to support neural firing without incoming activation.

There is also mathematical research on Hebbian learning. One mathemati-
cal treatment of learning shows that Hebbian learning can be used for principal
and independent component analysis (Fyfe, 2005).

By making use of different learning mechanisms, a wide range of behaviours
can be learned. Moreover, these learning mechanisms are based on pairs of
neurons, and when combined with complex topologies, a vast range of learning
becomes possible.

5.2 Simulations

Since Rochester et al (1956), there have been a vast range of CA simulations,
and they have come with increasing frequency. For example, one system suc-
cessfully modelled the learning of CAs (Hetherington and Shapiro, 1993). The
neural model was continuous output, the network included excitatory and in-
hibitory neurons, there was sparse connectivity, and the learning rules capped
synaptic weights. CAs persisted, were unique, and grouped similar stimuli.
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Others have shown that neural models can implement CAs in isolation. One
system uses CAs to categorise vowel sounds (Hoshino et al, 2002). Another
uses a multi-level neural system to learn to categorise various line drawings of
buildings (Knoblauch et al, 2007). Various layers in the system are modelled
on human brain areas and the their known processing. Recurrent connections
allow a soft winner takes all system of CAs that interact to satisfy constraints
at multiple levels.

CAs have also been applied to a range of model tasks. Perhaps the most
common simulation is associative memory.

5.2.1 Models of associative memory

There is a review of associative memory models based on simulated CAs
(Lansner, 2009), and it should be noted that CAs themselves are auto-associative
memories; given one input, a similar pattern is retrieved. More typically, as-
sociative memory refers to hetero-associative memory with an input being
associated with a different output. An early example of this (Fransen et al,
1992) uses relatively fine grained neural models to show pattern completion,
and persistent behaviour. This acts as a proof that a CA model can implement
associative memory.

An even earlier example uses a bistable neuron pool; the simulated system
can learn concepts, and associations between concepts (Amari, 1977). In this
case, and in most cases described in this section, the system learns the concept,
i.e. a CA is formed, and associations between CAs are also formed.

Another model uses well connected neurons (Palm and Sommer, 1995) to
store auto-associative memories (CAs) and associations between CAs. Patterns
can be gradually learned via Hebbian learning. A related model (Wennekers
and Palm, 2000) uses simulated spiking neurons to encode objects. During
retrieval, multiple objects can be retrieved with neurons associated with par-
ticular concepts firing synchronously. If a neuron is associated with multiple
objects, it is synchronous with both sets.

More recently, integrate and fire neurons were used to learn CAs, and then
associate those with cognitive maps (Salihoglu et al, 2009), and an ambiguous
stimulus could be disambiguated by the context of the current map. Learning
took advantage of the recurrent multi-layer dynamics of the system. Simi-
larly, fatiguing leaky integrate and fire neurons were used to learn and retrieve
hierarchical categories, with super-class CAs associated with sub-class CAs
by neural overlap (Huyck, 2007). Figure 5 shows a subset of the overlapping
CAs; the super-category, Mammal, supports generalization if a novel type of
Mammal is presented.

A graph theoretical model (Valiant, 2005) stores concepts and their as-
sociations. The model lacks a biologically plausible learning mechanism, but
concepts and associations between concepts are stored as sets of neurons, and
the model works with a range of biologically plausible parameters including
numbers of neurons, neurons per CA, synaptic strength, and connections per
neuron.
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Fig. 5 Derived from (Huyck, 2007). Hierarchical categories stored as CAs with overlapping
neurons. Each cell represents a neuron. Those with a C are part of the Cat CA, with D the
Dog, and with M the super-category Mammal.

Inhibition is often used at a neural level to support competition between
CAs. This can lead to winner take all effects (Lundqvist et al, 2006, and
see Section 5.2). If an ignited CA has a large number of strong inhibitory
connections to another CA, it will suppress the other CA. If both are mutually
inhibitory, and inactive, an ambiguous stimulus will start to ignite both, and
they will compete.

5.2.2 Decisions, binding and language

CAs can also be used in systems that perform a range of sophisticated process-
ing tasks. Computationally, it has been shown that a large enough net with
CAs is Turing complete3 (Byrne and Huyck, 2010). The real challenge is to
build neuro-psychologically realistic simulations. While there are proposals to
model an entire brain at the neural level on supercomputers (Markram, 2006),
CA dynamics will still need to be understood before these models can success-
fully learn and process environmental input. Simulations using CAs include
complex state transition mechanisms, variable binding, and learning.

A system of CAs can be used to store state as in a finite state automata.
Imagine that there are several states each represented by a CA, if only one is
active, the system is in that state. The neural system also has input, and if
a new (non-state) CA is ignited by the environment, having categorised the
environmental input, this input CA can act as input to the automata. Now
input from two CAs, the current state and input, can ignite a third CA, the
new state. The third CA can extinguish the first (via inhibitory synapses).
This is a basic means of acting with CAs.

CAs have been used as the model of the basic categorising unit in networks
that categorise visual input (Bogacz, 2007). These CAs emerge from continu-
ous input continuous output neurons, and the system integrates information
over time to make decisions. CAs have also been used as the model of the basic
semantic unit in a system that models brain storming (Iyer et al, 2009).

3 If a language is Turing complete, anything that can be programmed can be programmed
in it. So, to some degree, CAs are equivalent to Java.
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A CA based model (Wichert, 2001) is able to use pictorial reasoning, simple
rules, and goal directed behaviour using automata to implement an agent. This
agent is able to learn spatial cognitive maps, and improve its own behaviour.

One criticism of current simulated neural systems is that they can not
solve the binding problem (Jackendoff, 2002), so that there must be a CA for
each concept including combined concepts. Without binding, a system would
need a CA for the concepts Red, Blue, Square, Red Square, and Blue Square
if it were to use them. Binding is important because it allows combinatorial
expansion of states. For instance, if the system has ten noun CAs, and ten
verb CAs, it can have 20 states. However, if it can bind these, it can have
100 states. Binding also allows rules with variables, which in themselves are
Turing complete.

A relatively recent modification of neurocomputational theory supports a
functional role for synchronous firing (see Section 2.4 and von der Malsburg,
1981). CAs remain central to this model, though precise timing of spikes be-
comes more important. Synchrony has been used to bind in several models. For
example, spiking neurons are used to simulate binding by synchrony (Sougne,
2001). Though portions of this model have well connected topologies, binding
via synchrony is a complex task. Another CA based model (Knoblauch et al,
2004) implements a regular language parser and binding via synchrony. A long
standing model has used spiking neurons and global inhibition as a basis for
feature binding (Terman and Wang, 1995).

CAs have been used with structured binding circuits as another method
of enabling binding (van der Velde and de Kamps, 2006). A third method of
binding is short-term potentiation (Huyck, 2009), which has been used in a
CA based cognitive model of context-free natural language parsing. CAs are
the grammar rules, words, and the semantic results of a parse.

Modelling learning is also important. Learning simulations have been done
on a range of basic categories, for example visual categories (Knoblauch et al,
2007), for associations (see Section 5.2.1), and on learning weightings for rules
(Belavkin and Huyck, 2010), but there are a range of more complex phenom-
ena, like learning rules that use variable binding, that have not been explored.
Learning new categories is closely related to the symbol grounding problem
(Harnad, 1990), with learned CAs derived directly from environmental stimuli.
For example, one system models the acquisition of spoken words using neurons
that learn CAs (Gargnani et al, 2007).

Models can also be used to show that CAs can perform as expected. For
example, a 3D neural topology is simulated to show that CAs can form in
the striatum (Humphries et al, 2009). Another model simulates the striatal
spiny neuron network showing that sequences of CAs emerge in response to
a sequence of inputs (Ponzi and Wickens, 1977); this model is more closely
linked to biological behaviour than most models.

There are a vast range of possibilities for neural models of cognition from
non-neural connectionist models to highly accurate compartmental models.
One set of principles, that is compatible with CAs (O’Reilly, 1999), permits
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some exploration of the model space while still linking the model to a sensible
degree of biological realism.

A great deal of modelling work has shown how a neural system can perform
a task in principle. However, this work almost always has a relatively weak link
to psychology much less neurophysiology. One challenge for future modelling
work is to provide a more accurate neuropsychological explanation.

6 Discussion

While many researchers across many disciplines have worked on CAs, the com-
plexity of the brain makes it difficult to gain a comprehensive understanding.
This complexity includes the large number of neurons and synapses, the com-
plexity and diversity of individual synapses and neurons, and a diverse range
of effects over different time ranges. The CA provides conceptual support for
understanding the behaviour of a group of neurons much smaller than the
whole brain. How might the scientific community move forward from current
knowledge to a richer understanding of CAs?

While there is extensive evidence that CAs persist (see Section 2.3), sim-
ulations that persist, and psychological theories that predict the strength and
duration of a memory (Anderson and Lebiere, 1998), there is not a sound link
between these. Assuming that the strength of a memory has a direct rela-
tion with the number of firing neurons in its CA, a good computational model
would reflect that firing behaviour. The authors are not aware of such a model,
with existing CA models either persisting forever, or stopping after a relatively
brief time. Moreover, a good model would also be able to learn those CAs, and
have the strength and duration emerge.

The issue of learning, or CA formation, is central to the study of CAs. In-
deed, it has already been raised in the guise of data supporting the hypothesis
(Section 2.5) and model learning rules (Section 5.1.4). The research on learn-
ing is vast, and a brief discussion is useful. While synaptic change may drive
CA formation, it does occur in a large system of neural activity. This activ-
ity must support learning dynamics beyond the neuron (Abbott and Nelson,
2000), however this behaviour is not currently well understood.

CA formation is central to the standard model and its derivatives, with
Hebb’s learning rule as part of his original hypothesis. Biologically, it seems
that the rule is instantiated by a form of long-term potentiation (Malenka and
Nicoll, 1999) and long-term depression (Ito, 1989), and both lead to relatively
long-term changes in the ability of one neuron to cause a particular other
neuron to fire. Though there is extensive evidence for short-term plasticity
(e.g. Zucker and Regehr, 2002), this is not typically included in CA models.

While it is relatively easy to look at the dynamics of synapses, it is very
difficult to inspect the biological formation of a CA because it involves a large
number of neurons. Typically, theory states that there is a bifurcation between
a set of neurons that cannot persistently fire and, through a slight synaptic
strength increase, a set of neurons that can persist. This theory has been
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duplicated in simulations (Amit and Brunel, 1995), but leads to a problem
of an abrupt appearance of CAs, and the inability of CAs to remember novel
stimulus (Durstewitz et al, 2000). The use of short-term potentiation in models
has reduced this problem, as the new CA is initially supported by short-term
changes, which support longer-term changes via repeated neural co-firing.

This problem of rapid formation of CAs relates to the difference between
semantic and episodic memories. Semantic memories tend to require the pre-
sentation of many instances to form an associated CA, while episodic memory
forms in one presentation. CAs for episodic memories must be formed after
one presentation, since events do not happen twice. This encoding may use
a CA in the hippocampus combined with neurons to encode specific seman-
tic elements (Eichenbaum, 2000). This CA may be reactivated in later stages
(e.g. sleep) to support memory consolidation (Qin et al, 1997). Hippocampal
damage could then lead to a loss of memory of those episodes (Paller, 1997).

Semantic memory provides another set of challenges, including questions
involving the formation of CAs in the young animal; for example, when do
CAs for particular concepts form? How do CAs for a concept learned early
(e.g. animal) evolve into sets of concepts (e.g. cat and dog)? These questions
are particularly important as it is very likely that the development of later
CAs depends on those early CAs, and computational models would be more
robust if they were based on relatively biologically and psychologically accurate
developmental CA models. These questions are difficult to answer biologically
because they involve relatively long-term study of a developing brain.

The authors are unaware of any significant evidence of the neural evolution
of categorisation in infants using single cell recording. There is of course long
standing evidence of early cell specialisation in response to stimulus (Hubel and
Wiesel, 1962); there is just not evidence of these or later neurons forming CAs.
None the less, existing data does not contradict Hebb’s hypothesis. Improving
EEG and other non-invasive techniques (Reynolds and Richards, 2009) may
help uncover the mechanisms of early CA formation.

The dynamics of CA formation are thus, at least potentially, quite com-
plex. For example, the spontaneous reoccurrence of neural firing patterns,
neural avalanches, have been proposed as a potential mechanism involved in
CA formation (Plenz and Thiagarajan, 2007). As this obeys power law dy-
namics in size, every neuron can be linked with every other neuron, allowing
CAs to involve any set of neurons in the brain.

There are further problems of CA learning with existing CAs. CAs may
recruit new neurons and lose neurons, and since membership of a CA is not
binary, this loss or gain of a given neuron is a matter of degree. Similarly, CAs
may fractionate into separate CAs. There is also research in circuit formation
making use of, for instance, laminar architecture (Raizada and Grossberg,
2003), and brain areas (Knoblauch et al, 2007). Learning is an important key
to understanding CAs.

In the authors’ view, the CA is a graded concept. We suspect, and evidence
provided in this paper supports the idea that, prototypical CAs are the basis
of typical concepts and their associated symbols. As such, prototypical CAs
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are the neural basis of basic symbols used in, for instance, natural language
processing. As CAs are a graded category, less typical CAs, but things still rea-
sonably called CAs, may be the basis of a wide range of cognitive phenomena
ranging from cognitive maps to complex motor skills.

There are many questions about how CAs relate to a wide range of pro-
cesses (e.g. path finding, language, and theory formation), and higher order
structures. These are difficult questions, but as scientific understanding of
these mechanisms is weak, even suggestive biological and psychological evi-
dence, and plausible psychological and computational models would be useful.

7 Conclusion

The standard model is that CAs are the neural basis of concepts. The CA
is a small set of interconnected neurons; that can persist without external
stimulus; is learned; and is supported by synchronous firing behaviour. The
model has some alternatives.

CAs are in a large range of brain areas. CAs are involved in varying degrees
in a large range of cognitive tasks; they are categorisers and act as STMs and
LTMs, but they are also intimately involved in priming and associative mem-
ory; they are important, but less central, in complex tasks such as language
and working memory.

The full CA hypothesis states that CAs are the basis of all concepts. This
paper has not provided support for this claim. Though the authors have not
found a contradiction, it is plausible that some other mechanism is used for
some concepts; however, no mechanism currently suggests itself. While CAs
may or may not be the neural correlate of all concepts, there is evidence that
they are the neural correlate of many. For these concepts, CAs provide a crucial
bridge between categorisation, LTM and STM.

CAs are not the sole answer to understanding the brain. For example,
higher order structures, and systems play crucial roles in human behaviour.
None the less, CAs are a key link between biology and psychology, provid-
ing an intermediate level of analysis between neurons and the brain. CAs at
this intermediate level are also the basis of symbolic concepts and thus sym-
bols. So, CAs provide the bridge between subsymbolic and symbolic reasoning.
However, our current models of CAs, both computational and theoretical, are
relatively crude and underspecified, and the links to neuropsychological be-
haviour are far from complete.

Evidence for CAs can be evaluated based on neural and psychological be-
haviour. Tying psychological states and processes to neural behaviour is dif-
ficult but can be done with single unit recording, and with less certainty via
other techniques. While this paper has provided evidence that supports the
general CA model, it has not fully shown the structure of a single functioning
CA much less the structure of all CAs.

Similarly, models of CAs should account for both neural and psycholog-
ical data. Better neural models are obviously more reliable, and reasonable
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topologies are important; input to simulations is better when it follows known
biological paths, for example via retinal centre surround detectors. Also, the
models are better when they adhere to the four theoretical principles of CAs.

The prototypical CA, as defined by these four principles, is a flexible yet
solid concept that can be used across disciplines. There is sufficient evidence
for this concept that it can be used now for discussion and model develop-
ment. Since understanding of neuroscience and psychology is incomplete and
will develop, the concept of CA needs to remain flexible to accommodate the
evolving understanding of neuropsychology.

Improving our understanding of CAs will lead to a better understanding of
animal cognition. CAs provide a very important mechanism that is central to
cognitive behaviour supporting categorisation, STM and LTM, and providing
support for other processes. Computational systems that make use of CAs
to perform in complex environments and learn about those environments can
make use of the knowledge of neuropsychology.

The authors hope that this review will distribute existing information on
CAs, that it will stimulate further discussion and research on the prevalence,
function, and behaviour of CAs, and that this will lead to significant advances
in the understanding of cognitive neuropsychology.
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