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ABSTRACT2

The best way to develop a Turing test passing AI is to follow the human model: an embodied3
agent that functions over a wide range of domains, is a human cognitive model, follows human4
neural functioning and learns. These properties will endow the agent with the deep semantics5
required to pass the test. An embodied agent functioning over a wide range of domains is needed6
to be exposed to and learn the semantics of those domains. Following human cognitive and neural7
functioning simplifies the search for sufficiently sophisticated mechanisms by reusing mechanisms8
that are already known to be sufficient. This is a difficult task, but initial steps have been taken,9
including the development of CABots, neural agents embodied in virtual environments. Several10
different CABots run in response to natural language commands, performing a cognitive mapping11
task. These initial agents are quite some distance from passing the test, and to develop an agent12
that passes will require broad collaboration. Several next steps are proposed, and these could be13
integrated using, for instance, the Platforms from the Human Brain Project as a foundation for14
this collaboration.15
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1 INTRODUCTION

A good, perhaps the best, way to get an AI that passes the Turing test (Turing, 1950) is to closely follow17
the human model. This does leave a wide range of options, but one path is to build systems that are situated18
in environments (Brooks, 1991), function over a wide range of domains, are sound cognitive models,19
and follow human neural functioning and learning. Others (e.g. Hassabis et al., 2017) have made similar20
arguments.21

It is relatively easy to argue that learning, functioning over a wide range of domains, and being situated22
in environments are all necessary for a system to pass the Turing test. However, the benefit of following23
the human models is far from straightforward, particularly as knowledge of those models is far from24
complete. Nonetheless, there are significant islands of evidence and confidence in psychology, linguistics,25
neuroscience, and related fields. For example, the Nobel Prize winning Thinking Fast and Slow (Kahneman,26
2011) in psychology, The Foundations of Language (Jackendoff, 2002) in linguistics, and the Nobel Prize27
winning work on the brain’s positioning system (e.g. Morris et al., 1982) in neuroscience. So, our research28
group has spent roughly the past decade building agents1, based on simulated and emulated neurons2, that29

1 An agent is something that perceives its environment and acts on it.
2 Artificial neurons, in contrast with biological neurons, are simulated on standard hardware using simulators like NEST and are emulated on neuromorphic
hardware.
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function in physical and virtual environments. The emergent psychological function of these agents is30
measured by their behaviour as neuro-cognitive models.31

It seems very unlikely that our group, working alone, will build a Turing test passing agent. Indeed, it32
seems unlikely a Turing test passing agent of any form will be developed in the next decade. Consequently,33
this work is a part of a larger research effort that includes other agents and is open to all researchers34
and developers. In particular, our focus has switched to the Human Brain Project (HBP). The HBP has35
a standard suite of modelling tools, and hardware resources, including high performance computers,36
neuromorphic hardware and virtual environments, that are accessible, interactively via the Internet, to the37
wider scientific community. These provide practical platforms for developing agents in artificial neurons,38
and a place to develop a community of neural agent developers and researchers.39

The discussion of the proposed development of Turing test passing agents start with section 2, which40
discusses the Turing test and what is needed to pass it. Section 3 discusses a range of agents, called41
CABots, developed by our group. The agents range from simple open-loop agents (see section 3.1), through42
closed-loop ones that take simple commands from a user (see section 3.2), to agents that have long-term43
memory (see sections 3.3 and 3.4). Our group is not alone in developing agents based in neurons, and44
section 4 describes some agents developed by others.45

While several cognitive models have been developed in the CABots, these agents are relatively simple,46
domain specific cognitive models. For instance, while the agents learn in the cognitive sense, their learning47
of spatial cognitive maps and rules (Belavkin and Huyck, 2010) is extremely simple.48

As the goal of this work, to develop Turing test passing systems, is distant, some possible next steps are49
presented in section 5. Neural systems can be developed with topologies that are clearly not biologically50
plausible; components based on such topologies can still be useful as they provide scaffolding to build51
future, more powerful systems that will have plausible topologies. Some sample next steps that the authors52
are particularly interested in exploring include semantic net like memories, and continuously valued Cell53
Assemblies to, among other things, support development of spiking neural models that behave like 1980s54
connectionist models (e.g. (Maes, 1989; Rumelhart and McClelland, 1982)). Other suggestions include55
spatial memory, improved vision, and episodic memory.56

2 HOW TO PASS THE TURING TEST

A great deal has been written about the Turing test (Turing, 1950), competitions based on it are run57
regularly3, and it is the standardly agreed test for Artificial Intelligence. A brief paraphrased summary58
is that there is a human judge in one room, an unseen computer in a second room, and a second unseen59
human in a third room. The judge communicates with the other two via text. If the judge cannot decide60
who is the human and who is the computer, the computer has passed the test and is considered intelligent.61
The spirit of the test includes an open ended conversation, and two reasonable humans. It could be usefully62
extended to multiple tests to allow statistical significance, with multiple judges and with none choosing63
at better than chance. The test is not a trick (Harnad, 1992); though claimed results of passing or almost64
passing have been made, no artificial system has come even close.65

For an AI system to pass the Turing test, it must function in a wide range of domains; after all, the66
conversation is open ended. The judge will be able to discuss any domain. The system does not need to67
know about every domain; humans do not. It does need to know about many domains, because humans do.68

3 For example, the Loebner prize runs annually (see http://www.loebner.net/Prizef/loebner-prize.html).
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One easy way to know about many domains is to learn about them. Moreover, the system will need to69
learn during the conversation. Also, from a software development standpoint, if there is a lot of knowledge70
to encode, it is easier for the system to learn it than for developers to encode it.71

Human learning is much studied, complex, and still poorly understood. Humans learn semantic knowledge72
(Quillian, 1967), episodic knowledge (Tulving, 1984), spatial knowledge (Morris et al., 1982), and other73
types of knowledge. There is short-term memory, long-term memory, and a range of durations in between74
(James, 1892). Human memory is sophisticated enough to learn the semantics of a range of domains. This75
deep semantic knowledge enables humans to understand domains in ways that machines are not currently76
capable.77

For example, one technique for current systems that attempt Turing test like tasks is to get information78
dynamically from the Internet (Ferrucci et al., 2013). This is a shallow semantics approach. In general, it is79
not going to be able to answer questions like:80

Are crocodiles good at running the steeplechase?(Levesque, 2014)81

because the answer is not already on the Internet. To answer a question like this, deep semantics are82
needed. The point made by Levesque (2014) is that a Turing test judge can ask arbitrary questions like83
this. No system can find the answer from the Internet, or from caching away answers. The system needs an84
understanding of how crocodiles move, and what is required to run a steeplechase. It needs the ability to85
reason about these things.86

Many, maybe all, of the domains people learn are grounded in the physical world. Humans typically87
learn to walk, use tools, eat, and to build structures. We learn how animals move, people dress, and voices88
sound4. Consequently, it is all but essential that the system exists in a rich environment, so that it can learn89
the deep semantics associated with the environment(Brooks, 1991). This includes not just what the objects90
are, but what they can be used for (affordances) (Gibson, 1986); it includes how the environment changes,91
and how the agent can change the environment; and it includes mechanisms for internally simulating these92
changes. There are many issues around embodiment (Wilson, 2002), but it is clear that a Turing test passing93
agent will include time pressured cognition, while still being able to abstract from the environment. It will94
be able to make and execute plans. Similarly, the concept of agent can be defined as an individual, that acts95
upon an environment for its own benefit (Barandiaran et al., 2009).96

Moreover, it is clear from a psychological perspective that a great deal of, and probably most, learning is97
unsupervised (Reber, 1989). Fortunately, from a neural perspective, biological evidence points towards98
Hebbian rules, which are unsupervised. There is evidence for reinforcement learning using the dopamine99
system (e.g. Holroyd and Coles, 2002), but this still has an unsupervised component.100

While it has been shown that systems implemented in neurons can process symbols, for Turing test101
passing intelligence, these symbols need to reflect rich associations with complex environments, often102
referred to as grounding (Harnad, 1990). In humans, symbols, in particular words, have deep links to103
underlying meaning. This meaning has been learned through extensive interaction with the environment104
(Taddeo and Floridi, 2005). The word crocodile is more than just a symbol. In a typical human, the word105
can bring up links to an immense store of knowledge about teeth, handbags, how they move, how they106
hunt, and much more. Thus symbol processing in humans is usually much more than simple syntactic107
processing. Reading a sentence allows people to create a rich semantic representation, which can be stored.108

4 Even extremely physically impaired people, e.g. Helen Keller, a deaf blind person, still existed in an environment and interacted with it.
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It is less commonly argued that a Turing test passing system needs the performance of open domain109
cognitive models. A system could have cognition but cognition that does not approximate human cognitive110
behaviour. Perhaps it is beyond the spirit of the Turing test, but a judge could try, for example, a Stroop111
test (Stroop, 1935), which measures interference. Nonetheless, if the system has the performance of a112
good cognitive model, it will only make it easier to pass the Turing test. Moreover, these models support a113
range of cognitive activities. If it does not perform like a good cognitive model, it will not duplicate human114
behaviour well.115

It is quite difficult to argue that a Turing test passing system must follow the human neural model. Indeed,116
the authors feel that eventually non-neural systems will pass the test. However, there are a vast number of117
challenges to meet to pass the test, and these may be most easily met by following a system that already118
can pass the test, human neurons.119

Developing a full-fledged Turing test passing agent is unlikely to be entirely straightforward. Even the120
direct approach of copying human neural topology is not currently viable; among other issues, the topology121
is unknown, the basic neural models are not clear, and the neural dynamics are unclear.122

So, if an agent, running in artificial neurons, learns and acts cognitively like humans, it can drive123
behaviour in a complex environment. With sensors and effectors, it may become an agent that can learn the124
deep semantics of its environment, gaining a rich understanding of the objects an actions permissible in125
the environment, and mechanisms for predicting how the world will change on its own and in response126
to actions. This section and indeed this paper argues that, if the agent performs well enough in that127
environment, and the environment is sufficiently sophisticated, the agent will be able to pass the Turing128
test. Of course, this is just argument. The real proof will be the Turing test passing agent. How can such a129
system be developed?130

3 THE CABOTS

It is easy enough to propose that the best way to build an AI is to make a human-like neural agent. In an131
effort to make this happen, over the past years, the authors and collaborators have developed several virtual132
agents, virtual robots, with all of the processing done in simulated neurons5.133

In the development of our agents, our group has made some scientific and engineering decisions that134
should be made explicit. First, all of the processing needs to be done in simulated or emulated neurons. A135
wide range of neural models can be used, and indeed, a given agent might have different types of models136
within it. The neural models generate spikes. These are widely used models of biological neurons, and137
there is considerable evidence that spiking is the basis of Hebbian learning (e.g. (Bi and Poo, 1998)).138
Spiking neurons also provide more and more rapid information than rate coded neurons (Schwalger et al.,139
2017). Similarly, there is no hardware restriction. Second, the agents need to have different types of140
learning mechanisms both neurally and psychologically. At the neural level these will include short and141
long-term depression and potentiation. There should be a reinforcement mechanism, and learning should142
be unsupervised. Currently, we are assuming all neural learning is Hebbian. Third, the agents make143
extensive use of CAs (see below); all processing may not be done with CAs, but a great deal of it is.144
Fourth, it is an engineering task, and the agents need to be constructed. This means that, at least in the145
short-term, some degree of modularity is needed; the topology needs to be constructed from parts that146
can be tested independently. Different sub-topologies can be combined via synapses between neurons.147

5 The code can be found at http://www.cwa.mdx.ac.uk/chris/cabotsPaper/ cabotsCode.html.
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Eventually, the neural network will need to learn across these boundaries. Finally, the agent needs to148
perform as neuro-cognitive models; this is the link to psychology. Our current topologies are not accurate149
models of human (or other animal) topologies, but simplifications. Neural constraints are important, but150
the engineering constraint of getting an agent working, at this stage, is necessarily, for practical reasons,151
more important.152

One key concept in neuroscience is the Cell Assembly (CA) (Hebb, 1949); a CA consists of a group of153
neurons, and is, among other things, the widely agreed neural basis of concepts (Guzsaki, 2010). When a154
concept is in short-term memory, the neurons in the CA are firing at an elevated rate. The formation of the155
CA, so that it can fire persistently, is a long-term memory. These agents make use of CAs, so, they are Cell156
Assembly roBots: CABots.157

These agents are embedded in virtual environments, and several simple environments have been used.158
The agents have also been developed using several different point neural models, including a Fatiguing159
Leaky Integrate and Fire (FLIF) model (Huyck and Parvizi, 2012), and conductance based, and current160
based exponential integrate and fire neurons with adaptation (Brette and Gerstner, 2005). Point neural161
models are relatively simple models that treat the neuron as an input output equation; there are numerous162
models that are more complex (Brette et al., 2007).163

Generally, when working with a new environment or neural model, an open-loop agent is initially164
developed (see section 3.1); these are typically very simple. Then more advanced closed-loop agents are165
developed (see section 3.2). Perhaps the most sophisticated agents our group has developed used the FLIF166
model (see section 3.3), including several cognitive models. More recently, agents have been developed for167
the HBP (see section 3.4).168

3.1 Open-Loop Agents: CABot1169

It is relatively simple to make agents with all of the processing in simulated neurons. Section 4 describes170
several of these agents developed by other researchers, and this paper will start discussion with a simple171
agent emulated on the BrainScales (Schemmel et al., 2010) neuromorphic platform. BrainScales is analog172
hardware with each neuron directly implemented in hardware; it emulates neurons at 10,000 time speedup173
over biological time. This agent takes a command input and input from a picture of the environment. It can174
turn in response to the command, or if the command is turn toward the object it will. For example, if there175
is a coloured object on the left of the picture, a particular neuron spikes, and if it is on the right, a different176
neuron spikes.177

The standard middleware for the HBP for describing topologies of neurons is PyNN (Davison et al.,178
2008). This describes the topology, and then passes that to the backend to simulate (e.g. NEST) or emulate179
(BrainScales or SpiNNaker).180

Note that one of the great advantages of using neural systems in general, and neuromorphic systems in181
particular is their innate parallelism. The processing is distributed between the neurons, and even on a182
serial machine, processing with neurons provides algorithmic scaffolding for parallel processing; write183
the program in neurons, and it is already parallel because all of the neurons function independently. On184
neuromorphic machines, the parallel processing is rapid, and for the overall system to be expanded, all that185
is needed is more neuromorphic hardware. Delivering the spikes to the appropriate neurons is one of the186
problems with this parallelism. Perhaps the main advantage of the SpiNNaker system (Furber et al., 2013)187
is the mechanism that allows all spikes to be delivered in the next millisecond.188
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The BrainScales agent is an open-loop agent. It senses the environment, but any changes it makes do189
not effect the environment. Moreover, the agent does not have any neurons that fire persistently without190
environmental input. A CA can fire persistently, so this agent is not a CABot.191

CABot1 refers to an open-loop agent that uses CAs. Several have been developed and they can take192
commands from a user in natural language, view the environment, make simple plans and act depending on193
the context of the environment. They take advantage of a simple representation of a CA. They do not get194
feedback from the environment, so are unable to, for instance, explore the environment by turning around.195

CAs, once activated, need to persist. A good cognitive model, of a CA, of for instance a word, would have196
the firing rate of neurons in the CA decay like a short-term memory, but a simple well connected topology197
based on a point neural model is a reasonable proxy. It can remain persistently active indefinitely. A set of198
neurons, for instance five, is well connected, with each neuron synapsing to the other four neurons. It is199
relatively simple to find parameters so that once all of the neurons fire, there will be persistent firing. That200
is, the first time all of the neurons fire, they will cause each other to fire again, and this will be repeated; this201
is called CA ignition. This is a binary CA, either on (ignited), or off (not ignited); there is no intermediate202
level of neural firing.203

These simple CAs can be used as states in a finite state automaton, and many functions can be204
implemented. For instance, simple regular languages can be parsed (Hopcroft et al., 2006). This enables205
the users’ text commands to be processed by the agent.206

Similarly, CAs can be used for simple plans. The overall thinking is to follow the Maes nets (see section207
3.4 and (Maes, 1989)), but binary CAs can be used for planning.208

To simplify engineering and more easily understand these agents, they can be broken into subsystems.209
Figure 1 describes the subsystems of a more complex CABot3 agent. The CABot1 agents use an210
environment, Natural Language Processing (NLP), Vision, and Planning subsystems, and have most211
of the connections from Figure 1. However, as the CABot1s are open-loop agents, there is no connection212
from planning back to the environment. Individual subsystems, neurons and synapses, are built and tested213
in isolation. These are then combined by adding synapses between the subsystems yielding a complete214
agent, and the subsystems’ topologies can be copied and re-used in different agents.215

The visual system is probably the best understood of human neural systems, though of course216
understanding is far from complete. Building from early studies (Hubel and Wiesel, 1962), and making use217
of animals there has been steady advancement in understanding neural visual processing.218

The agents our group has developed take advantage of on-off and off-on centre surround processing.219
These come in different granularities, in our agents typically 3x3, 6x6 and 9x9. The visual environment is220
pixelated giving the visual input. This input stimulates the centre surround receptors, and these in turn feed221
into line, edge, and angle detectors, behaving like neurons in the primary visual cortex.222

There are several CABot1 agents that take commands from a user. Using the commands they set goals.223
These tasks are typically primitives (like Turn left and Move forward) or context sensitive (like Turn toward224
the pyramid). The visual system may fail when, for instance, the pyramid is too far away. If the visual225
system gives a correct interpretation of the environment, these commands are always successful, issuing226
the correct action as described by a particular neuron firing.227
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Figure 1. Gross Topology of CABot3. Boxes represent subystems of subnets. The oval represents the
environment.

3.2 CABot2 and Closing the Loop228

If the agent is in an environment, can modify the environment, sense the change, and uses the change229
to continue on, it is a closed-loop agent. The, CABot2, agent now becomes part of the environment,230
and the environment part of the agent. Fortunately, particularly in dynamic 3D environments, like231
many virtual environments and the real world, there is an obvious separation between the agent and232
the environment(Diaper and Sanger, 2005). The agent has processing, sensing, and effecting, and the233
environment is everything else.234

Recently, a CABot2 agent was developed for the HBP’s Neurorobotics Platform (NRP) (Roehrbein et al.,235
2016). This Platform supports virtual environments and robots driven by simulated neurons; it can be236
accessed over the Internet and users can develop experiments with novel virtual robots, environments and237
brain models.238

This CABot took one of five text commands (turn left, turn right, move forward, stop, or move to the box).239
These commands were interpreted, neurally, by a regular grammar processor, with the result of setting a240
goal. One goal, move to the box, was context sensitive. This environment is a simple flat surface with a241
blue box on it. The robot is wheeled. There is a camera on the robot, and the results of this are sent to the242
visual subsystem. The visual subsystem then determines whether the box is on the left or right or directly243
in front, enabling the robot to move to the box when that is the goal.244

There are a range of environments for agents. 3D virtual (or physical in the case of robots (see section245
4.3)) environments are of particular interest because of their potential richness.246

Communication timing between the neurons and the environment is also important. Neurons can be247
readily tied to time, as they model the behaviour of actual neurons by time. The environment may also248
be tied to time. However, the coupling of the neurons with the environment can range from loosely249
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coupled, to tightly coupled depending on the system. Physical robots, run by neural networks, are typically250
tightly coupled, with input from the robot’s sensors going to the neurons, and the neurons needing to251
respond quickly. If however, the environment does not change rapidly, the neurons may sense change in252
the environment, process for as long as necessary, and then respond; the agent, loosely coupled with the253
environment, can perform its tasks. With virtual environments, the actual time of simulation may not be254
the same as the simulated time. Virtual environments, can run more slowly or rapidly to correspond to255
simulated or emulated neural time. The latency that occurs in nature is due to time to synchronise the256
brain with the environment - there are many experiments that exploit this behaviour, and it is inherently a257
closed-loop problem. Some details of synchronising the visual subsystem with the environment to complete258
the closed-loop are discussed in the next two sections.259

3.3 FLIF Closed-Loop Agents260

Perhaps the most advanced closed-loop agents that the group has developed are the CABot3s in the FLIF261
model (Huyck et al., 2011). The agents consist of several subsystems that can be seen in Figure 1. These262
were developed in our own Java FLIF simulator, and in a virtual environment using the Crystal Space263
games engine (Crystal Space, 2008). The environment is 3D with the agent able to move about in the264
environment via four primitive actions: turn left and right, and move forward and backward, all in discrete265
steps. The virtual environment only changes in response to the agent’s movements so the two are only266
loosely coupled; consequently, getting information from and sending information to the environment is267
relatively simple. The environment consists of four rooms connected by four corridors. In each room there268
was a unique shape: a pyramid or stalactite that have vertical or horizontal stripes (see Figure 4).269

The advancement of CABot3s over CABot2s is long-term memory. CABot2s implement short-term270
memory by neural firing. For instance, parsing in the NRP CABot2 makes use of persistently firing neurons271
to maintain memory. In the FLIF CABot3, long-term memory is formed by permanent synaptic weight272
change that associates a room with the object in it, so the system cannot relearn if the objects move.273

The subsystems typically consisted of several subnets. A subnet consists of a set of neurons. The274
subsystem and subnet mechanism allow some degree of modularity for software development. These275
agents have the most sophisticated visual subsystem that our group has developed. In addition to subnets276
of neurons that performed the function of the retina, primary visual cortex, and object recognition, these277
visual subsystems have grating cell subnets to recognise texture. This enables the subsystem to recognise278
the four types of objects: vertically striped pyramids, horizontally striped pyramids, vertically striped279
stalactites, and horizontally striped stalactites. The NLP system refers to vertically striped objects as barred,280
and horizontally striped ones as striped.281

These objects are used for a simple spatial cognitive mapping task. When the agent is told to explore the282
environment, it finds the object in the room and maps the room to that object. It then navigates through283
the corridor to the next room, and so on until all four rooms are mapped. This is a very simple form of284
long-term learning. The agent is tested by a command like, Go to the room before the striped pyramid. It285
then uses its long-term memory to retrieve that, for instance, the barred stalactite is in the room before the286
striped pyramid. It then traverses the environment, checking each shape, until it gets to the room with the287
barred stalactite, fulfilling the goal.288

The NLP subsystem is quite sophisticated. It is perhaps the best neuro-cognitive model of natural language289
parsing (Huyck, 2009), parsing in cognitively realistic times, appropriately resolving prepositional phrase290
attachment ambiguity, and producing semantic output (in this case, for planning). It is currently one of the291
most important works in the CABot project.292
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This, and other CABot NLP systems, takes commands from the user, and uses them to set goals in the293
planning subsystem. The user types the commands into a text box in the virtual environment.294

The system implements Jackendoff’s tripartite theory (Jackendoff, 2002), illustrated in Figure 2. Subnets295
refer to particular sets of neurons, with all neurons in exactly one subnet. They appear in their own window296
in the neural system’s user interface. The tripartite theory refers to three language systems, semantics,297
lexicon, and syntax. These systems communicate via shared sets of neurons (subnets), and Jackendoff298
proposes that there are other linguistic and non-linguistic systems.299

SEMANTICS

Verb Instance
Noun Instance

PP to NP
PP to VP
Counter

Verb Semantics
Noun Semantics

SYNTAX
Rule One
Bar One
Rule Two

LEXICON

Input

Access
Next Word

Figure 2. Gross Topology of the FLIF CABot3 Parser. Each box represents a subnet with similar
subnets grouped together according to Jackendoff’s Tripartite theory.

Earlier versions of the system used a stack, but this did not lead to correct parse timing. So, the system300
uses a memory based solution, with semantic frames represented by CAs forming the basis of phrases301
during parsing. Binding is essential for parsing context free grammars, and binding is done by short-term302
potentiation (STP) in this system.303

One assumption made in this work is that a concept is psychologically active, when its neurons fire at304
an elevated rate. As each cycle of the simulator is tied to 10ms. of real time (Huyck and Parvizi, 2012),305
parsing rules are applied when their neurons are firing, and this time is readily measured. This is used to306
show that parsing is done in psycholinguistically realistic times. Typical neural simulations use a time step307
of 1 ms., 0.1 ms., or even .01 ms. One benefit of a 10 ms. time step is that approximately 100,000 neurons308
can be simulated on a standard PC in a reasonable time.309

Similarly, one variant of the agent, was a cognitive model of rule choice (Belavkin and Huyck, 2010),310
taking advantage of a reinforcement signal from the environment to learn the meaning, from the perspective311
of the agent, of centring an object. A different network, independent of the agent, used a similar topology312
to model a two choice task. Figure 3 describes the gross topology of this system. In the centring system,313
there were two antecedents: the goal centre and the fact object on left, and the goal centre and object on314
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right. These came from the planning subsystem. The consequents were the action turn right and turn left,315
again from the planning system. Note that the theory applies to any antecedent consequent set. The system316
needs to learn the correct weights between the antecedents and consequents. If the weights were already317
learned, the correct consequent tended to be applied to the antecedent. However, the weights were initially318
low, so this application did not occur. Instead the neurons in the Explore subnet fired at an elevated rate319
when any antecedent was present, causing a consequent to be applied. If this led to a good result, the Value320
subnet was externally activated, leading to its neurons firing at an elevated rate, suppressing firing in the321
Explore subnet. This meant that the correct antecedent consequent pair fired, and the weights from the322
antecedent to the consequent were increased due to Hebbian long-term potentiation. Similarly, weights323
from the antecedent to incorrect consequents were reduced via Hebbian long-term depression. If, on the324
other hand, the incorrect consequent was selected, weights from the antecedent to the incorrect consequent325
were initially increased. However, the Value subnet never came on, so the Explore subnet continued to be326
highly active, leading to a new consequent being selected. As this process is repeated, the only attractor327
states are the correct antecedent consequent pairs as determined by the reinforcement signal to the Value328
subnet.329

Value // Explore

��
a1
...
am

//
//

//

c1
...
cn

Figure 3. Gross topology of the reinforcement learning system. The Value subnet represents the reward
and Explore supports action when there is reduced information. The a subnet is the collection of antecedents,
and the c subnet the consequents.

Moreover, this rule selection mechanism is not static. If the environment changes, the reinforcement330
mechanism in collaboration with Hebbian learning will learn the new utilities of the rules.331

The use of our own neural simulator and model, and our own virtual environment has its advantages. If332
there is a minor problem, or a new learning rule is needed, it can readily be implemented. Unfortunately,333
this means that no one outside of our group has ever used these systems. While some students have been334
taught to use and modify the FLIF agents and the code has been made available, it seems the learning curve335
is too steep. Another approach is to use more widely used tools to build modules that can be used in many336
agents, and by many researchers.337

3.4 HBP Closed-Loop Agents338

One of the problems with the FLIF CABot3 agents was processing time. As more neurons were used,339
simulating on a standard PC began to become quite slow. While the loose coupling of the virtual environment340
and the agent addressed time sensitivity, adding more neurons slowed the machine markedly; at one point,341
the Java heap could not be further expanded. Recently CABot3 agents have been developed for two of342
the HBP computational platforms: SpiNNaker neuromorphic hardware (Furber et al., 2013), and NEST343
(Gewaltig and Diesmann, 2007) simulations. One of the benefits of these platforms is speed. SpiNNaker344
simulates neurons in real time, typically at 1ms clock speeds. So, as the number of neurons in our345
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simulations grow, the run time speed remains constant. NEST is readily parallelisable and can be run on346
high performance computers, though we run on a standard PC.347

The HBP CABot3s run in a new virtual environment written in Python using the Tcl visual libraries.348
The agents run in both NEST and SpiNNaker using the same code; there are the same set of neurons and349
synapses in both version, but in some cases the synaptic weights differ. They perform the same four room350
cognitive mapping task as the FLIF CABot3. They no longer use texture (vertical and horizontal stripes),351
replacing these with colour (red and blue). The corridors are now green. These colours considerably352
simplify visual processing. NLP no longer uses variable binding, as the STP rules standardly available in353
NEST and SpiNNaker cannot be readily used for this task. So, in the HBP CABot3s, parsing uses regular354
instead of context free grammars (Hopcroft et al., 2006).355

An early version of the agent ran only on SpiNNaker, and used current based exponential integrate356
and fire neurons with adaptation (Brette and Gerstner, 2005). The current based version is not currently357
available on BrainScales, so the current version uses conductance based exponential integrate and fire358
neurons.359

SpiNNaker, and to a lesser extent NEST, is still under development, and its underlying software is360
changing. Though it is becoming more stable, changes in that software required the earlier agent to be361
rewritten. The agents’ dependency on precision of behaviour of neurons was tight and implicit; any changes362
to the agent required complex rewriting. Consequently, the current agents have been developed with the363
NLP, planning and cognitive mapping subsystems making extensive use of a Finite State Automata (FSA)364
class. So, when the underlying neural model is changed, it is simpler to update the subsystems and agents.365
Moreover, new components can be added making use of FSAs. Similarly, a timer class, similar to a366
synfire chain(Ikegaya et al., 2004), has been developed and is used in the planning and cognitive mapping367
subsystems. As software developers know, software needs to be maintained, and this includes these neural368
components.369

Natural language parsing, to set the goals, is done using binary CAs to implement FSAs. Simple plans370
can also be implemented using FSAs, and this is the mechanism used for simple goals like Move forward371
or Turn toward the pyramid. It however proved more difficult to implement more complex movement, like372
that needed to explore the four rooms, using binary CAs alone. Maes nets (Maes, 1989) use connectionist373
units that have a continuous value, and spread activation between units; these are similar to the interactive374
activation model (Rumelhart and McClelland, 1982). Maes nets have units for goals, modules, facts, and375
actions. Activation spreads between the units, and when an action unit reaches sufficient activation, it376
is chosen and applied. Implementing these multivalued units cannot be readily done with binary CAs.377
However, timers, implemented in neurons, can be used in collaboration with binary CAs to approximate378
this behaviour. For example, facts are stimulated by the environment, however, they should only be turned379
on when an appropriate goal is active. If there is a pyramid in the right of the visual field, it will not alone380
turn on the associated fact. However, when the goal Turn toward the pyramid is on, it will turn on a timer381
that sends extra activation to the pyramid on left and pyramid on right fact CAs. In collaboration with the382
environment, the appropriate binary fact ignites. Moreover, multiple timers can be used for particular goals.383
For instance, if no fact is active even after the first timer, a second timer can be activated to perform a384
second round of activation of other facts. If this is unsuccessful, a default action may be taken.385

The spatial cognitive mapping subsystem interacts with the planning subsystem. It learns associations386
between the four rooms and the four shapes in them; there are CAs for each of the rooms and for each387
of the shapes. All are connected via synapses that learn via a spike timed dependent plasticity rule (Bi388
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and Poo, 1998). FSAs gate activity so only the appropriate CAs are active when the Explore goal is set.389
During this time, only one room and one shape are simultaneously active at a time, and these are associated.390
During the search for the goal, the appropriate goal shape is activated, which is gated via an FSA to activate391
the shape from the prior room (again with no more than one room and shape simultaneously activated).392
The goal is fulfilled when the agent sees that shape, which is when the vision system, based on the agent’s393
camera in the virtual environment and planning system determine the shape is present.394

The HBP CABot3s perform perfectly on the simple commands, (e.g. Move forward and Turn left), and395
compound commands (e.g. Move left, which turns left and then moves one step forward). This is due to the396
programmatic nature of these tasks. These are deterministic, so both the NEST and SpiNNaker version397
perform perfectly. There are some minor differences between the two systems with floating point numbers398
being 32 bit in NEST and 16 bit in SpiNNaker, but for these actions both agents are deterministic.399

The most complex task is learning and using the spatial cognitive map. An example of this is the command400
Explore, followed by a command like Move to the room before the room with the red stalactite. These401
two commands fill the map and then test it has been correctly filled. Here the SpiNNaker agent loses its402
determinism, even when given these commands at the exact same time in the simulations, performance403
varies. The variance stems from the visual input from the environment to the board. This has been404
implemented by taking a bitmap of the environment from the agent’s camera, pixelating it, and sending405
spikes to the associated visual input neurons. This leads to an irregular spike timing pattern, with input406
stopping while the picture is analysed. Even when the picture is not being processed, input spikes to the407
board are not regular. So, input comes roughly every 30 ms with variance to between 20 and 40 ms, except408
when the picture is being processed, when input will cease for approximately 100 ms. This input variability409
requires both the visual subsystem and the planning subsystem, which gets input from the visual subsystem,410
to be more flexible.411

The planning subsystem is responsible for the agent’s temporal behaviour. While pursuing some goals, it412
uses input from the visual subsystem to determine the agent’s relative spatial location. During exploration,413
it sends this information to cognitive mapping, and retrieves that information when starting a Move before414
goal.415

With NEST, the input is entirely regular. The actual neural time does not need to correlate with the real416
time, as the environment and the neurons are loosely coupled, so input comes every 30ms. Nonetheless,417
the system is still complex enough that it behaves differently each time on the Explore command. The418
inputs come every 30ms of simulated time, but variance creeps in immediately, since the camera to pixel419
mechanism from the environment has variance. So each action sequence is different. If input timing was420
regularised in SpiNNaker, this task would still be non-deterministic.421

Figure 4 shows one instance of the agent performing the Explore task, followed by the Move before the422
red stalactite task. Movements around the red stalactite and blue pyramid show the difficulty the agent423
has identifying the object, making several moves to identify it. After one Move command, the agent can424
perform others, though it can only explore once. This task is complex requiring well over one hundred425
primitive moves. The agent must identify the four objects, and navigate through the four narrow corridors426
between the rooms.427

The NEST version of the agent does these two commands correctly 86/100 times, and the SpiNNaker428
version does it correctly 49/100 times. The measurement is done over 200 seconds of neural time. The429
task is typically completed in about 85 seconds, but given a longer time, the actual results will be higher.430
The agents do fail at these tasks. For example, one failure arises from incorrectly identifying an object,431
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Figure 4. Moves of CABot3 while executing the Explore command followed by the Move before the
red stalactite command. This is a top down representation of the environment. Moves are marked by dots.
The agent starts at S, and the move command is executed at M. The outside of the box represents the walls
as do the stripes on the inside. The blue stalactite and pyramid are represented by horizontal stripes, and the
red objects by vertical stripes. The pyramids point to the top of the page, and the stalactites to the bottom.
The numbered axis units are Tcl points.

with a pyramid being substituted for a stalactite or vice-versa. An improved plan, or an improved visual432
subsystem will lead to better performance.433

There are several reasons for the system failing. As visual input is only 20x20 pixels, viewing the objects434
at a distance does not provide the agent with enough information to distinguish a pyramid from a stalactite.435
The plan is also designed for speed. When exploring, the agent identifies the object, then turns right looking436
for the corridor, then goes to the corridor, then through it, and then back to identifying the next object. If437
the agent misses entering the corridor, it can go to the left or right of the entrance, and get into a state of438
circling the room. Similarly, while going through the corridor, it may turn around as it cannot identify the439
end of the corridor, it goes back to the room that it has just come from; it can recover from this.440

The tasks the CABot3s must perform are sufficiently sophisticated to make them interesting. Firstly,441
there are many tasks that the agents must be able to perform, as set by a user. Secondly, the mapping tasks442
require the agent to make hundreds of moves interacting with the environment throughout. Thirdly, the443
corridors are difficult to find, enter, and exit. Fourthly, the visual items are difficult to distinguish from each444
other.445

The system has an, albeit programmed, sophisticated link between cognitive mapping, vision, planning,446
and the language semantics. In essence, the semantics of the words are grounded in the environment;447
the system addresses, but does not resolve, the symbol grounding problem. This shows the agents are448
sophisticated, and a promising basis for future exploration.449

4 OTHER NEURAL AGENTS

The neural agents developed by the authors’ group are, of course, not the only neural agents. Several simple450
neural agents already exist on the HBP’s NRP (see section 4.1). There are other virtual agents (see section451
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4.2) and there are robots (physical agents) driven by neurons (see section 4.3). This is not meant as an452
exhaustive review of other neural agents, but as an entry to the area.453

4.1 Neurorobotics Platform454

The HBP’s NRP (Roehrbein et al., 2016) has several agents that can be run interactively over the Internet6455
using the NRP’s server. Many of these agents are driven entirely by simulated neurons (using NEST).456
The environments, virtual robots, brain models (neural nets) and communication mechanisms can all be457
changed by the user. This is an excellent platform to explore and compare virtual neural agents.458

One example experiment is the Husky Braitenberg experiment with virtual red detection. This agent has459
a simulated four wheeled robot with a camera on top of a Husky robot. This agent looks for red objects460
and then moves toward them. It is a virtual implementation of Braitenberg’s (Braitenberg, 1984) simplest461
vehicle, which makes use of a simple visual colour detection mechanism.462

Another example is the force based joint control simulation of a hand. The virtual environment simulates463
the physics of a simulated robotic hand. The neurons respond to pressure, from the environment, to move464
the simulated finger to a specified location.465

4.2 Virtual Neural Agents466

There are many virtual neural agents, and many agents using connectionist systems. This section discusses467
some agents that use spiking neurons.468

One system (Neftci et al., 2013) categorises visual images depending on context. It uses a real-time469
neuromorphic architecture emulated in a CMOS VLSI system. Its task is to follow either a vertical or470
horizontal bar on a video screen. Depending on the context (a red or blue circle), the system must respond471
when the horizontal or vertical bar enters the right half of the screen. The context is provided by an FSA,472
and the neural system takes advantage of soft winner-takes-all networks.473

Another system (Potjans et al., 2009), based on spiking neurons, learns using temporal difference and474
reinforcement learning, both implemented in biologically plausible learning rules. The task is to move to a475
reward position on a grid.476

One group has developed a broad set of linked subsystems from spiking neurons (Eliasmith et al., 2012),477
with a wide range of functionality including vision, motion, language processing and some learning. This478
makes extensive use of vectors implemented by spiking neurons.479

4.3 Robots480

There is a rich body of literature on the use of neurons to drive robots. One early neural robot uses spike481
response neurons, a simple vision system, and a set feed forward topology (Floreano and Mattiussi, 2001).482
An evolutionary algorithm is used to set whether particular synapses exist and if so if they are inhibitory483
or excitatory. The fitness function optimises for a robot that travels as fast as possible without hitting the484
walls in its environment. This is a stimulus response agent similar to several of the virtual agents described485
above.486

Another robot parses commands and uses simple plans and vision to turn toward an object in a particular487
colour (Fay et al., 2005). Though specialised vision algorithms are used, this system makes use of CAs and488
FSAs, and so, in the terminology of this paper, is a CABot2.489

6 https://neurorobotics.net/
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There is a particularly rich area of research in robot control, and learned robot control (e.g. (Dean et al.,490
2009)). For example, one system learns how to control a robot arm using spiking neurons and synapse491
adaptation rules, though these are based on error feedback (Carrillo et al., 2008).492

5 EXTENSIONS

While this paper describes neural agents, a key point is that, if developed correctly, neural agents and their493
components can be combined, and that they can be compared. The agents described in section 3.4 and their494
components can be reused, improved, extended and evaluated.495

The existing subsystems can be modified to perform in other environments and other tasks, such as finding496
an object in a maze. Existing neural subsystems can be replaced allowing comparison and improvement;497
for example, the spatial mapping and vision subsystems can be replaced. New modules can be added; for498
example, the addition of a natural language generation subsystem could make a conversational agent, and499
an episodic memory would support agents that persisted longer benefiting from those memories.500

New subsystems can be integrated with the agents. The authors are beginning to work on a semantic501
memory subsystem. CAs will emerge from input, and relationships between them will be learned. This502
semantic net will be both a long and a short-term memory supporting several simultaneously active nodes503
based on input; part of the evaluation will include a neuro-cognitive model, which will duplicate priming504
data and perform a Stroop test (Stroop, 1935). Other example subsystems include episodic memory, spatial505
reasoning, motion, foveation, and emotion.506

Components of the systems described in section 4, and other systems, could be included in the suite of507
components. Unfortunately, it is often difficult to unbundle full neural systems, but as they are already508
connected via synapses, there is a mechanism. This will require some development effort, but there is no509
reason not to start work on integration. The NRP is one platform that could be used to support integration.510
Developing an agent, a virtual environment, or a component can be quite complex, and combining them511
can be similarly complex. Developing software engineering support for these tasks would be valuable. One512
form of support would be benchmarks to facilitate comparison. For example, others could use the four513
room task to see if another neural agent can perform better.514

New abstract data types, implemented in neurons, can be added, supporting the development of new515
subsystems and agents. The FSA and timer are already supported, but new types like soft winner-takes-all516
nets can be added. The authors are working on continuously valued CAs, which unlike our current binary517
CAs, will have a range of activity that gradually changes depending on input, and over short times. One518
version would be roughly equivalent to the Interactive Activation Theory (Rumelhart and McClelland,519
1982) and could be used for a wide range of cognitive systems and cognitive models.520

Another way forward would be to build neural perceptual symbol system simulators (Barsalou, 1999). A521
system would both recognise percepts, and produce them in simulation. Beyond that, a neural system that522
learned new simulators would be a powerful step toward agents with deep semantics.523

There is also scope for advancement in improved neural models, improved topologies, and improved524
learning mechanisms. Here, improved means that they perform their tasks better, but also that they more525
accurately reflect biology. For example, the CABots described above have used point neural models.526
Perhaps more sophisticated models are needed, but it is not currently understood if that is the case or527
why. The existing, less plausible, systems can provide a scaffolding for more sophisticated and plausible528
future systems. Proposals do exist for more accurate and computationally viable topologies (e.g. Granger,529
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2006). These are obvious extensions. Moreover, these computational models can help in understanding the530
actual biological systems. Moreover, there is a vast range of research in, for example, power law scaling531
(Tinker and Velazquez, 2014) and the balance between excitatory inhibitory activity (VanVreeswijk and532
Sompolinsky, 1996). All of this work can be explored and integrated into neural agents.533

The main advantage of neural systems is that they can learn. The CABot3 agents learn, and spiking nets534
can be used for a wide range of machine learning tasks (Ghosh-Dastidar and Adeli, 2009). However, agents535
have the ability to exist practically indefinitely, and the scope for learning is immense. The neural agents536
described above, in both sections 3 and 4, have been, in essence, programmed to behave. Future agents537
need much more learning.538

Perhaps the most important task to extend these neural systems is to explore learning mechanisms that can539
learn over days and longer. This includes learning across subsystem boundaries. It also includes learning540
from the environment, as opposed to typical machine learning systems that learn a single task from refined541
input. Imagine a system that learned a perceptual symbol system and its associated simulators. Working542
in a relatively small domain, it could learn the deep semantics of that domain. As others have suggested543
(Gomila and Muller, 2012), the system could then learn other simple domains, possibly benefiting from its544
knowledge of earlier domains.545

If the domain included crocodiles and steeplechases, the agent could learn those deep semantics, and546
answer the unanticipated question “Are crocodiles good at running the steeplechase?” As the agent learned547
the deep semantics of broader domains, and more domains, it would be able to answer more questions.548
Eventually, the authors propose, such an agent would be able to pass the Turing test.549

Conversational systems aid in this ability to learn. Via the conversation, the agent can learn from a person.550
Moreover, by developing conversational agents, understanding of social cognition, situated cognition, and551
dynamic communication may be furthered.552

However, to get to such agents, we need to move from programmed systems using FSAs or relatively553
small dimensional vectors, to more biologically plausible systems, like CA based systems where the CAs554
are learned, behave more robustly, and behave more realistically psychologically. If these agents functioned555
in complex domains, they could learn from them.556

6 CONCLUSION

The scientific community is quite some distance from understanding how cognition emerges from neural557
behaviour. An excellent way to develop this understanding is to build artificial neural systems that produce558
similar cognition. Systems that also produce similar neural behaviour are even better.559

This paper has summarised several neural cognitive agents situated in environments. These produce560
a range of behaviours from simple actions, to complex goal directed behaviour, and perform as neuro-561
cognitive models. These have been developed in components so that new components can be added,562
existing components can be modified, and new agents can be constructed from these components.563

These agents and components will provide support for further exploration of neural cognitive agents,564
both in the form of running systems, and with links to neuro-cognitive research. Others may make their565
neural systems available and usable for comparison and reuse. Reuse of systems is just good engineering,566
and rerunning of experiments is just good science. None the less, focused efforts, beyond the scope of567
even the HBP, could lead to more rapid advancement. This will require a great deal of effort and expense.568

This is a provisional file, not the final typeset article 16



Huyck et al.

There is a vast distance from these agents to the goal of Turing test passing agents, but this paper has also569
provided possible next steps on that path.570

It is clear that the existing CABots are not close to passing the Turing test. The authors instead argue that571
pursuing the human model (embodied agents, based on human neural functioning, that learn, function in a572
wide range of domains, and are cognitive models) is the best route to developing such a system. There are573
a vast number of problems to overcome before such a system is developed including basics of sensing,574
action, and memory, but also resolving classic problems like symbol grounding and the frame problem575
(Dennett, 2006). These problems have all been resolved by human brains and bodies. Scientists may not576
know how they have all been solved, but the working model provides answers to be discovered.577

While developing neural cognitive agents is a difficult task, there is an added benefit that systems that can578
produce cognitive behaviour will be useful in their own right. A system that can learn the deep semantics579
of a new, but restricted, domain will be an excellent tool to work in that domain.580

The neural agent approach is not only the best way to achieve the lofty and distant goal of passing the581
Turing test; it is an excellent way to improve our understanding of neural behaviour and psychological582
behaviour. It is also an excellent way to build more sophisticated AI systems that are tools for use in real583
environments.584
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