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Abstract

Highly recurrent neural networks can learn reverberating circuits
called Cell Assemblies (CAs). They can be used to categorise input,
and in this paper we explore the use of CAs in developing hierarchical
categories.

Using our simulator, we initially derive networks that act as hier-
archical categorisers. The calculated network is based on a Hopfield
network, but is gradually transformed into a network of neurons that
are fatiguing leaky integrators. This transformed model is an improved
categoriser. The model takes advantage of overlapping CAs where neu-
rons may participate in more than one CA.

We then use a compensatory learning rule, a Hebbian learning rule,
to learn the network in an unsupervised manner. The networks learn
a hierarchy of categories that correctly categorise 97% of presentations
of the input in our test.

1 Introduction

Cell Assemblies (CAs), groups of neurons that form reverberating circuits,
have been proposed as a mechanism for an intermediate level of cognition
[Huyck, 2001]. They are more complex than neurons (a lower level of cogni-
tion), and can form the basis of symbols among other things. One answer to
the question how do we think? is we use our neurons (the lower level); an-
other answer is that we use our CAs; and yet another is that we use symbols
[Newell, 1990] (the higher level). CAs provide a bridge between the more
traditional answers.

CAs are more complex than neurons, so what do we gain by modelling
cognition in this more complex manner. CAs answer many questions, which
a theory that focuses solely on neurons cannot: short-term persistence of
memory [Hebb, 1949], long-term persistence of memory [Hebb, 1949], cat-
egories [Hebb, 1949], figure-ground separation [Hebb, 1949], completion ef-
fects [Hebb, 1949, Fu, 2003], ambiguity resolution [Fu, 2003], cognitive maps



[Chown, 1999], and as we show in this paper hierarchies. The interplay be-
tween neurons and groups of neurons is crucial in explaining the system’s
behavior.

A neural network can contain many CAs and the long term dynamic of
the neural network can be seen as a process of CA growth, modification and
fractionation all achieved by learning. Initially a CA will form and grow
by increasing intra-CA synaptic strength. Uncommitted neurons, weakly
committed neurons, or strongly related neurons (via synaptic strength) may
be recruited into a CA even though they never occur in the external stimulus.
This will cause the CA to contain more neurons. Once formed, a CA may
also break into two or more sub-CAs through a process called fractionation
[Hebb, 1949].

A network of neurons that contains CAs is a categoriser. An instance
is presented to the net, and the CA that represents the category to which
the instance belongs is ignited and remains active. Categorisation via CA
ignition is the short-term dynamic. A well known facet of human memory
is that we categorise things hierarchically (e.g. [Rosch and Mervis, 1975]),
so that a particular instance, say a sighting of an animal, might activate
several categories, say Lassie, Collie, Dog, Mammal, Animal, and Thing.
A complete model of memory would need to account for this so a model
of memory must either handle hierarchy or defer to another mechanism.
Fortunately, as this paper shows, CAs can both learn and use hierarchical
categories.

Our current model of hierarchical CAs is based on overlapping sets of
neurons. A CA for a super-category contains many of the neurons that are
also contained in the CAs that represent its subcategories. We believe this
model is incomplete but is sufficient to represent hierarchical CAs. Moreover,
this hierarchy of categories can be learned in an unsupervised manner.

In this paper, we first present a background of prior work in CAs, defend
their biological and computational plausibility, and give a brief background
of hierarchies. Section 3 describes our computational implementation of
CA theory and shows how it relates to some similar models. Section 4
describes a simulation of a net of hierarchical categories that we calculate;
this calculation uses a Hopfield network [Hopfield, 1982] as a starting point,
and modifies that net to make it a net that is both more biologically plausible
and has more computational power. Section 5 describes the results of a
simulation to learn a simple hierarchy from presentations of instances of the
basic categories. In section 6 we discuss the importance of this result and
show how it might be extended. We conclude with a brief discussion of



ongoing and future CA work.

2 Background

CAs were proposed by Hebb [Hebb, 1949]. Long-term memories are rep-
resented by neurons that have high mutual connection strength. When a
small percentage of these neurons are activated from input outside these
neurons, they raise the activity of the other neurons, and cause them to
fire [Kaplan et al., 1991]. This causes a cascade of firing, called CA igni-
tion, that creates a reverberating circuit that can persist after the external
stimulus ceases.

Hebb is better known for Hebbian learning. Two neurons that co-fire
tend to have the strength between them increased. The high mutual con-
nection strengths between neurons in a CA are formed by Hebbian learning.
The Hebbian rule is combined with an anti-Hebbian rule, which reduces
strength when one neuron fires and the other does not. When combined the
rules define the long term behavior of a synapse based solely on the behavior
of the neurons it connects.

The brain requires at least two types of dynamics: short-term dynam-
ics and long term dynamics undone cite . Short-term dynamics are needed
to recognise things. This is done by the network receiving external activa-
tion from the environment. Neurons are activated from the environment;
these neurons in turn activate other neurons leading to the ignition of a par-
ticular CA. The item that caused the external activation is categorised as
belonging to the class of items that the ignited CA represents. This short-
term dynamic is rapid and recognition usually occurs in less than a second
[Kieras et al., 1997].

Long-term dynamics are needed to build these CAs. CAs represent se-
mantic categories' and the CAs are learned by having many instances of
the category presented to the network. Over many presentations, Hebbian
learning causes synaptic weights within a category to increase. This eventu-
ally leads to a CA which is an attractor state. If a stimuli is presented that
is within the basin of attraction, the CA will ignite. The ignited CA is an

!The CAs that we are discussing in this work are long term categories. It is clear that
memories can be learned from a single presentation; this episodic memory is not the topic
of this paper though see section 7. Long term semantic memory is needed as a prerequisite
for this impressive one shot learning and this semantic memory is the problem on which
we are currently concentrating.



attractor state that many initial states lead to, so all of these initial states
will be categorised as the same CA.

In the untrained network that we are simulating, no CAs are activated.
As the network is modified through synaptic change based on external stim-
ulation, CAs are learned. This dynamic takes many presentations and may
take days, months, or even years to form a CA in a mammal undone cite.
However, when any of a range of stimuli are presented a CA will ignite.

2.1 Psuedo-Stable States

In addition to being an attractor state, a CA is a pseudo-stable state. A CA
is a group of neurons that are fired and more or less continue to fire. Thus
an item is presented to the network, and the network settles into a stable
state where the neurons in one CA fire and the other neurons do not. The
initial part of this process, known as CA ignition, is closely related to stable
states of Hopfield networks [Aleksander, 1989].

However, the network needs to move on to other tasks, so it needs to
move from this stable state. Fatigue is part of the solution to this problem
[Horn and Usher, 1989]. Neurons fatigue, so the state of an ignited CA is not
entirely stable. It is pseudo-stable firstly because neurons in the CA are fir-
ing in one cycle but not the next due to fatigue. Secondly, the overall fatigue
in the CA builds until it actually shuts down the CA [Kaplan et al., 1991],
thus freeing the network to process another input?.

Ambiguous input must also lead to one of these pseudo-stable states
[Huyck, 2002b]. An ambiguous input could activate one of several CAs, but
these CAs compete with each other via mutually inhibitory connections.
Once one CA has won the competition, it inhibits the others as well as
keeping its own pseudo-stable state active.

Inhibition prevents neurons outside of the active CA from firing. In
the extreme case, inhibition prevents simulated epilepsy, the state when the
whole network starts to fire3.

Fatigue alone may not be responsible for shutting off a CA. Another CA may need to
ignite to shut the first one down.

3This would be a system with just two stable states: all neurons firing, or all neurons
off. Such a system is not a very useful.



2.2 Recruitment and Fractionation

In the long-term, a CA may also break into two or more sub CAs through
a process called fractionation [Hebb, 1949]. Early in the development of the
network, the presentation of an external stimulus may activate a CA that
consists of say 1000 neurons. For example’s sake, we number these neurons
1 to 1000. As the network develops and many new items are presented,
the synaptic strength within these neurons will change so that the first 500
neurons have larger intra-synaptic strength than in the initial network. The
second 500 neurons also have larger intra-synaptic strength, while synaptic
strength between the two groups of 500 is diminished. At some point, the
presentation of a new item is presented and only the first 500 neurons will
become active, whereas a different item may activate the second 500 neurons.
In this case, the CA has fractionated into two new CAs. Neurons 1 to 500 do
not activate alongside 501 to 1000 because they have high mutual inhibition.

Fractionation is difficult because the Hebbian learning rule strengthens
connections between co-firing neurons. Whenever the initial CA is activated,
neurons in both sub-groups are coactive. Let us call this the Mule problem.
The system is presented with many instances of horses, and it forms a Horse
CA. When a horse is presented, many neurons in the Horse CA become
active and it is ignited. Now the system is presented with a mule. As there
is no Mule CA and mules have many features a horse has, the Horse CA is
activated. This is probably a good thing, because the mule can largely be
treated as a horse. However, if the system starts to run into many mules,
the system should be able to learn a mule CA. Unfortunately, every time a
mule is presented neurons in the Horse CA come on, and their intra-synaptic
strength is increased. A good system should be able to overcome the Mule
problem.

2.3 Neurons in Multiple CAs

A given neuron may participate in more than one CA [Sakurai, 1998]. Work
has been done in studying overlapping CAs [Wickelgren, 1999], but this was
based on biologically implausible neurons. To follow our earlier example,
when the Horse CA is formed it consists of neurons 1 to 1000. When this
fractionates into two CAs it may fractionate into the new Horse CA consist-
ing of neurons 1 to 800 and the new Mule CA consisting of neurons 300 to
1000. So, a horse is presented by externally stimulating some of the neurons
between 1 and 800, while a mule is presented by stimulating some neu-



rons between 300 and 1000. If an item only activated neurons between 300
and 800 it would be ambiguous; an item that also activated some neurons
between 1 and 300, and between 800 and 1000 would also be ambiguous.

If a solution to the Mule problem can be found, hierarchies may emerge.
One solution would follow the above example; the Proto-Horse CA consists
of neurons 1 to 1000. When the new Horse and Mule CAs form they consist
of neurons 1 to 800 and 300 to 1000 respectively. The new Proto-Horse CA
could be the neurons 300 to 800. That is, if the neurons 300 to 800 are
active it is a horse-like thing, if neurons 1 to 800 are active it is a horse,
and if neurons 300 to 1000 are active it is a mule. The Proto-Horse CA is a
super-category.

2.4 Subcategorisation Hierarchies

The type of hierarchical relationship that we are currently discussing is the
subcategorisation relationship, typically labelled IS-A. The categories are
related in a type of semantic net [Quillian, 1967]. In this case a particular
item is a member of a class, but every member of this class is also a member
of another class. For example, Lassie is a member of the Collie class, and
all Collies are members of the Dog class; of course all Retrievers are also a
member of the Dog class, and all Dogs and Cats are members of the Mammal
class.

Subcategorisation is a very powerful technique, allowing a huge range of
generalisations to be made. For instance, you may never have seen Lassie,
but knowing Lassie is a Dog, you know that Lassie almost certainly barks;
knowing Lassie is a Mammal and a Female you know that Lassie feeds
her children with milk. This gives a great deal of representational efficacy.
Subcategorisation is so powerful that it is a hallmark of Object Oriented
Programming (OOP); in OOP inheritance is subcategorisation.

Other types of hierarchical relationships exist. An obvious one is the
part-of relationship where an object, such as a steering wheel, is part-of
another object, such as an automobile. We believe that CAs can also gen-
erate this type of hierarchical relationship, but this paper concentrates on
subcategorisation hierarchies.

2.4.1 Psychological Foundations of Categories and Hierarchies

There has been a great deal of research on categorisation from machine learn-
ing a nd psychological perspectives. For instance, Shepard et al. [Shepard et al., 1961]



show how it is easier for humans to learn categories that differ by only one
feature; however, they can learn categories that are not linearly separable.

A great deal of machine learning work has been done developing sym-
bolic and statistical algorithms for supervised and unsupervised category
formation. For example, Hanson and Bauer [Hanson and Bauer, 1989] have
developed clustering techniques based on feature similarity and difference
within and between categories. This work is explicitly linked with human
categorisation data.

One obvious factor, explored by Hanson and Bauer, is that concepts are
polymorphic. That is, they are not usually defined by necessary and suffi-
cient conditions. This problem was discussed by Wittgenstein [Wittgenstein, 1953],
and the result is that categories are more like family resemblances. This type
of category is quite simple for neural networks to learn by unsupervised
training.

Reseach on categorisation has shown that humans form hierarchical
categories. The original idea of semantic nets was developed by Quillian
[Quillian, 1967] to account for human categories. It has been shown that a
spreading activation model based on semantic nets can account for a range
of experimental results [Collins and Loftus, 1975].

Rosch [Rosch and Mervis, 1975] has made a detailed exploration of hi-
erarchical categories and has found that humans have basic level categories.
These are the most important categories, are the first learned, are more
salient, and this effect is generally cross-cultural.

In this paper we are not trying to account for all of the psychological
effects of hierarchy or even an appreciable subset of these effects. Instead we
are attempting to show how a neural system could account for hierarchies.

It is however important that these effects are not impossible for our
system. We feel that our system is capable of all of these behaviors though we
have not yet simulated them. For instance, our system can account for linear
separability by the use of hidden neurons. These neurons can be recruited
into CAs via spontaneous neural activation [Huyck and Bowles, accp].

2.4.2 Other Connectionist Systems for Hierarchies

Since hierarchy is crucial to categorisation and memory, there has been a
great deal of work on connectionist systems that model hierarchy. One com-
mon approach is to use standard feed forward networks but to add recurrent
connections. Another approach is to use a more biologically plausible net-
work topology such as ART networks [Grossberg, 1987].



Several researchers have looked into hierarchy formation using feed for-
ward networks with recurrent connections. For example, Pollack’s RAAM
system [Pollack, 1990], Elman’s work [Elman, 1990], and Hanson and Negishi’s
work [Hanson and Negishi, 2002] have all used this class of model. They use
standard feed forward networks with supervised learning but add extra back
connections or extra layers with connections. These extra layers are not part
of the standard feed forward mechanism, but take output from the system
and feed it back in as input. So in any given time step there is input from
the environment and from the system.

As Elman points out [Elman, 1990], this has the benefit of adding mem-
ory to the system. This memory enables these recurrent neural networks to
handle sequences, and to some extent develop hierarchies and rules. These
systems are useful in understanding how distributed memory representations
function and how neurons can combine transduction with memory.

Adaptive Resonance Theory (ART) [Grossberg, 1987] has neural plau-
sibility as one of its goals and can account for hierarchical categorisation.
There is a layered architecture and a node for each category. If an input is
not associated with a new category a new node is allocated for it. Hierarchy
is handled by a change in vigilance; the range of inputs that is accepted
is gradually increased so that new nodes account for larger categories. So,
a new node may account for several old nodes and will thus be a super-
category.

This work is excellent but violates our understanding of neurons. Clearly
one neuron cannot account for a concept or we would lose that concept if the
neuron died. However, this model may approximate the behavior of groups
of neurons, and thus meets its goal of neural plausibility.

3 The Simulator

We have developed a computational model to enable us to simulate CAs.
Like all models, it is a simplification, but we hope that it includes the
essential properties of neurons. We have used this simulator to explore
categorisation, ambiguity resolution and other phenomena. The simulator
has remained largely unchanged*. We have made computational efficiency a
priority but have attempted to mimic mammalian cortical neural function.

Mammalian neurons work in continuous time, but this is expensive to

41t can be found at http://www.cwa.mdx.ac.uk/cant20/CANT20.html; the simulations
from this paper and other simulations are available.



simulate in a digital computer. We have broken time into 10 ms cycles
because neurons rarely fire more than once in 10 ms [Abbott et al., 1997].
This time scale enables us to simulate thousands of neurons in real time.

Our neurons are fatiguing leaky integrators; it is clear that biological
neurons integrate activation from incoming synapses, that activation leaks
away, and that they fire sending activation to the synapses leading from
them [Churchland and Sejnowski, 1992].

In our model, neurons collect activation and fire if activation is above a
threshold 4. If neurons do not fire in a given time step, some but not all of
the activation leaks away.

hi, = h”T_l + Xjev; Wij Equation 1
Equation 1 describes the activation of a neuron i at time ¢, if it has not fired
in the previous cycle. It retains some of its activation from time ¢-1, but
this is reduced by a decay constant d. The neuron integrates the retained
activation with the new activation from the active inputs of all neurons
j € Vi, V; being the set of all neurons that fired at ¢-1 that are connected to
i, weighted by the value of the synapse from neuron j to neuron i.

If neurons do fire, all activation is lost; in Equation 1, d = co. Activation
(or inhibition) equivalent to the synaptic weight is sent from the firing pre-
synaptic neuron to all if its post-synaptic neurons.

Neurons also fatigue so that the more steps they fire the more difficult
it becomes for them to fire. This is modelled by increasing the activation
threshold if a neuron fires as described by equation 2.

T, =T, 1 + F, Equation 2
In equation 2 the threshold T at time  is set to the threshold at time -1 +
the fatigue constant Fy. If the neuron does not fire the threshold is reduced
toward the base resting level as in equation 3.

T, =T 1+ F, Equation 3.
The threshold is reduced by the fatigue recovery constant ¥, though it never
becomes less than the base resting level.

Neurons may be inhibitory or excitatory, but they obey Dale’s princi-
ple [Eccles, 1986] so that a neuron cannot have both inhibitory and exci-
tatory synapses leading from it. In the experiments described in this pa-
per, the ratio is 80/20 excitatory/inhibitory as in the mammalian cortex
[Bratenberg, 1989].

Neurons have a small number of synapses to and from them. Like the
mammalian brain, excitatory neurons are likely to connect to neurons that
are nearby. In this paper, excitatory neurons also have one long distance



axon with several synapses. So a neuron connects to nearby neurons and to
neurons in one other area of the net. These connections are assigned ran-
domly, so each new net is different from another net with the same number
of neurons.

The topology we use is a torus, a grid with the sides connected and the
top connected. This is a simplifying assumption and this topology is not
biologically plausible, though it does avoid boundary effects.

When learning, our simulations use Hebbian learning rules. Synaptic
weight is changed based solely on the properties and firing of the pre and
post-synaptic neurons.

3.1 The Hopfield Model

A compuationally similar model is the popular Hopfield network [Hopfield, 1982].
A Hopfield network consists of nodes that are well connected. Each node has

a threshold associated with it, and if the node receives enough activation to
surpass its threshold in a given step, it fires and sends activation to all the
other nodes. Each connection may have a separate weight. Hopfield nets
are not biologically plausible, and table 1 shows some differences between
our nets and Hopfield nets.

Property Hopfield Mammalian Brain/CAs

Connections Bidirectional Unidirectional

Connectivity Well Connected Sparsely Connected and

Distance Biased

Fatigue None Fatiguing

Decay No Activity Retained | Activity Leaks Away

Threshold Positive or Negative | Positive(Constant in CAs)

Dale’s Principle | Neurons can have Synapses from a neuron are
positive and negative | either all positive or all
synapses negative

Learning Various Hebbian but Open Question

Table 1: CAs vs. Hopfield Nets

The Hopfield model comes from spin glass models that have been used in
physics. These models have been extensively studied, and we have extensive
knowledge of the computional theoretical properties of these networks. For
instance, Hopfield networks can store at most n non-orthogonal patterns in
a network of n neurons [Abu-Mostafa and Jaques., 1985].
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3.2 Related Neural Models

Both our model and the Hopfield model are one of a large family of attractor
neural networks. To the best of our understanding, the mammalian brain is
an attractor neural network. There are many models that attempt to model
the brain from the neural level.

undone other non-neural attractor nets (from amits book).

There has been a long history of systems that have attempted to simulate
CA behavior using simulated neurons. Rochecester et al. [Rochester et al., 1956]
worked with 512 neurons almost 50 years ago, but failed to develop sequences
of CAs. Hetherington and Shapiro [Hetherington and Shapiro, 1993] used
neurons with continuous synapses, instead of spiking neurons; their system
formed CAs that were reliably activated, and persisted.

Bower and Beemer [Bower and Beeman, 1995] have attempted to model
the neuron at a very low level modeling a host of phenomena including cal-
cium gating during firing . Fransen et al. [Fransen et al., 1992] have used the
SWIM simulator to model CA from low level neural models similar to Bower
and Beemer. Amit and Brunel [Amit and Brunel, 1997] have used mean-
field descriptions and a simulation to model CAs. This model includes so-
phisticated time integration and spontaneous neural activity. Brunel [Brunel, 1996]
has used a model similar to [Amit and Brunel, 1997] but added Hebbian
learning rules that adhere to some current neurophysilogical theory. Amit
and Mongillo [Amit and Mongillo, 2003] have used a model similar to [Amit and Brunel, 1997]
that has quite sound formation of CAs. Sougne has developed the INFER-
NET simulator [Sougne, 2001]. It has a complex spike timed neural model
and is simulating variable binding activity (see section 7). Crucially, all of
these CA simulations have used non-overlapping CAs.

3.3 Discussion of Models

All models are wrong; some models are useful -George Box

We think it is essential to develop models that are closer and closer to mam-
malian neural functioning to improve our understanding of that function.
However, while this work may have ramifications for more sophisticated
processing, but it may be unnecessary to develop effective categorisers. For
instance, a more fine grained time step may not substantially improve cate-
gorisation. We do not discount this work, but a more accurate neural model
may not make a better categoriser, and will increase the simulation time.

Our model focuses on what we hope are the critical computational prop-
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erties of neurons. We hope that we can use this model for complex AI
problems as well as cognitive simulations. In particular we show below that
we can use this model to simulate hierarchical category formation in pop-
ulations of neurons that implment overlapping CAs. In the long run, we
hope that our model is close enough to mammalian neurons to solve prob-
lems that only mammalian neural systems are currently capable of solving.
Hierarchy is obviously an early step in this process.

4 Simulation 1: Calculating a Hierarchy

Our first step in developing a system that could learn hierarchical categories
using CAs was to calculate a network that had a hierarchy of categories.
Once we had calculated, or automatically created, such a network, we could
explore its properties and decide what was needed to learn the network from
a random initial net (see section 5).

Unlike all other simulations of categories using biologically plausible neu-
rons, we have done simulations of overlapping categories [Huyck, 2002a] (see
section 2.3), and overlapping categories are essential to our approach to hier-
archical categorisation. We hypothesise that a superordinate category con-
sists mostly of neurons that occur in the prototypical subordinate category.
This approach of sharing neurons has been used to simulate hierarchical
categories using Hopfield networks [Rupin and Usher, 1990]. For instance,
the Mammal superordinate category would largely consists of neurons that
were in most of its subordinate categories (e.g. Cat, Dog, and Rat).

To exhibit subcategorisation, what is needed is a network with four pos-
sible pseudo-stable states: one for each of the three subordinate categories,
and one for the superordinate category. These states could share neurons,
but need to be distinct. Using a technique described in [Huyck and Mitchell, 2002]
many Hopfield networks [Hopfield, 1982] can be translated into more biolog-
ically plausible networks. So, we needed to create a Hopfield network that
had a hierarchy of categories.

The Hopfield net in Figure 1 has four stable states. Note that arcs with
a weight of 0 (e.g. 0-6) are omitted from the figure.

As for all Hopfield nets, all connections are bi-directional. In this net,
the activation threshold for all neurons is .5. There are four stable states
corresponding to the categories of interest: 0-3-4-5-8, 1-3-4-6-9, 2-3-4-7-8,
and 3-4-8. For expository convenience, these states correspond to Dog, Cat,
Rat and Mammal. The individual neurons correspond to features. Neurons

12



Figure 1: Hopfield Net Representing a Hierarchy

0 to 2 refer to features that a specific animal has with 0 referring to features
that dogs have but cats, rats, and all other mammals do not, 1 to features
cats have, and 2 to features rats have with restrictions as before. Neurons 3
and 4 refer to features all mammals have. 5 to 7 refer to features that relate
to the tails of animals; 5 to tails that wag, 6 to fluffy tails, 7 to furless tails.
Neurons 8 and 9 refer to features relating to what the animals eat, 8 refers
to omnivores, and 9 to carnivores. Given the 4 basic stable states that are
desired, it is straight forward to solve the simultaneous equations to get the
connection weights and the thresholds [Hopfield, 1982].

As CAs (ignoring the differences), this Hopfield net performs poorly on
many metrics. For instance, CAs should exhibit completion effects; present-
ing part of the pattern should lead to the whole pattern becoming active.
Presenting only part of the cat pattern, say 1-9 leaves only part of it active,
1-6-9 in this case. Our CA nets typically run with many more than 10 neu-
rons; using the above pattern as a base, we can create a 20x20 net with 40
sets of these patterns. Of course, feature 1 now refers to all 40 neurons that
represent feature 1, or a subset of those neurons.

The complete Dog, Cat, and Rat patterns have 200 individual neurons
active, 5 of the 10 in the Hopfield model times 40. The Mammal pattern
has 120 neurons active. Figure 2 shows an example of one of the external
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Figure 2: 40 Neurons in the Dog Pattern

activations of a Dog pattern. All the neurons are from columns 1, 3, 4, 6, 9,
11, 13, 14, 16 and 19.

With the above Hopfield net run by externally activating 40 randomly
selected neurons from a pattern, less than half of the neurons in the basic
categories are activated. Over 100 trials an average of 90.5 Dog, Cat, or Rat
neurons are activated when an appropriate stimuli is presented; over 100
trials an average of 83.46 Mammal neurons are activated when 40 randomly
selected Mammal neurons are presented.

We also use Pearson’s Product correlation to show correlation between
nets. Table 2 shows the correlation values when all of the neurons of a given
pattern are active.

‘Dog Cat Rat Mammal

Dog | 1.0 -20 .20 65
Cat 1.0 -.20 .22
Rat 1.0 .65

Table 2: Correlations Between Fully Activated CAs
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Ideally a wide range of partial activations would lead to the same CA
being activated. So if 40 of the 200 Dog neurons are activated externally,
the system runs and a pseudo-stable state should be the result. If a different
set of 40 Dog neurons are activated, a similar pseudo-stable state should be
the result. Pearson’s Product correlation measures how similar the states
are.

Table 3 shows that different version of a pattern activate similar neurons
and different patterns are much less correlated. Each column and row refer
to an instance of a particular pattern where 40 of the neurons are randomly
selected. The cells represent the correlation between the eventual stable
states when the network is run on these patterns. Table 4 shows the same
is true with the Mammal categories. The intra-category correlations are
higher than the inter-category comparisons, but they are quite close. Thus
based on sparse presentation, it is difficult to categorise the input using this
Hopfield net; that is, the Hopfield net is poor at completion, and thus a poor
categoriser.

undone dogl

Dog2 Dog3d Catl Cat2 Cat3 Rat Rat2 Rat3
Dog 1 .249 061 -.016 -.015 .175  .242  .265
Dog 2 .249 .061 -.016 -.015 .175 .242 .265
Dog 3 065  .061 -.087 149 .041  .112
Cat 1 259 248 -.007 -.052 .030
Cat 2 138 .015  -.001 -.089
Cat 3 -.028 .100 .082
Rat 1 398 317
Rat 2 .393

Table 3: Correlations Between Hopfield Subcategory Runs

Fortunately, our nets are more flexible than Hopfield nets. For instance,
it is simple to add a connection from an element in one pattern to an element
in another. A connection is made from each element, to the corresponding
element in the next pattern and the connection has a weight of .3. This
minor change dramatically increases the separation for the categories based
on correlation. Table 5 shows these correlations. The number of neurons
activated also increases. Over 100 trials an average of 115.37 Dog, Cat, or
Rat neurons are activated when an appropriate stimuli is presented; over

15



‘ Mammal 2 Mammal 3 Dog1l Cat1l Ratl ‘

Mammal 1 .639 .658 273 -.021 313
Mammal 2 .647 .299 -.132 .386
Mammal 3 .219 -.099 215

Table 4: Correlations Between Superordinate and Subordinate Hopfield
Runs

100 trials an average of 85.23 Mammal neurons are activated.

Dog2 Dog3d Catl Cat2 Cat3 Rat1l Rat2 Rat3
Dog1 | .378 327 -.081 -.069 -.069 126 .103 125
Dog 2 414 -081 .064 .064  .166 072 132
Dog 3 -.059  .076 076 .034  .086  .025
Cat 1 457 135 -131 -.131  -.049
Cat 2 .284 .064  -.147 -.178
Cat 3 001 -132 -.113
Rat 1 372437
Rat 2 .368

Table 5: Correlations Between Modified Hopfield Runs

We can continue this process of loosening constraints from the initial
Hopfield net until we get one of our own networks. We described this tech-
nique of converting a Hopfield net into one of our nets in [Huyck and Mitchell, 2002].

Continuing this process leads to the final calculated net that has our
normal topology, except that we calculate the synaptic weights. This topol-
ogy is distance biased, with one long distance axon. That is, a neuron is
likely to have connections to nearby neurons, and connections to one other
randomly selected area of the network. Each neuron has an average of 40
synapses, with 10 of these being on the long-distance axon.

Neurons obey Dale’s Principle so all synapses from a neuron are excita-
tory or all are inhibitory. Synaptic weights are calculated based on the row
of the pre-synaptic neuron and the row of the post-synaptic neuron. These
weights are minor variations on the initial Hopfield weights.

The simulation is run without neural decay or fatigue. Virtually all of
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the neurons come on when 40 are externally stimulated. Over 100 trials an
average of 198.95 Dog, Cat, or Rat neurons are activated when an appropriate
stimuli is presented; over 100 trials an average of 119.21 Mammal neurons
are activated. Consequently, the Pearson’s correlations are almost exactly
the ideal weights of table 2.

We could continue to improve our calculated net, but it is clear that this
topology can support the simple hierarchy that we are simulating. All that
is needed is for the system to learn these or similar synaptic weights. The
system will then have learned a hierarchy in an unsupervised manner.

5 Simulation 2: Learning a Hierarchy

The behavior of a network in categorising input patterns is based on its
synaptic weights. It is easy enough to calculate such a network (Hopfield
solution), but the real question is what is needed to learn these synaptic
weights?

The network must be presented with stimuli, and it must learn to cate-
gorise it. In this section we first describe the learning rule, then the specific
network that was simulated, and the training regime. We then show how
the trained network categorises input.

5.1 Learning Rule

Our model commits us to a Hebbian learning rule. However, Hebbian learn-
ing only commits us to basing the synaptic weights on properties of the pre
and post-synaptic neurons. This leaves us with a wide range of options. As
there is a wide range of possibilities, we would like to be directed by neuro-
physiological data. There is neural evidence for the Hebbian learning rule
[Tsodyks et al., 1998], but the precise nature of the Hebbian learning rule is
still not known. Consequently, we have used a compensatory learning rule.

Compensatory learning considers the total synaptic strengths of the pre
and post-synaptic neurons as well as their firing behaviour. Like standard
correlational learning, when both neurons fire, the synaptic weight is in-
creased, and when the pre-synaptic neuron fires and the post-synaptic neu-
ron does not fire the weight is decreased. However the changes are multiplied
by a compensatory modifier.

The correlatory Hebbian learning rule is based on the increase of equation
4 where R is the learning rate. In this simulation, the learning rate was 0.1.
The anti-Hebbian learning rule is based on a decrease of equation 5. These
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learning rules alone force the weight toward the correlation percentage; that
is how likely is the post-synaptic neuron to fire when the pre-synaptic neuron
fires.

Atwi; = (1 —wi;) * R Equation 4.

A~ w;; = (wi;) * —R Equation 5.

The increasing compensatory modifier is equation 6. The decreasing
compensatory modifier is equation 7. Wpg is a constant which represents
the average total synaptic strength of the pre-synaptic neuron, and W; is
the current total synaptic strength. 5 here is a rather arbitrary constant,
and any value greater than 1 would do, though smaller values take longer
to converge, and larger values are more likely to arrive at bad stable states
early on.

A;odwij =5 Equation 6.

Al aWij = 5( Equation 7.

The base increase and decrease (equations 4 and 5) make the weight
tend toward a correlation value near the percentage of time the post-synaptic
neuron fires when the pre-synaptic neuron fires. The compensatory modifier
forces the total synaptic weight towards the constant Wp because there is
more of an increase when the current total synaptic weight is less that W,
less of an increase when the total is greater, and a parallel decrease when
the anti-Hebbian rule is used. In this simulation, Wp was 18. This enables
neurons with low correlation weights to have enough synaptic strength to
participate in reverberating circuits. It also prevents neurons that are fre-
quently present in external stimuli from having very large weights. This in
turn prevents simulated epilepsy. A compensatory mechanism is biologically
plausible because the overall activation (or inhibition) a neuron can emit is
limited. Since a neuron is a biological cell, it has limited resources, and
synaptic efficiency may well be one such resource.

There are parallel rules for inhibitory neurons. The correlatory weights
reflect the value percentage-1, so that neurons that frequently co-fire have
little inhibition, but those that rarely co-fire have a great deal of inhibition.
The compensatory modifier also prevents inhibitory neurons from having
too great an effect and encourages CAs to form.

(We—W;)
W;—Wpg)

5.2 Experimental Design

The untrained network has an identical connectivity topology to that in the
final calculated simulation: a 20x20 network connected in a distance biased
fashion. Initial synaptic weights were random and low. During the training
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Figure 3: An Activated Dog CA

phase, the network was presented instances of the three basic patterns. As
earlier there were an average of 40 synapses per neuron with 10 of those
on the long distance axon. There is an 80/20 ratio of excitatory/inhibitory
neurons.

The firing threshold was set to 4 for all neurons so it takes several neurons
to cause another neuron to fire. The fatigue rate was .6, and the fatigue
recovery rate was .9. The decay rate was set to 3 so that a neuron retained
only a third of its activation if it did not fire in a time step.

The patterns were the same as those in the calculated simulation: Dog
0-3-4-5-8, Cat 1-3-4-6-9, and Rat 2-3-4-7-8. A given instance had 40 of the
200 neurons randomly selected. Each instance was presented for one cycle
and a total of 800 instances were presented.

In the testing phase, learning was turned off, and a randomly selected
instance of 40 neurons was presented for 5 cycles. After 5 cycles, firing
patterns were measured.

Figure 3 shows a network 5 cycles after the presentation of a Dog pattern;
this is the externally activated pattern that is shown in Figure 1. Note that
in this particular instance, only neurons from the Dog pattern are activated
but this is not always the case. Figure 4 shows the network 5 cycles after
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Figure 4: An Activated Cat CA

the presentation of a Cat pattern. Four of the 20 columns are active in both,
4 are inactive in both, and 12 are active in only one of these two patterns.

5.3 Results

For one network, the Pearson’s Product correlations are shown in Tables 6
and 7. In each case, the Pearson’s measurement shows that the subordinate
categories are closer to other versions of the same pattern than to any ver-
sions of any other pattern. In one case, the correlation between two Mammal
patterns is lower than a Mammal-Dog pair. This is reasonable as Dogs are
Mammals, but fortunately the best correlation is with another Mammal.

Tables 6 and 7 are an example of one network. We repeated the same
process on a total of 10 networks. For each net, we compared each of the
subcategory patterns with the other patterns. We found the closest pattern
using Pearson’s measurements, and this formed the basis of our categorisa-
tion. So, if a given pattern was nearest® to a Dog, it was categorised as a
Dog. In 87 of the 90 cases or 97% of the cases, the pattern was correctly
categorised.

SNearest here means that it had the highest Pearson’s measurement.
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Dog2 Dog3 Catl Cat2 Cat3 Rat Rat2 Rat3
Dog 1| .482 .538 218 210 211 .223 .202 272
Dog 2 418 165 207 159 238 .201  .193
Dog 3 197 0 202 202 259 .247 280
Cat 1 .648  .585 .148 091  .142
Cat 2 532 129 .098  .190
Cat 3 142 073 123
Rat 1 350 .302
Rat 2 447

Table 6: Correlations Between CA Runs on One Net

‘ Mammal 2 Mammal 3 Dogl Catl Ratl

Mammal 1 .533 .012 .522 329 393
Mammal 2 .611 .376 .220 391
Mammal 3 .357 187 314

Table 7: Correlations Between Superordinate and Subordinate CA Runs on
One Net

Similarly, we found the average Pearson’s measurements between cate-
gories. As expected, patterns of the same category were highly correlated
and different categories were more lowly correlated. Table 8 shows these
correlations.

‘ Dog Cat Rat
Dog | .4019 .0782 .2779
Cat 4846 .0753
Rat .4498

Table 8: Correlations Between Categories

It should be noted that Dog and Rat are much closer than other cate-
gories. This is of course because they share the omnivore feature.
Another measurement that is instructive is average excitatory weight
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between features. This is described in Table 9 where F. 0 refers to a neuron
of feature 0.

F.0 F.1 F.2 F.3 F.4 F.5 F.6 F.7 F.8 F.9
402 02 21 20 86 .02 .02 41 .02
02 68 .02 24 26 .02 41 .02 .01 .79
02 02 64 24 19 02 .02 .62 36 .02
90 59 B8 B8 86 T 82 92 61 .67
B9 .70 67 64 56 63 .63 .67 .71 .78
95 02 .02 24 20 .57 .02 .02 40 .02
02 65 .02 2 23 .02 .72 .02 .01 .73
02 02 73 20 25 .02 .02 .66 .48 .02
82 02 54 53 49 61 02 8O .76 .02
02 56 02 28 24 02 82 .02 01 .76

© NS T R W N RO

Table 9: Average Synaptic Weight from One Feature to Another

As expected, weights between mutually exclusive feature like 0-1 or 0-6
are low, either .02 or .01. Inhibitory weights (not shown here) are also closer
to -1 between these mutually exclusive features, while co-occurring features
have inhibitory weights much nearer 0. So, exclusive features inhibit each
other. However, unlike the calculated Hopfield nets, the weights are more
complete. In the Hopfield case, we knew feature 0 would inhibit feature 1,
but omitted feature 0 inhibiting feature 6. Learning the weights has enabled
us to be more complete.

The weights from feature 3 and 4 are weighted toward co-occurrence.
Weights to each other are around .6, to ommnivore around .5, and to all
others around .2. Weights to & and 4 are quite large, above .6; this is the
effect of the compensatory modifier. These neurons have more strength to
give, so they activate & and 4 while getting comparatively less activation
back. This is the basis of the hierarchical effect. Feature & falls somewhere
between 8 and 4, and the other features sending more activation than 3 and
4 to those it activates but less than the others.
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6 Discussion and Future Work on Hierarchies

These simulations show a hierarchy of categories emerging via Hebbian learn-
ing. The subcategory CAs emerge as prior work in categorising with CAs
would suggest. Additionally, a supercategory also emerges containing the
most common features in the subcategories.

This allows a more flexible categoriser. If a new member of a new sub-
ordinate category is presented (say a Bear), the superordinate category will
be activated. Eventually, the new subordinate category may be learned.

Similarly, default reasoning can be used for the new Bear subordinate
category. In the absence of any evidence, the system would guess that the
new item is an Omnivore because it is a Mammal.

The compensatory learning rule is essential to this process. In addition
to providing flexible categories, it forces a neuron to concentrate on the most
important neurons with which it interacts. This limits simulated epilepsy,
but also supports the formation of the superordinate stable state.

There is a wide range of further work to be done on categorisation and
hiearchies using CAs. CAs can be used for current AT tasks like classification.
We need to improve our theoretical understanding of CA systems. We are
hoping to use hierarchical CAs as a mechanism for resolving prepositional
phrase ambiguity in natural language processing. Further in the future we
are hoping to explore basic level effects, and to use our model to simulate
timing data in psychological categorisation tasks.

We have begun exploration of the use of CAs for some standard classifi-
cation tasks from a standard repository [Blake and Merz, 1998]. Our work
on some simple classification and information retrieval (IR) tasks has been
successful and are currently working on a manuscript. Both the IR and clas-
sification tasks were natural categories with polymorphic categories. This
work is far from complete and we need to extend this work to more complex
tasks, including linearly separable categories and highly interleaved cate-
gories. It is likely that a greater understanding of CA dynamics is needed
before CAs can be applied to the full range of current data-mining problems.

More worrisome is the biologically implausible nature of the training
regime used for the simulation of section 5. During training, we have pre-
sented each pattern for only one cycle. If we use a more plausible mechanism,
presenting it for 20 cycles and allowing run on, we get only one CA forming.
It is the superordinate category including the features of all subordinate
categories. This is theoretically legitimate, but is not the desired result.

We plan on exploring this problem next. One aspect of the problem is
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that once a subordinate neuron is fired by the superordinate CA, it is rapidly
recruited into it. This is the smallest version of the Mule problem mentioned
in section 2.3. The problem has occurred in earlier experiments and has
been solved by reducing the learning rate [Huyck, 2002a], and preventing
the subcategories being recruited by the supercategories. Perhaps a better
mechanism would allow the superordinate category to form first, but then
allow the subordinate CAs to fractionate off.

This problem also relates to the long term dynamics of recruitment and
fractionation. We are in the process of developing a computational theory
of CA development. This will be related to the theory of Hopfield nets but
is separate.

It would be simple to scale this work to categorise several superordinate
and subordinate sets. Less clear is how well this will work for several hierar-
chical levels of categories. We are hoping to work on the prepostional phrase
attachment task from natural language processing. This involves the under-
standing of the semantics of the verb, noun and prepostional phrases in a
sentence like I saw the girl with the telescope. [Hindle and Rooth, 1993].
We are hoping that hierarchical categories of these phrases can be used to
learn the semantic relationships used in selecting the correct attachment.
We will be use our novel machine learning technique to this problem.

Eventually we would like to look into basic level effects and timing data.
We abide by Hebb’s original idea that CAs are the basis of human concepts.
Consequently, we would like to develop neural models that implment CAs
to account for the full range of categorisation data.

7 Ongoing Work, Future Work, and Conclusion

We have proposed CAs as a good level to model cognition, and shown among
other things that a system using CAs can form hierarchies. However, to be
the basis of cognition, CAs must form many other structures.

Hierarchies are related to associative memory. We are currently working
on associative memory including the related task of priming. In the next few
years, we hope to move from theoretical work to practical data-mining and
psychological simulation tasks involving categorisation, associative memo-
ries and hierarchies.

A related question is how CAs grow into unstimulated regions. Initially,
stimulus only comes from the environment and most neurons in the mam-
malian brain are not directly connected to the environment. Large initial
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weights may help, but we have begun exploration of spontaneous neural
activity to drive neural recruitment [Huyck and Bowles, accp]. There is ev-
idence [Abeles et al., 1993, Bevan and Wilson, 1999] that neurons sponta-
neously fire without external input; our work relates to Amit and Brunel’s
[Amit and Brunel, 1997]. When combined with a compensatory learning
mechanism, this allows unstimulated neurons to be recruited into CAs. This
process must relate to category formation, and relationships between cate-
gories.

Until recently, we have directly stimulated neurons to simulate external
activity, but recently, we have begun to explore how simple sensors can be
integrated into the system. Our current work is on numbers for data-mining,
but we hope to develop more sophisticated mechanisms. We draw hope from
the extensive neurophysiological work on vision and other sensing. Similarly,
we would also like to integrate actuators into the model.

The final great hurdle is the variable binding problem [VonDerMalsberg, 1986,
Sun, 1995]. The above work deals with long-term relationships. The bind-
ing problem asks how very short-term relationships can be formed. Current
thinking is that this can be with models of synchronous firing [Eckhorn et al., 1988,
Sougne, 2001]. We are currently uncommitted but feel that there are prob-
ably several types of variable binding. Each type may be driven by the
different CA dynamics caused by the brain areas they inhabit. For instance,
episodic memory may be driven by synaptic change [Shastri, 2001] that is
quicker than semantic memory, but still long-lasting. This difference may
be due to the vast numbers of synapses in the hippocampus (10 times more
per neuron than in the cortex), the area that is so essential to episodic mem-
ory [Shastri, 2001]. Variable binding is probably also used in simple natural
language processing. In this system, the memories may be combined via
synaptic modification, but these are more like registers which are quickly
over-written. Clearly this is highly speculative, but it can be seen how vari-
able binding might be accomplished by simply changing the learning rate
for different CA based memory systems.

Finally, this associative memory can be combined with variable binding
to form a significantly different computational model. It would be Turing
complete because it could implement rules and thus arbitrarily complex
functions, but it would be based more on mammalian processing. Different
subsystems could vary certain parameters, but this basic CA architecture
could be used to develop a more complete cognitive architecture, which is
the ultimate goal of this work.
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