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Abstract. A typical human brain consists of roughly 100 billion
neurons, and one key aim of Biological Cybernetics is to simulate
neural systems. A good model of a neuron accurately represents the
behaviour of biological neurons, typically the spiking behaviour. For
cybernetic systems that aim to function in real time with thousands,
millions, or even billions of simulated neurons, it is also important
that the model is computationally efficient. One Fatiguing Leaky In-
tegrate and Fire neuron is a model that has four free parameters per
neuron. This model has been used in cybernetic agents, but there have
been few links to actual biological behaviour. A model of a rat neo-
cortical neuron is developed with four specific parameter settings.
This model is tuned to a particular input regime. When compared to
a biological neuron it gets 90% of spikes roughly correct. Further
modifications of the fatigue model enables the FLIF neuron to ac-
count for spontaneous neural firing, a known neural property, that is
not present in the data. These modifications provide other FLIF mod-
els with a similar fit to the biological data. The best of these models
correctly predicts over 94% of the spikes.

Keywords: Neural Model, Point Neuron, Integrate and Fire Neu-
ron, Biological Fit, Accommodation, Spontaneous Activation.

1 Introduction
One method for exploring Biological Cybernetics is to build sim-
ulated neural systems. At one extreme, this approach has led to
a project hoping to simulate the entire human brain [26]. Another
framework is to build increasingly sophisticated systems from simu-
lated neurons [12, 17]; this framework builds cognitive models and
agents that function in an environment.

One of the key questions for Biological Cybernetics is what neural
model or models to use. There are a large number of neural models
(see section 5), and many researchers think that non-neural connec-
tionist models are also a good basis (e.g. Multi Layer Perceptrons
[29] or Self Organising Maps [23]).

One framework uses a simple point model of a neuron, the Fatigu-
ing Leaky Integrate and Fire (FLIF) neuron (see section 2). There has
been significant progress within this framework including simulated
games agents [14] with vision, planning, action and language, ma-

chine learning [13], and cognitive models of natural language pars-
ing [15] and task selection [4]. These have all used the same FLIF
neural model. An individual neuron has several internal parameters
including , firing threshold, leakage rate, and fatigue rates.

One key behaviour of neurons and neuron models is spiking. Neu-
rons receive inputs from other neurons, and emit spikes. These spikes
can be induced in biological neurons both in vivo and in vitro. For ex-
ample, a neuron can be directly stimulated by electrical current, its
internal electrical state can be measured, and spikes can be inferred
(see section 3). Consequently, one way of calibrating a neural model,
is to compare its spiking behaviour to biological data. In this paper,
biological data is used to derive parameter settings for the FLIF neu-
ral model, and gauge its accuracy as a model. Then the fatigue model
is extended to provide better fit and support for spontaneous neural
firing.

2 Fatiguing Leaky Integrate and Fire Neurons
The FLIF model is an extension of the leaky integrate and fire (LIF)
model, which itself is an extension of the Integrate and Fire model.
A model that is similar to the FLIF model described below has been
shown to account for inter-spike intervals under various input condi-
tions better than the standard LIF model[7].

One variant of the Integrate and Fire (IF) model is the McCul-
loch Pitts neuron [27], which has a long standing history and is quite
simple. Roughly, neurons are connected by uni-directional synapses.
A neuron integrates activity from the synapses connected to it, and if
the activity surpasses a threshold, the neuron fires, sending activity to
the neurons to which it connects. There are two possibilities regard-
ing retaining activity between cycles. The McCulloch Pitts neuron
merely throws it away; this prevents low amounts of input causing
the neuron to fire. In a second and earlier model [1], all of the ac-
tivity is retained; this allows small amounts of input collected over a
long time to cause the neuron to fire.

In the LIF model, if a neuron does not fire, it retains a portion
(but not all) of its activity making it easier to fire later [25], with the
lost activity leaking away. Typically, both IF and LIF neurons lose all
activity when they fire.



The LIF model is extended to FLIF by the addition of fatigue.
When a neuron fires, it fatigues and becomes more difficult to fire.

One of the major components of the model is the firing threshold,
θ. A neuron i fires if its activation Ai minus its fatigue Fi is above
the threshold.

Ai − Fi >= θ (1)

If the neuron fires, it loses all its activation. If sufficient activation
is provided from neurons sending spikes to it, it may fire in the next
time step.

If a neuron does not fire, some of its activation leaks away. This
leak, or decay, is represented by a constant D where D > 1. Ignoring
external input and assuming i did not fire at t−1, activation of neuron
i at time t is

At
i = At−1

i /D (2)

When neuron i fires, it sends activation (or inhibition) along its
synapses to other neurons according to the strength of each synapse,
so neuron j receives activation according to synaptic strength wij .
The neuron is an integrator, so it accumulates activity from the
synapses connected to it. So, given P t

j , the prior activation of neuron
j at time t, either 0 or Eq. 2, the activation at time t + 1 is

At+1
j = P t

j +
X
i∈Vi

wij (3)

where Vi is the set of all neurons that fired at time t.
These equations describe a LIF model [25], and fatigue is used to

extend the model. Fatigue uses two constants; it is incremented by Fc

in a cycle when the neuron fires (Eq. 4), and is decremented by Fr in
a cycle when the neuron does not fire (Eq. 5). Fi >= 0, so that firing
always requires at least θ retained activation. Accumulated fatigue
makes it more difficult for neurons to fire when they have been firing
at a high rate.

F t+1
i = F t

i + Fc (4)

F t+1
i = F t

i − Fr

(F t+1
i < 0) → F t+1

i = 0 (5)

The model has a loose link with time in biological neurons. The
model does not incorporate conductance delays or refractory periods,
and these behaviours all happen in under 10 ms., so each given cycle
can be considered to be roughly 10 ms. Consequently, each neuron
emits at most one spike per 10 ms. of simulated time, and the tim-
ing precision is at most 10 ms. This is a shortcoming of the model,
but enables efficient simulation of hundreds of thousands of neurons
in real time on a standard PC. It is consistent with the neural data
modelled in this paper (see section 3), as the neuron being modelled
never spikes more than once in a 10 ms. interval.

3 Neural Data
The neural data was used for a neural modelling competition [5], and
the data was from Challenge A of that competition. More details can
be found there along with the data. Note that this is one of a grow-
ing number of such benchmarks [18] that can facilitate comparisons
between neural models.

The neuron was extracted from the primary somatosensory neo-
cortex of a rat. So, the data that was collected was in vitro.

A probe was placed into the neuron. Current was injected directly
to the neuron and cellular voltage was measured at .1 ms. intervals.

Input varied over 60 seconds, but only the first 38 seconds were
available with the remaining 22 seconds used as the test for the com-
petition. There was an initial input phase, followed by two seconds
of 300mV input, then two seconds with no input, then two second
of 600mV input, then two seconds with no input, then two seconds
of 900mV input, then two seconds of no input, followed by 42.5 sec-
onds of stochastic input, with 20.5 of that available as data. The same
input regime was applied 13 times to the neuron.

This input is shown in Figure 1. Each point shows the input level
to the model at that time. It has been converted from the original data
in .1ms intervals to 10ms by averaging as described in section 4.
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Figure 1. Input to the model converted from the current for the biological
test

Also, the cellular voltage measurements were converted to spikes.
With no input, the voltage hovered around -65mV. Under input this
gradually increased. When it neared -40mV it then rapidly increased
to positive values around 40mV. It then rapidly returned to a nega-
tive value, and then more gradually to a value around -55mV while
under input. The spike was calculated from the first point the voltage
crossed from negative to positive. It then was reset when it crossed
back to negative. In the data, the shortest inter-spike interval was 13.5
ms. These spikes are shown in Figures 2 and 4.

4 Simulations and Parameter Settings
The initial task was to discover appropriate parameter settings for
the FLIF model for input, the threshold θ, leak D, fatigue Fc,
and fatigue recovery Fr . The parameters interact in relatively sim-
ple ways, so initially the goal was to find one parameter set,
where the set led to model behaviour that was a relatively close
fit to the biological data. All code and data can be found at
http://www.cwa.mdx.ac.uk/chris/hebb/FLIF/FLIF.html

Clamped Input
The first question was how to scale the input. As the first input of
interest was 300mV at a rate of .1 ms., the input was averaged over



the full time of the step (10 ms. or 100 pieces of data), and converted
to units in volts. For example, input at time steps 50,000 to 50,100 (5
to 5.1 seconds) were all 300mV, and this is converted to .3 for input.

Next some analysis of the first series of inputs was used to set
initial parameters. This series of inputs was two seconds of 300mV.
Analysis of the biological data of one test of the neuron showed that
there were 12 spikes at an average of 174.5 ms. apart. For the FLIF
model, that was every 17 cycles. Using data derived from other stud-
ies [24], D was set at 1.25. These values were used to determine
when the threshold was passed at 17 cycles, θ = 1.46. These pa-
rameter settings led to data that fit the 300mV input. However, the
parameters also needed to work for the other inputs.

Two other sets of input were of considered next; after rest periods
of two seconds, there were two seconds of inputs at 600mV, then
two seconds rest, and two seconds of 900mV. Some analysis of this
data showed that the neuron spiked on average every 60.38 ms. for
600mV and every 40.51 ms. for 900mV, or every six and four FLIF
cycles respectively. With θ = 1.46 and D = 1.25 the model led to
firing every three steps for 600mV and every two steps for 900mV.
Reducing D, retaining more activation per step, moved things in the
right direction for 600mV and 900mV.

Setting D = 1.1 led to values that worked reasonably well. Using
the process described above for 300mV, θ was calculated at 2.6. This
led to the desired behaviour with spikes every 17 cycles for 300mv,
every 6 cycles for 600mV, and every four cycles for 900mV.

These parameters determine a LIF model. Perhaps fatigue was
unnecessary. Some further analysis of the data showed that fatigue
would improve fit. Figure 2 shows the latencies, time between spikes,
of the neuron under the three input regimes. After initial rapid fir-
ing, all three spike latencies are relatively stable. However, there is
a gradual increase at 900mV, increasing on average of .329 ms. be-
tween each spike after the third spike; that is, the spikes are coming
more slowly, implying that at this elevated firing rate fatigue has an
effect. At the lower firing rates, the slope is virtual flat, so the rate
remains roughly constant.
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Figure 2. Latencies between biological spikes at different input values
over two seconds

To calculate the fatigue Fc and fatigue recovery Fr values, this
behaviour imposes some constraints. Rates at less than once per six
cycles should not accumulate fatigue, and rates at once per four cy-
cles should. So Fc > 3Fr , and Fc < 5Fr .

For the 900mV case, firing rates are initially just over every 35 ms.,
and they pass every 45 ms. around spike 35. Expanding the formulas
with θ = 2.6 and D = 1.1 shows a neuron having 3.138 units of
activation at any fourth cycle. It needs 2.6 to fire, so it has 0.538
surplus activity. For accumulated fatigue to cause it pause for another
cycle, it must be greater than .538. As this should not accumulate for
35 cycles, Fc − 3Fr ∼ (.538÷ 35). So, Fc − 3Fr ∼ 0.015.

Fr was selected as 0.1, leaving Fc as 0.315. Running simulations
on this showed that indeed spike rates at this the 35th cycle were
every five cycles, but they returned to every four cycles thereafter.
Reducing Fr to 0.01 left Fc at 0.045. The model latencies increased
to five cycles after 35 spikes and continued to increase thereafter. The
model predicts that after 200 spikes the latency would increase to six
cycles, a testable hypothesis though not in the data.

This leaves all parameter values determined. Threshold is θ = 2.6,
leak is D = 1.1, fatigue is Fc = 0.045 and fatigue recovery is
Fr = 0.01.
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Figure 3. Interspike latency of the biological neuron

The first 17.5 seconds of input was clamped with either -300mV,
0mV, 300mV, 600mV or 900mV, and the stimuli persisting for two
seconds, with intervals of no input in between. After this, the remain-
ing 21.5 seconds of input went through a rapidly varying stochas-
tic input. Figure 3 shows the response of the biological neuron to
these inputs in the form of inter-spike intervals (another version can
be seen in Figure 4 with model spikes). The first 11 spikes come
around 170 ms. apart, followed by two seconds with no input, and
thus no spikes. After spike 93 and the third two second delay, vary-
ing stochastic input began. Note that many periods during stochastic



input experience low input and thus high spike latency.
Using the same parameters, the model was run to account for this

behaviour. For the biological neuron, input varied every .1 ms.; as
the simulation steps accounted for 10 ms. of time, the inputs were
binned into groups of 100 and averaged over that time.

During the clamped period, the model produced 92 spikes, and the
biological data 94. The missing spikes were during the 900mV input.

During the stochastic period, the model produced 151 spikes and
the biological data produced 200. The model spikes and real spikes
were aligned, with the model spikes being placed adjacent to the
nearest real spike. Analysis of these aligned spikes showed three cat-
egories of problems.

The first problem was evident even under clamped input. The first
biological spikes after input resumed came earlier than the model
predicted. This is evident in Figure 2 when the initial spikes are quite
rapid, but the first spikes are even more rapid; for example at 300mV,
the first spike occurs 36 ms. after input begins. This is also evident
in the stochastic period, when model incorrectly does not produce
spikes after relatively long periods of low or negative input are fol-
lowed by moderate or high input.

The second problem was that periods of rapid biological spiking
led to missing modelled spikes. This implied that the threshold was
too high in relation to the other parameter settings.

The third problem was that spikes were missed over periods of low
input. This implied that there was too much leakage in the parameter
settings.

A further search of the parameter space ensued. Reducing the
threshold and decay separately or together led to improved behaviour
under stochastic input, but worse behaviour under clamped input. In
particular, reducing decay requires increasing threshold, which had
an adverse effect when there is high input. On the other hand, moder-
ate increases of decay (e.g. D ∼ 1.2) made it difficult to spike under
low input (e.g. 300mV). Reducing threshold to allow this, made it
spike too much under higher input.

Setting D = 1.12 and θ = 2.2 left a good compromise. There
were too many spikes at low clamped input (300mV had 14 model
and 11 real, and 600mV had 40 model and 32 real), but most of the
stochastic spikes (183 of 200) were present.

Fatigue had a minor effect on the results. Removing fatigue did in-
crease the false positives with 900mV input. The original parameters
correctly produced all 49 spikes, but added two incorrectly. Remov-
ing fatigue added another seven incorrect spikes. It also added an
extra eight spikes to the stochastic input. The 300mV and 600mV
clamped input remained unchanged. The effect of fatigue was neg-
ligible because, outside the clamped 900mV period, there was not a
sustained period of high input to cause fatigue to accumulate.

Of the 288 spikes emitted by the model, 26 alignments had two
model spikes aligned with a biological spike. The first of these was
taken for a timing comparison. Of the 260 directly aligned spikes, the
average variance between the model and biological time was 16.3 ms.

The simulation is open to the criticism of testing on the training
set. While there are only four parameters, this is still a valid criti-
cism. However, when the model was compared to a second run of
the same input on the biological data, the model’s fit improved a
small amount. In the second run, the biological data produced an ex-
tra spike for each of the three clamped input regimes, and one less
spike for the stochastic input. Of the 288 spikes emitted, 261 aligned
with an average variance of 15.3 seconds.

5 Other Neural Models
The FLIF model presented in this paper is a relatively simple point
model, where the model does not consider any spatial components
of the neuron. Compartmental models [8, 10] are appreciably more
complex, mapping the structure of the entire neuron body. These
models can be further refined to include, synaptic delays, ion trans-
fer, and so forth. The FLIF model was compared to the real spike
data. Compartmental models can compare, relatively accurately, at
the actual voltage level. While they are more accurate, compartmen-
tal models are appreciably more expensive computationally to simu-
late.

A primary motive of the FLIF model is computational efficiency,
so that thousands, millions and even billions of neurons can be simu-
lated in real time on relatively simple machines so that the cognitive
aspects of behaving agents can emerge from simulated neurons. The
trade-off between biological accuracy and computational efficiency
is skewed more toward efficiency in the FLIF (and other point) model
and toward accuracy in compartmental models.

Simple IF models [11, 27] would not have fared well simulat-
ing this biological data. If no activity were retained between steps,
it would not have been able to spike with small inputs, or it would
have emitted thousands of spikes if the threshold was set low enough
to enable spikes with small inputs. If it had retained all activity be-
tween inputs, it would have spiked too frequently with small inputs.

The LIF models [3] would have fared much better. As noted in
section 4, fatigue only had a significant impact when there was a
sustained rate of high input (e.g. two seconds at 900mV).

Another issue that is relevant to both compartmental and firing
models is time. It would be relatively simple to modify the FLIF
model to have a finer time grain, e.g. .1 ms. per cycle, but that would
increase the time needed to simulate each neuron.

The Spike Response Model [9, 19] is another model combining
thresholding, refractory periods and randomness. As the spike data
accounted for seems, at best, weakly effected by refractory periods,
it is likely that this model would not perform particularly well on this
data set.

There are of course other higher level models of neurons. For
example, a model of cell assembly behaviour [20] models the be-
haviour of sets of neurons. Similarly, there is a theoretical map-
ping between adaptive resonance theory [6] and group of neuron be-
haviour. Clearly, these models could not account for the spike data.

6 Extended FLIF Model
The above FLIF model frequently underestimates the first spike after
a period of inactivity. One possibility to account for this, and improve
the model is to modify the model so that fatigue could reduce the
firing threshold (F < 0) in addition to raising it.

With this in mind, a series of modifications to the fatigue rule were
implemented and tested. The first was simply to remove the F <
0 constraint from the fatigue equation (Eq. 5) leaving Eq. 6.. This
however led to rapid firing with no input when (F ∗ −1) > θ. With
no input, fatigue will descend until fatigue alone causes the neuron
to fire. Fatigue will then increase, but only by a small amount, Fc,
and will fire again in a few cycles when fatigue alone again causes
the neuron to fire.

F t+1
i = F t

i − Fr (6)

Firing with no input is spontaneous activation, and in the bio-
logical data described above, there was no spontaneous activation.



With the simple test the simulated neuron spikes at 3.12 seconds.
This is the model’s version of spontaneous firing. With θ = 2.2 and
Fr = 0.01, one would expect the neuron to fire at 2.2 seconds, but
this is during the inhibitory input phase. Consequently, only after in-
hibition has ceased, and some of that inhibition has leaked away, does
the neuron fire. It then continues to fire as the inhibition is removed,
and the fatigue grows due to firing. After 22 steps of firing the model
fires every 4 or 5 cycles. In total there are 692 spikes, so the simple
substitution of Eq. 5 with Eq. 6 is by itself insufficient.

The simple removal of the F < 0 constraint can be improved by
resetting fatigue when a neuron fires when the fatigue value is very
negative. If fatigue is set to 0 when negative and the neuron fires,
the performance using the new fatigue decrementing rule (Eq. 6) is
better than without, and is now comparable with the original fatigue
rules.
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Figure 4. Spikes produced by the biological neurons, the fatigue reset to 0
model, and the exponential fatigue reduction model over 38 seconds

Figure 4 shows firing behaviour over time. The biological data
shows the initial lack of spikes, and then the lack of spikes when
there is no input. The F=0 data shows the simulation with fatigue
reset to 0 after firing with fatigue negative. Note the first spontaneous
spike just after three seconds. The FE data shows the spikes from
the exponential fatigue recovery rule described below; note that the
spontaneous spike no longer occurs.

When fatigue was reset to 0 after a neuron fired due to fatigue,
there were 322 spikes. Of the 322 spikes emitted by the model, 42
alignments had two model spikes aligned with a biological spike.
The best of these was taken for a timing comparison. Of the 275
directly aligned spikes, the average variance between the model and
biological time was 14.7 ms.

This still had the problem of a spike at 3.12 seconds. While neu-
rons fire spontaneously, the biological neuron being modelled does
not spontaneously fire under the input regime being explored. So,
the model was modified so that it recovered from fatigue less when
fatigue was negative (Eq. 7).

F t
i >= 0 → F t+1

i = F t
i − Fr

F t
i < 0F t+1

i = F t
i − (Fr/k) (7)

The first test that was run was with k = 2. This meant that fatigue
reduced slower, but there was still a spontaneous spike at 4.39 sec-
onds. As there are no spontaneous spikes in the data, it only needs to
spike after the first positive input at 5.0 seconds. Setting k = 3 did
this.

Fatigue was reset to 0 after a neuron fired due to fatigue, but fa-
tigue reduction slowed (by k = 3) when fatigue was negative. There
were 295 spikes with 28 alignments where two model spikes aligned
with a biological spike. Of the 267 directly aligned spikes, the aver-
age variance between the model and biological time was 16.3 ms.

A further extension was to modify the way negative fatigue was
changed after firing. Instead of setting fatigue to 0, it could be
changed to F/m. This would have the advantage of allowing un-
der fired neurons to fire rapidly more than once. It required a change
when fatigue approached 0 from a negative value, or fatigue would
always remain negative, so the regime changed at -.25. The new fa-
tigue increase rule is Eq. 8.

F t
i >= −.25 → F t+1

i = F t
i + Fc

F t
i < −.25 → F t+1

i = F t
i /m (8)

When m = 4, and k = 3 the system fired 297 spikes. 266 of them
aligned correctly (and 30 pairs aligned), with an average difference
of 15.6 ms. Values of m = 2 and m = 8 performed slightly worse.

Run Neurons Double Correctly Time
Fired Aligned Aligned Difference

Real 294 0 294 2.5
Standard 288 26 260 16.3

F0 322 42 275 14.7
F3 295 28 267 16.3

F3-4 297 30 266 15.6
FE 299 21 277 16.9

Table 1. Relation between biological and model neural firing

A final variant of the fatigue rule was explored. Instead of reduc-
ing the fatigue by a factor of the fatigue when it was negative, an
exponential function was used (Eq. 9).

F t
i < 0F t+1

i = F t
i − (−4)(3−F t

i ) (9)

This was motivated by having the change being roughly equal to
Fr = .01 at 0 for a smooth function. Additionally, it needed to
prevent the neuron spiking without input in the first 5 seconds, but
eventually enable it to spike. This function managed both of these
constraints. With this new fatigue rule, setting F = F/2 when the
neuron fires due to fatigue, and D = 1.16, the model with proba-
bly the best fit of those simulated was developed. This model fired
299 times, only 21 of the biological spikes had two simulated spikes
aligned to them. 277 spikes were correctly aligned with an average
time variance of 16.9 ms.

Table 1 presents the results of the simulations. The first row rep-
resents the biological data, and the other rows represent the runs re-
ported above. Note that the best possible model would have erred



by 2.5ms due to the 10ms simulated cycle speed. The Standard row
refers to the simulation run with the standard fatigue model, where
fatigue is always 0 or greater. The other models allow fatigue to be-
come negative, and thus to cause the neuron to fire with no input, or
to fire faster with less input. The rows differ by the fatigue change
when fatigue is less than 0. The F0 row is the standard model but re-
sets fatigue to zero F = 0; F3 reduces fatigue by Fr/3 when fatigue
is negative; and the F3-4 row reduces fatigue by Fr/3, and sets it to
F/4 when the neuron fires and fatigue is less than -.25. FE refers to
the system with the exponential fatigue reduction rule when fatigue
is negative; this also resets fatigue to F/2 when the neuron fires and
fatigue is less than -.25, and has D = 1.16.

None of these models is clearly superior to the other models,
though the exponential model might claim to be the best; however, it
does have poorer time difference. Resetting fatigue to 0 creates more
spikes and more aligned spikes, but has more doubly aligned spikes.

Again, after model and parameter development, all of the above
model were tested on the second set of biological data. The perfor-
mance of all models improved slightly on this data.

Reducing the fatigue rate when stored fatigue is negative produces
the right number of spikes, and shows no spontaneous firing. In the
biological data, no spontaneous firing occurs. Still, in many cases,
without input, neurons spike spontaneously [21]. Spontaneous acti-
vation fits in nicely with another type of model, the Boltzmann ma-
chine [2]. In the Boltzmann machine, without activation, the neuron
fires at regular intervals. Increased activation makes the neuron fire
earlier. To some extent, the revised FLIF model incorporates this be-
haviour.

This spontaneous firing is important for a range of reasons [16].
Perhaps the chief reason is that without spontaneous activation, when
using a strictly Hebbian learning rule, firing cannot easily move be-
yond the neurons that are directly activated by the environment. This
is a modelling problem, but there is biological evidence that sponta-
neous firing is needed to properly develop vision [30]. In simulated
systems, since no neuron that is not directly stimulated receives acti-
vation, they will not fire. Since they do not fire, the Hebbian learning
rule will not increase the weight from firing neurons to them. With
spontaneous firing, those neurons that are not directly stimulated by
the environment can co-fire with those that are, and then the synaptic
weights can increase. The biological evidence on visual development
supports this line of argument from simulation.

7 Conclusion

This paper has described a FLIF neural model, discussed some bi-
ological neural data, and derived parameters for the FLIF model
from that neural data. Thus, the FLIF model with parameters set to
θ = 2.2, D = 1.12, Fc = 0.045, and Fr = 0.01 is a relatively
faithful model of this particular rat neuron.

The exponential fatigue recovery rule performed even better get-
ting 277/294 (94.2%) spikes correct. Of course, this fatigue rule is
more computationally expensive to run. This final phase of testing
was relatively brief, and further modifications could lead to further
improvements in model fit. Note that in all of the reported results,
accuracy averaged well within two cycles.

The paper has indicated that fatigue can play a useful component
of a neural model. This is the case when there is a significant amount
of input for a reasonably long duration. Fatigue may also be used in
learning to account for particular psychological phenomena [22].

Further modification of the fatigue rule has shown similar fits to
the biological data. Thus, the new models can fire spontaneously,

while still fitting the data.
Moreover, further biological data should support better parameter

fitting and neural model development. In particular, data on spon-
taneous firing should support a more biologically accurate fatigue
model.

It should be noted that there has also been research in develop-
ing systems to automatically fit neural models to biological data [28]
including the data used in this paper. It is useful to note that inte-
grate and fire models with adaptation (fatigue) have been relatively
successful.

It should also be emphasised that this is a model of a particular
neuron. It is almost certain that, even when applicable, the FLIF
model of different neurons would require different parameter set-
tings. This paper has only considered one model neuron, though it
was the first the authors actually tried to model.

None the less, the four free parameters of the model have been set
so that they account for 90% of the spikes relatively well. Similarly,
several variants of the fatigue model produce similar and perhaps
superior results. Consequently, it seems that these models are of rea-
sonable biological fidelity.
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