Workshop 3 - A RBS to loop and something like making function calls

The purpose of this workshop is to

· Develop your skills in writing rule-based systems to solve particular problems.

· Show you how to solve the basic types of problems (not already known) needed to solve any problem: loops and function calls.

LOOPS

One of the basic functions of programs is to loop. How can you loop with rules?

How would you write a rule-based system that found the total value of numbers between 1 and 10, or 1 and X where the user typed in X? You'd use a loop.

Part 1: Implementing a loop

So, open Kappa and create an object with 2 slots, one for the users input (X), and one for the total.

Create a user interface that has an edit box for the users input, a button to start processing, and a button for reset.

Create the function for start using ForwardChain([NOASSERT]); and a reset function that resets your two slots.

Create a rule that copies the user's value to the total.

Run the system.

Modify the rule so that the then clause also has a PostMessage that prints out the total and rerun.

Add a new rule that checks to make sure the total is not null [e.g. (Not(Null?(Count:total))] and that user's input > 0. If this is the case add the subtract 1 from the user's input and add it to the total. You may also want to have a PostMessage.

Do these rules work for all possible inputs?

Add an error checking rule.

How would you modify this to loop from X to Y, where the user typed in both? In general, could you now write any loop?

FUNCTIONS

A second type of functionality is a function call. (By the way, along with assignment, storage, comparison and branching these are all the things you need to write any program.) How would you write functions with rules? (I don't mean that function thing on the edit tools.)

In essence, you could have a series of rules that only applied when a particular flag (variable) was set, the only time this flag was set was when the function was called, and the flag was unset when the function was exited.

Part 2, using the Kepler function (we just wrote)

We're going to have the user type in two numbers, we'll add them up, and then pass them to the Kepler function.

Add another edit box, and two slots. Associate the edit box with the first slot, and change the old edit box so that it is associated with the second slot.

If you reset and run now, you should get a bad input from the Kepler function (because the Kepler input parameter is null as it has been reset).

Add a rule that adds the two inputs and puts them in the Kepler input parameter (that's the slot that used to be the value of the edit box).

When I run this, I get the bad input message from the Kepler function (you may not). Why do I get this message? The Kepler rules are still valid, because I don't really have a flag that says run the Kepler rule. Let's change the whole system around.

Make a new object and put the user data slots there. Remove the old slots and change the rule that adds the two together. Change the edit boxes so that they are associated with the slots in the new object.

Add a new slot to the old object called invoke and make it boolean.

Change all the Kepler rules so that they start checking the invoke parameter is true. Have the last rule set it to false.

Change the rule that adds the user input so that it also sets invoke to true.

You might want to add a rule that checks the user input.

What happens when you rerun without resetting? You should be able to run a function over and over again and always get the correct results.

Conclusion

If you've gotten this far you've done looping and function calls. Using these techniques you can write virtually any program. Which other functions could you write? Which programs could you write? However, one of the problems is that you don't really want to use these techniques to write every program. You've kludged function calls with your flag variable and it might be better to write this type of program in Java or some other language. Still some simple functions might easily be used in a RBS.

Workshop 4 - extensions to the simple forward-chaining system

The purpose of this workshop is to

· Emphasise the benefits to be gained from a properly organised hierarchy of classes/instances.

· Extend your appreciation of the features that can be built into a simple system.

· In particular, suggest the possibilities offered by a sophisticated graphical user interface.

The system we created in tutorial 2 showed a certain amount of promise, but was by no means perfect. Here are one or two things that were obviously wrong with it.

· There was only a very little knowledge in the knowledgebase, so the number of cases that this system could deal with was quite small.

· The knowledgebase wasn't well organised. It didn't take account of the fact that a motorcar is a collection of components and systems, organised in a hierarchy. It could have done cleverer reasoning if it had.

· The user interface wasn't very well developed.

Let's take the same basic system, but improve on it.

The extra knowledge, once again taken from our expert car mechanic, is

"If you know there's a problem with the battery or the battery cables, you can test the battery with a voltmeter. If it shows the correct voltage, then the battery's OK and the problem must be with the cables. If it doesn't, then the problem is with the battery."

1. And-or chart. Try to draw a revised version of the and/or chart in workshop 1, incorporating this fresh knowledge. It should feature an intermediate conclusion called "defective electrics". There should be two fresh pieces of evidence at the bottom of the diagram, and six final conclusions ("X=…") at the top of the chart rather than the five that we had before. Since our chart now has two intermediate conclusions, and five final conclusions, this means that the new system will contain 7 rules rather then the 5 that we had in the old system.

2. Load Kappa, and retrieve the file that you saved at the end of Workshop 3 under the name ‘CAR_DIAG.KAL’. Save it again, under the name CARDIAG2.KAL. Then modify it as follows.

3. Classes. We are dealing with cars, and certain parts of cars: the tank, the carburettor, the feedpipe, the engine, the sparkplugs, the lights, the starter motor, the battery and the battery cables. We need to invent classes for each of these objects, and give them relevant slots, so that we have somewhere to store information as we discover it. In the object browser window, click on the class ‘Root’ and then select 'Add Subclass' from the Edit menu. Call this new class car_parts. Since you've just made it, it should appear on screen, highlighted (picked out in red). Go back to 'Root' and make another subclass called car_problem. Carry on making subclasses, and getting rid of the classes you made in ‘car_diag.kal’, until you have a hierarchy of classes like this:

[image: image1.png]\Globat

Menu
[DDE]
/image
[KWindow]
ghts
Root elects ts%hznely
cabling
car_parts tank
> carburettor
user_data
- feed_pipe
car_problem

[You don't, of course, have to make the 'Root' or 'Global' or 'Menu' or 'DDE' or 'Image' or 'KWindow' classes - they're provided for you. In case you're wondering why 'DDE' and 'Image' and 'KWindow' have boxes round them, it's because each has got a hierarchy of subclasses and instances which has been hidden to make the diagram less cluttered. The order of electrics, engine, etc. from top to bottom is not relevant.]

Notice what we've done - we've organised the parts of the car (at least, the parts that we're interested in) into a systematic pattern, taking account of the way they are organised in real life. This is an inheritance hierarchy; it is the IS-A portion of a semantic net.

4. Be careful how you write the class names. It's best to use lower-case typing, with an underscore to represent a gap in the word if needed. Kappa is case-sensitive in every context, which means it does NOT recognise Car_parts as another way of writing car_parts.

5. Slots. Now we need to add some slots to these classes. Whenever possible, you should add a slot to a class higher up in the hierarchy rather than lower down, because then inheritance will copy the slot to all the lower classes and save you some work.

a) Find the class 'car_parts'. Double-click on this class to edit it; a class editor will appear on screen.. Select 'New' from the 'Slots' menu. When you are asked for a name, call this new slot condition. Go to the 'Update' menu and save the class. There will now be a 'condition' slot in 'car_parts', and every class which is connected to it to the right in the 'object browser' window - 'engine', 'spark_plugs', 'starter_motor', 'electrics', 'lights', 'battery', etc etc.

b) Find the class 'car_problem'. Edit it: add the slot diagnosis and save it.

c) Find the class 'user​_data'. It should already have the following slots: ‘petrol_in_carburettor’, ‘engine_turns_over’, and ‘lights_turn_on’ (if it hasn’t, add them now). It should also have ‘tank_empty’ – delete it and replace it with tank_not_empty. Make a new slot called battery_test_OK. So we have three slots that are the same as in the previous version, one which is new, and one which is a change from what we had before. [You might wonder why I bothered to change 'tank_empty' to 'tank_not_empty'. The answer is that the user will have a menu of items in front of him/her, each of which says, in effect, "Is this feature of the car OK?" If one of them had been "Is the tank empty?", that would have been like saying "Is this feature not OK?" It seemed that there was a risk of confusing the user - something we should always avoid doing.]

5. Monitor. As in the last workshop, we want the diagnosis printed out on screen as soon as it is produced, which means adding a method to 'car_problem' and making it a monitor. Double-click on 'car_problem' in the object browser. Choose the 'Methods' menu on the class editor, and 'New' from this menu, and make a method called report. In the 'Body' section of the method editor, type this:

PostMessage("The problem with the car is: ",

 car_problem:diagnosis);
Click on the 'Close' option on the 'Update' menu. Go to the 'Slots' window in the class editor and double click on 'diagnosis'. Find the 'Monitors' section in the middle of the slot editor, and find the 'After change' subsection at the end of it. Use the (button to get 'report' on screen and click on it. Then click on 'OK' . Then choose Update.Save and Update.Close on the class editor.

6. Rules. The and/or chart shows us that we will need eight rules. As usual, each will look for a pattern of data in the slots of the classes/instances we have just created and, if it finds it, will fire and put pieces of data in other slots. We already have six rules: these need to be amended, and a couple of extra ones added. In the ‘EditTools’ window, click on the ‘Rule’ button and select ‘Edit’. Select the rule empty_tank. Change it so that it reads as follows:

The if-part:

user_data:tank_not_empty #= FALSE;

and the then-part:

{ (tank:condition = bad);

(car_problem:diagnosis = "run out of petrol");

(engine:condition = no_petrol_reaching_engine) };

Notice the way this rule has spotted one piece of evidence (it’s not true that the tank isn’t empty), and drawn three conclusions from it, and stored each of them in a different place.

Now change the next five rules so that they read as follows:

rule petrol_blocked
if
(user_data:tank_not_empty #= TRUE) And

(user_data: 'petrol_in_carburettor' #= FALSE);

then
{ (feed_pipe:condition = bad);

(car_problem:diagnosis =

"blocked feedpipe leading to carburettor");

(engine:condition = no_petrol_reaching_engine) };

rule petrol_reaching_

engine
if
(user_data:tank_not_empty #= TRUE) And

(user_data: petrol_in_carburettor #= TRUE);

then
engine:condition = petrol_reaching_engine;

rule bad_spark_plugs
if
(user_data:engine_turns_over #= TRUE) And

(engine:condition = petrol_reaching_engine);

then
{ (spark_plugs:condition = bad);

(car_problem:diagnosis = "bad spark plugs") };

 rule bad_starter_motor
if
(user_data:engine_turns_over #= FALSE) And (user_data:lights_turn_on #= FALSE) And

(engine:condition = petrol_reaching_engine);

then
{ (starter_motor:condition = bad);

(car_problem:diagnosis = "the starter motor is defective") };

rule bad_battery
if
(user_data:battery_test_ok #= FALSE) And

(electrics:condition #= bad);

then
{ (battery:condition = bad);

(car_problem:diagnosis = "the battery is defective") };

and add the following two rules:

rule bad_electrics
if
(user_data:engine_turns_over #= FALSE) And (user_data:lights_turn_on #= FALSE) And

(engine:condition = petrol_reaching_engine);

then
electrics:condition = bad;

rule bad_cables
if
(user_data:battery_test_ok #= TRUE) And

(electrics:condition #= bad);

then
{ (cabling:condition = bad);

(car_problem:diagnosis = "bad spark plugs") };

In each case, after you've written the rule, save it and close it.

Notice:

· Every rule concludes with some useful fresh pieces of information (there's no point in writing a rule that doesn't), but only some of them conclude with a final diagnosis.

· The and-or chart is a reliable guide as to what the conditions of a particular rule will be - every place where lines come together in the chart, from below, is a rule, and each of the statements at the bottom of one of those lines is a condition of that rule. The chart isn't quite so reliable as a guide to the conclusions of a rule, partly because we want this expert system to do something slightly more complicated than simply reaching conclusions.

· The syntax: if there's a single condition in the 'if' part of a rule, it is just written out with a ';' at the end. If there's more than one, each one has brackets round it, they are separated by the word 'And', and there's one ';' sign at the end. Similarly with the conclusions in the 'then' part. The conditions contain the '#=' sign, the conclusions contain the '=' sign - don't mix them up.

7. Function. As in the last workshop, we want the system to use the rules to come to a conclusion. There should already be a function called ‘proceed’ and it doesn’t need to be changed.

8. User interface (1). Now we need to construct the user interface. First, we will make slight modifications to the interface we made in workshop 3:

Press the Session button in the KAPPA window. Click on the window then press <ctrl>L to go into layout mode. You should already have checkboxes titled “(No petrol in the tank?”, “(Petrol reaching the carburettor?”, “(Engine turns over?”, and

“(Lights turn on?” . The wording of the first of these must be changed, and so must its OwnerSlot. In the other cases, the wording could be improved. In addition, we need an extra check box concerning testing the battery.

Make the new check box, and edit the others, so that they have the following properties:

Title
Owner
OwnerSlot

Is there petrol in the tank?
user_data
tank_not_empty

Does the engine turn over?
user_data
engine_turns_over

Do the lights turn on?
user_data
lights_turn_on

Is petrol reaching the carburettor?
user_data
petrol_in_carburettor

Battery properly charged when tested with a voltmeter?
user_data
battery_test_OK

In each case, make sure the ShowBorder box is empty. It doesn't matter too much how you express the question listed under 'Title', but the OwnerSlot values must be exactly the same as the ones you created earlier (step 4(c) above).

Now make two buttons, about the same size and shape as the check boxes, as follows:

Title
Action

Proceed with diagnosis
proceed

Reset
reset

The layout for these 7 graphic components should be something like this:

(Is there petrol in the tank?

(Does the engine turn over?

(Do the lights turn on?

(Is petrol reaching the carburettor?

(Battery properly charged when tested with a voltmeter?

So far, this is very much the same user interface as we had last time. If you press <ctrl> L to go out of layout mode, and try out the check boxes and buttons, you should get some sensible diagnoses (although the ‘reset’ button won’t work at this stage). If not, examine the rules, classes, slots, methods, monitors, functions, and the Owner and OwnerSlots of the checkboxes to see if you can see what's gone wrong.

9. User interface (2). The next step is to enhance the user interface by adding some helpful diagrams, which will be triggered by the conclusions the program draws.

a) (NB: Pictures are not a learning outcome to this module. We don't really care how nice your pictures are. This bit illustrates how to use nice pictures for a nice user interface.) Draw a picture that looks something like the following, using the Windows 'Paint' utility:

[image: image2.png]spark plugs _cabling

fueltank fuel pipe engine battery

starter
carburettor motor

Next, open 'engine.bmp' again, and colour in the fuel pipe in red. Save it as engine3.bmp and close it.

Next, open 'engine.bmp' again, and colour in the four spark plugs in red. Save it as engine4.bmp and close it.

Next, open 'engine.bmp' again, and colour in the starter motor in red. Save it as engine5.bmp and close it.

Next, open 'engine.bmp' again, and colour in the battery in red. Save it as engine6.bmp and close it.

Next, open 'engine.bmp' again, and colour in the battery cables in red. Save it as engine7.bmp and close it.

d) Now go back to Kappa. Get the session window on screen, and type <ctrl> L to go into layout mode. By putting your cursor on the right margin of the window, holding down left mouse, and moving, make the window as wide as the screen. Now select 'Drawing' from the Select/Image(menu, and position the drawing box to the right of the check boxes:

(Is there petrol in the tank?

(Does the engine turn over?

(Do the lights turn on?

(Is petrol reaching the carburettor?

(Battery properly charged when tested with a voltmeter?

e) Now put your cursor inside the drawing box and double click, which will put the 'drawing options' dialogue on screen. In the 'FileName' slot, type engine.bmp. Then click on OK . You should now see part of the drawing which you made in step 9(a) inside the box. Now put your cursor on the handle at the bottom right hand corner of the box, hold down the left mouse button, and expand the box until you can see the whole of the drawing in it. Press <ctrl> L to go out of layout mode. You should now have something like this:

[image: image3.png]spark plugs _cabling

fueltank fuel pipe engine battery

starter
carburettor motor

f) We now have one drawing object. We need another six (although only one will appear on screen at any one time). Go to the 'object browser' window and click on the Image class. Go to the 'edit' menu and choose 'Show subclasses'. A lot of subclasses (and some instances) will appear on screen - you will probably have to expand the window downwards to see them all. At the bottom of the "tree" of items branching out of Image, there are a couple of items:

Drawing

Drawing1

Double click on the instance 'Drawing1', which will put its instance editor on screen. Scroll down the list of slots, and make a note of four values - the value attached to 'Height', the value attached to 'Width', the value attached to 'X', the value attached to 'Y'. When I did this, I got the values Height = 199, Width = 453, X = 442, Y = 9, but they will be a little different for you. Close the editor. Now we need to write these values into the description of the class object 'Drawing'. Double click on the class 'Drawing', which will put the class editor on screen. Scroll down the list of slots until you get to 'Height', double click on it, which will put the slot editor on screen, change the value to whatever you noted down, and click on OK . Do the same for 'Width', 'X', and 'Y', then use Update.Save and Update.Close.

Assuming 'Drawing' is still highlighted, go to the 'Edit' menu and pick 'Add instance'. Call the new instance 'Drawing2', and click on OK . Do the same to create another instance 'Drawing3', then another 'Drawing4', then another 'Drawing5', then another 'Drawing6', then another 'Drawing7'.

We have now created 8 drawing objects, one of which is in the session window, and seven of which could be. They all have the same size and position. We now have to put a different picture in each.

Double click on 'Drawing2', to gets its instance editor on screen, and scroll down the list of slots till you come to 'FileName'. Double click on it and give it the value engine2.bmp. Then click on OK, and use the 'update' menu to save and close. Do the same with 'Drawing3', except that the file name is to be engine3.bmp. Similarly, make Drawing4's filename engine4.bmp, make Drawing5's filename engine5.bmp, make Drawing6's filename engine6.bmp, and make Drawing7's filename engine7.bmp.

g) Now we need to make the seven pictures we have just introduced into the program appear and disappear as appropriate. You may remember that most of the rules we created in step 6 had a conclusion (xxx:condition = bad), where xxx was some part of the car. In six of the cases, the part was something that you could actually point to on the diagram we have just created. So we now have to arrange that each of the class objects that represent these six car parts contains a monitor that changes the displayed drawing when the contents of the slot 'condition' changes.

Find the object 'tank' in the object browser and double click on it, which will put the class editor on screen. Choose 'New' from the 'Methods' menu, call the method show_tank and, in the 'Body' slot of the method editor, type this:

{HideImage(Drawing1);

ShowImage(Drawing2)};

Exit the method editor, and use the 'Update' menu on the class editor to save the object. Now double click on the 'condition' slot. The slot editor appears: find the pane for the 'AfterChange' monitor, and use the (button to get the 'show_tank' method and click on it so that it becomes the AfterChange monitor. Click on OK, then use the 'Update' menu to save and close the object.

Now do something similar for the following car_part classes:

feed_pipe is given a method and AfterChange monitor called show_pipe whose body is

{HideImage(Drawing1); ShowImage(Drawing3)};
sparking_plugs is given a method and AfterChange monitor called show_plugs whose body is

{HideImage(Drawing1); ShowImage(Drawing4)};

starter_motor is given a method and AfterChange monitor called show_smotor whose body is

{HideImage(Drawing1); ShowImage(Drawing5)};

battery is given a method and AfterChange monitor called show_battery whose body is

{HideImage(Drawing1); ShowImage(Drawing6)};

cabling is given a method and AfterChange monitor called show_cables whose body is

{HideImage(Drawing1); ShowImage(Drawing7)};
a) Now we need to write the function used by the 'Reset' button to replace a coloured diagram with the original, uncoloured, diagram. Using the 'Edit Tools' window, click on the 'Function' icon, select 'New', and make a function called reset. In the 'body' part of the function editor, type ShowImage(Drawing1);

[Notice that this ‘reset’ function is quite different to the one we had in the last workshop. There, it was necessary to clear out the contents of the slots after a program run, so that they didn’t interfere with the reasoning in the next program run. Here, it isn’t; a new forward-chaining program run will automatically overwrite the slot contents with fresh information, wherever necessary. But it will sometimes be desirable to take the ‘drawing that explains what the problem is’ off screen.]

i) Now go to the 'session' window, and type <ctrl> L to go into layout mode. Finally, still in the 'session' window in layout mode, pick 'Attributes' from the 'Window' menu. Make the title Illustrated car trouble shooter. Then click on OK, and type <ctrl> L to go out of layout mode.

10. Use File.Save in the main Kappa window to save the program. Then try it out. Putting a pattern of ticks in the check boxes, followed by clicking on the 'Proceed with diagnosis' button, should not only cause a box saying "The problem with the car is …" (followed by the correct diagnosis) to appear, but part of the diagram should turn red to emphasise the point. Clicking the 'Reset' button should restore the diagram to normal, or entering a different pattern of ticks + the 'Proceed' button should give a different answer box and a different diagram colouring. If any of this doesn't work, examine the code in the various objects to see where you have gone wrong.

Commentary on the above.

1. The hierarchy of car-parts. Organising the objects in this way - so that they reflect the way things are organised in the real world - is sensible, since it helps you to organise your thoughts, see what you have included and what you have missed out, and so forth. It also allows you to give a whole group of objects the same property - inheritance takes care of that: you just ensure that the top class in the group has a particular slot + value combination. We didn't use this to the full. Given a different application, it might have been useful to give the class called 'electrics' (and therefore all the objects under 'electrics') a slot called 'voltage' whose value was '12' - if the reasoning process established that the value of 'electrics' was really 8, and wrote this value into the 'electrics' class, all the objects below it would get the value automatically.

2. You may think the diagnostic knowledge incorporated into this system isn't particularly sound ("Surely, if the battery's voltage is too low, this is more likely to be a problem with the charging than the battery?"). In which case, as an exercise, you might care to correct it and modify the knowledgebase so that the system gives better diagnoses.

3. You might think that the diagram doesn't really add very much to what the user is being told. True; but if it was a diagram like the one below, it might very well be the best way to tell the user where to find some part of the car - much better than a text description saying "find a point 30 cm diagonally above and behind the largest bolt inside the rear offside wheel arch …" etc etc.

[image: image4.png]

Workshop 5
Representing knowledge in diagrams
The purpose of this workshop is to

· Explore the way in which raw knowledge - unorganised knowledge that has been derived from a source such as an interview with an expert - can be turned into intermediate representations such as diagrams.

5.1
Two sorts of chart

Here is a paragraph of knowledge concerned with diagnosing what's wrong with a car engine that won't start. Think of it as an extract from an interview with an expert car mechanic, who’s agreed to put some of his (or her) knowledge into an expert system.

"If the car won't start, you need to ask yourself whether the engine is turning over when you turn the ignition. If it is, then the problem is with the spark plugs. If it isn't, then assuming the petrol is reaching the engine, you need to find out whether the lights come on when you turn the light switch. If they don't, the problem is with the battery, or cables, but if they do, the problem is with the starter motor. But, as I said, that assumes the petrol is reaching the engine. If there's petrol in the carburettor, then that isn't a problem. If there isn't, then look in the tank: if there's no petrol there, then obviously you've run out, but if there is, and there isn't any in the carburettor, then the problem is a blocked feed pipe".

The presence of all those "if … then …" sentences should tell you that this is, or at least could be, rule-based knowledge. It's rather a tangled account, though; it would be better (i.e. easier to follow, and easier to use) if it was drawn out as a diagram. Here are two possible diagrams, incorporating the same knowledge:

and/or chart:

the problem is X

X = empty
X = blocked

X = spark plugs

X = battery
X = starter petrol tank
petrol feedpipe

 or cables
 motor

petrol

reaching

engine

petrol

petrol

engine

lights

isn't in

isn't in

lights
won't

will

tank

carburettor

won't
turn

turn

petrol
petrol

engine
turn
over

on

is in
is in

turns
on

tank
carburettor

over

The principle of this graph is that pieces of evidence are written at the bottom, intermediate conclusions are written in the middle, and final conclusions are written at the top. The lines tell you which pieces of evidence have to be true for a conclusion to be true. If a group of lines are joined together like this: then all the pieces of evidence joined to that point have to be true; if a group of lines aren't joined in that way, then any one of the pieces of evidence needs to be true. To use the chart, you start at the bottom with any pieces of evidence that you possess, and follow the lines to see where they lead you. Or you start at the top with a guess as to what is wrong, and follow the lines to see what pieces of evidence you will need to collect.

discrimination net (decision tree):

Is there petrol in the tank?

yes no

the problem is:

run out of petrol

Is there petrol in the carburettor?

yes no

the problem is:

blocked feed pipe to carburettor

Does the engine turn over?

yes no

the problem is:

spark plugs

Will the lights turn on?

yes no

the problem is:

the problem is:

the starter motor

the battery or cables
To use this chart, you start with the question at the top, and, according to your answer, find yourself at a diagnosis or a follow-up question. And so on, until you reach a diagnosis.

You might wonder why I have bothered to show you two diagrams - surely it would be better to just decide which type works best and stick to that? The answer is that, as an aid to designing a piece of problem-solving software, they have different strengths and weaknesses.

The discrimination net (or decision tree) is useful if you want to write a conventional computer program with branches in it. Each of the questions will feature in the finished program as an "if … else" statement, or some similar statement that the programming language supports.

The and/or graph is useful if you want to write the system using a rule-based reasoning package. Each of the points where a number of lines enters a conclusion from below will turn into a rule in the finished program; the conclusion will be the conclusion of the rule; each of the pieces of evidence feeding into it will be a condition of the rule. If the point looks like this: then the conditions will be joined by "and" statements. If it looks like this: then the conditions will be joined by "or" statements.

It's a little harder to construct a discrimination net than an and/or graph (starting from information gleaned from a domain expert), because you have to decide the order in which to ask the questions.

In general, knowledge engineers prefer to use a rule-based reasoning package. The resulting program tends to be much easier to read and understand, and to debug, modify and extend, than if it had been written as a conventional computer program.

5.2
Exercise

Turn the following paragraph of text, taken from an interview with an expert in fruit storage, into an and-or chart. [The secret is to pick out the if…then… rules and ignore everything else. Your chart should have 3 conclusions: "Fruit ripens slowly", "Fruit ripens rapidly", and "Fruit rots".]
"You need to know about climacteric and non-climacteric fruit, and you also need to know about tropical and non-tropical fruit. If the fruit is citrus, or an apple, or a pineapple, or a fig, or a grape, then it is non-climacteric. On the other hand, if the fruit is a banana, or a mango, or a pear or an avocado, then it is climacteric. You could also say that if the fruit is a banana, or a mango, then it is tropical. When you store fruit, you control the temperature and the atmosphere, because you want the fruit to ripen slowly without rotting. If the storage temperature is normal, and the storage atmosphere is normal too, and the fruit is non-climacteric, then the fruit will ripen slowly. That's the first way to do it. If the storage temperature is below 15(C and the fruit is climacteric, then the fruit will also ripen slowly. There's a third way to do it: if the storage atmosphere is enhanced with CO2 and the fruit is climacteric, then the fruit will ripen slowly. Two things that can go wrong: if the storage temperature is normal, and the storage atmosphere is normal too, and the fruit is climacteric, then the fruit will ripen rapidly. And if the storage temperature is below 15(C and the fruit is tropical, then the fruit will rot."

Workshop 6 - a simple backward-chaining system

The purpose of this workshop is to

· Introduce you to backward-chaining rule-based reasoning.

· Introduce another feature of the user interface: the state-box.

Here is another extract from an interview with a domain expert. This time it’s an executive with a finance company, talking about the sort of client who is granted a loan:

“We loan money to anyone who’s employed and earning at least fifteen thousand, or self-employed and earning at least twenty thousand, provided their employment is satisfactory and they’ve got proper identification. Satisfactory employment means that they have been doing the job for a year, if they’re an employed person, or they own their own home if they’re self-employed. Proper identification – that means they can show us a credit card, or a passport, or a driving licence, but in that last case they would have to show us a certificate of insurance too. There is also the question of what their credit limit is. If they are employed, it will be one tenth of what they are earning. If they are self-employed, it will be one fifteenth of what they are earning.”

Notice that a domain expert can’t be relied on to talk to you using the sort of straightforward, easily processed ‘if … then …’ statements that we saw in Workshop 1. If he/she doesn’t, then it’s up to the knowledge engineer to spot the rules that are concealed in the text, and convert the text into if…then… rules, if this is possible. In the case of this text, we need to decide: what is the decision that is being made? The answer is, is the client eligible for a loan? Three things must be true before the answer is “yes”. Certain other things must be true before each of these three things is true. One could draw up an and-or chart like this:

client is eligible for loan

earnings satisfactory
 employment satisfactory

identification satisfactory

 *

 *

*
 *
 got
 got
 *

credit card passport

salary

 salary
 been
 owns

 got
 got

>15000

 >20000
 doing
 their

 driving insurance

 job for
 home

 licence certificate

 a year

employed
self-employed

You’ll notice that in several places I’ve put a * instead of the name of a state of affairs. In the first pair of cases, that’s because there are two ways to reach the same conclusion (that the earnings are satisfactory). I could have drawn it like this:

earnings satisfactory

employed Salary >15000
self-employed salary >20000

but that would, I think, have been harder to follow. The second pair of *s is there for the same reason. So is the last one – the two states “got driving licence” and “got insurance certificate” combined are one way to have satisfactory identification.

The question of what the successful client’s credit limit will be is separate, and one shouldn’t attempt to incorporate it in the same chart. We will leave this feature of the system to a later workshop.

The and-or chart can, of course, be turned into a set of if-then rules. Since there are nine junctions in the chart, you might assume that the rulebase will contain 9 rules. However, if two different groups of conditions lead to the same conclusion, you don’t need a rule that explicitly says so. You can either just have the two rules, or you can combine them into one rule, using a combination of conditions joined by “and” and conditions joined by “or”. Doing it the second way would mean writing one less rule, but it would be a rule that was harder to understand. Notice that very often there is more than one way to construct a rulebase: a long-winded way, with a lot of rules (which has the advantage that it’s easy to see what the knowledge is all about), or a more compact way with fewer rules (the rules being harder to understand). On this occasion, we’ll build a rulebase with six rules in it.

Notice that there is a single conclusion at the end of the reasoning process. This makes the knowledge a prime candidate for a backward-chaining system. We will therefore build a backward-chaining system, using this knowledge.

The knowledge is concerned with a client, and there are various aspects of this person that we will need to discover and store information about. However, rather than have one class containing a lot of slots, it will be tidier if we have three classes describing different aspects of the client. One, ‘client’, will contain the key features used when making the final decision. One, ‘client_documents’ will contain information about his/her identification documents. And one, ‘client_status’, will contain everything else that’s relevant.

1. Classes. Load Kappa-PC. When you have the object browser on screen, with the ‘Root’ class highlighted, use the ‘AddSubclass’ option on the ‘Edit’ menu to make a class called client. Then make another class under ‘Root’ called client_documents. Then make another class under ‘Root’ called client_status.

2. Slots.

a) Double click on the ‘client’ class. Using the ‘slots’ menu in the class editor, make a slot called employment, a slot called salary, a slot called identification, and a slot called loan. With the class editor still on screen, double click on ‘employment’. In the slot editor, under ‘allowable values’, type

satisfactory

“not satisfactory”

Click on the check box labelled ‘Ask value if NULL in backward chaining’, at the bottom of this editor, so that there isn’t a tick in it. [This is important – our system will be reasoning by backward chaining, which means that, if it needs a slot value and the slot doesn’t contain one, it will tend to ask the user what the value is. But here, we’re dealing with the last rule in the reasoning process, and we don’t want it to ask the user – we want it to try the rules leading up to this last rule instead.] Click the OK button.

b) Do the same for the ‘salary’ slot and the ‘identification’ slot – give each of them the allowable values satisfactory and “not satisfactory”, and make the system not ask the user for a value if it finds NULL.

c) Do the same for the ‘loan’ slot – make the system not ask the user for a value if it finds NULL – but this time give it the allowable values “has been approved” and “cannot be approved”.

d) At the class editor, choose ‘update.save’ and ‘update.close’.

e) In the object browser, double click on the ‘client_documents’ class. Make a slot called credit_card, a slot called passport, a slot called driving_licence, and a slot called insurance_certificate.

f) With the class editor still on screen, double click on ‘credit_card’. In the slot editor, under ‘allowable values’, type

“has one”

“hasn’t got one”

This time, don’t touch the check box labelled ‘Ask value if NULL in backward chaining’, at the bottom of this editor – it should have a tick in it. [The reason is that sooner or later the backward-chaining process does have to ask the user for pieces of information that it can’t get any other way, and finding out about this document is just such an occasion.]
g) Do the same for the slots ‘passport’, ‘driving_licence’, and ‘insurance_certificate’: give them the allowable values “has one” and “hasn’t got one”. Don’t change ‘(Ask value if NULL in backward chaining’.

h) In the object browser, double click on the ‘client_status’ class. Make a slot called employment, a slot called home, a slot called time_in_job, and a slot called income.

i) Give the first three slots the following allowable values:

slot:
allowable values:

Employment
employed

self_employed

unemployed

Home
“client owns it”

“client does not own it”

time_in_job
“at least a year”

“less than a year”

The last slot, ‘income’, should have its value type changed to ‘NUMBER’. ‘Min Value’ should be made 0. ‘Max Value’ should be left blank.

Don’t change ‘(Ask value if NULL in backward chaining’ for any of the four slots.

3. Rules. It’s clear that we need a rule which decides whether the loan is approved (we will call it ‘loan_approved’) on the basis of the client’s identification, employment, and income. We also need at least one rule to establish whether the identification is OK (and, in fact, one will do), at least one rule to establish whether the employment is OK (we will use two, for clarity), and at least one rule to establish whether the income is OK (we will use two, for clarity).

a) Use the ‘Edit Tools’ window to make a new rule called loan_approved, whose if-part is like this:

 (client:identification #= satisfactory) And

(client:employment #= satisfactory) And

(client:salary #= satisfactory);

and whose then-part is like this:

client:loan = "has been approved";

b) Now make the following rules:

Rule:
If-part:
Then-part:

salary_ok1
(client_status:employment #= employed) And (client_status:income >= 15000);
client:salary = satisfactory;

salary_ok2
(client_status:employment #= self_employed) And (client_status:income >= 20000);
client:salary = satisfactory;

Employment_ok1
(client_status:employment #= employed) And (client_status:time_in_job #=

"at least a year");
client:employment = satisfactory;

Employment_ok2
(client_status:employment #= self_employed) And (client_status:home #=

"client owns it");
client:employment = satisfactory;

Identification_ok
(client_documents:credit_card #= "has one") Or (client_documents:passport #=

"has one") Or

((client_documents:driving_licence #= "has one") And

(client_documents:insurance_certificate #= "has one"));
client:identification = satisfactory;

Notice the way that, in the first two rules, the size of the income (which is a number) is checked using >=, which means “is it greater than or equal to?” (a condition doesn’t always have to contain the “#=” sign). Also notice the way in which, in the if-part of the last rule, the expressions have been bundled together: the first expression, or the second expression, or (a combination of the third expression and the fourth expression). I've used an extra pair of brackets to make sure that the last two expressions are combined together. If you check back to the and-or chart, you will see that that was what was required.

4. Functions. We need two functions: one to start backward chaining, and the other to put the values of all the slots back to their initial state, ready for the next program run.

a) Make a function called process, with the following body:

BackwardChain(Goal1);

b) Make a function called reset, with the following body:

{

ResetValue(client:loan);

ResetValue(client:employment);

ResetValue(client:identification);

ResetValue(client:salary);

ResetValue(client_documents:credit_card);

ResetValue(client_documents:driving_licence);

ResetValue(client_documents:insurance_certificate);

ResetValue(client_documents:passport);

ResetValue(client_status:employment);

ResetValue(client_status:home);

ResetValue(client_status:income);

ResetValue(client_status:time_in_job);

};

[If this function is put into effect, the twelve slots named will lose whatever value they contain, and get the value ‘null’ instead, which has the same effect as having no value at all.]

5. Goal. In backward chaining, it is always necessary to specify a goal – usually a slot value that could be found if one of the rules were to fire. Use the ‘Edit Tools’ window to make a new goal called goal1, whose body is as follows:

KnownValue?(client:loan);

Have a look at the rule ‘loan_approved’, and note that if it were to fire, ‘client:loan’ would have a value. So backward-chaining will start by trying to make this rule fire, by checking whether its conditions are true or not. And, of course, it will do this by searching for other rules that would make the conditions true if they were to fire, and it will check their conditions too.

6. User interface. The user interface will need a button to start backward chaining, and another one to put the slots back to their original state (after one program run and before the next). It will also need some output object to show the contents of the ‘client:loan’ slot, which represent the result of the backward-chaining reasoning process. We will use a ‘state box’ – this is linked to a particular slot, and displays indicators on screen for each of the possible values that this slot can have. When the slot acquires one of these values, the corresponding indicator lights up.

a) Get the ‘SESSION’ window on screen (or click on it to select it if it’s already there). Type <ctrl L> to go into layout mode. Insert a button into the window, double-click on it to get the Button Options dialogue on screen, make its Title Process application, and make its Action process. Click on OK, then resize the button so that it’s large enough to show the title properly.

b) In the same way, make another button whose title is Reset, and whose action is reset.

c) Insert a State Box into the window, double-click on it to get the State Box Options dialogue on screen, make its Title Result of application for loan, make its Owner client, and make its OwnerSlot loan. Leave the other two parts of the dialogue box empty, and click on OK.

d) Use the Window/Attributes dialogue to make the session window’s title Loan decision. Type <ctrl L> to go out of layout mode. You should now have a session window that looks something like this:

7. Save the program, using the name LOAN1.KAL, in your own account.

8. Try the program out. Click on ‘Process application’. If you’ve written the knowledgebase, and the user interface, correctly, the system should engage in a question and answer session with you, starting with the question

User Request

 Please enter the value of

 client_documents:credit_card

has one

hasn’t got one

Comment…

Unknown

OK

If this was a system that was to be used by ordinary users, you might have to explain exactly what the question meant.

Give the system a series of answers that amount to a client who is eligible for a loan.

 When the system knows enough to make a decision, the ‘has been approved’ indicator should light up in red. Press ‘Reset’ (which should make the indicator go back to normal), and try it again with answers that amount to a client who isn’t eligible – the indicator shouldn’t light up. Notice the way in which the system only asks the questions that it needs to ask – for instance, if you tell it that the client is self-employed, it won’t ask how long he/she has been in their job. This is a characteristic of backward chaining.

· If the system doesn’t properly complete the dialogue, or if it gives wrong answers, see if you can work out which part of the system is malfunctioning, and see if you can correct it.

· Notice that, while there are several different sets of answers that you can provide that will make the ‘has been approved’ indicator light up, there is nothing that you can do that will make the ‘cannot be approved’ indicator light up – even if you type in details of a client who clearly cannot be approved. This is obviously unsatisfactory.

· Think about why the system is behaving in this way. Write down an explanation on paper.

· Think about how you would correct the system so that it does work properly – making the ‘cannot be approved’ indicator light up whenever it becomes apparent that a client can’t be offered a loan.

Workshop 7 - extensions to the simple backward-chaining system

The purpose of this workshop is to

· Show you how a program can be made to perform a series of tasks, by means of elaborate functions.

· Introduce two other features of the user interface: InputForms, and Transcript images.

· Show you how a program can produce reports.

In workshop 4, we built a backward-chaining system that could advise on loan applications. It could be improved in a number of ways:

1. The system should have taken steps to discover the client’s name, and to have it displayed on screen during the program run.

2. The questions addressed to the user should have been properly constructed, rather than referring to slot values (which is very likely to confuse the user).

3. Part of the knowledge that the domain expert supplied – concerning the client’s credit limit – wasn’t included at all. The credit limit should be computed and displayed whenever a loan application is approved.

4. The system should, on request, produce a report of the decision that has just been made, and this should be stored as a file that could be printed out and passed to the client, or passed to another department.

Retrieve the copy of the file ‘loan1.kal’ that you made in workshop 4. Then save it again, under a new name – loan2.kal. We are about to make a new version of the program, with enhanced features.

1. If you haven’t already done so, add the extra rules specified on p.90.

2. Prompt questions. Improving the ‘User requests’ that the system addresses to the user is simply a question of adding a prompt question to the relevant slot. Get the slot editor for the slot ‘client_documents:credit_card’ on screen. Find the button labelled ‘Prompt…’, click on it, and, in the ‘Slot prompt and comment’ dialogue, add the Prompt Can the client show a credit card? Click on OK, then on OK. Do something similar for the slot ‘client_documents:passport’, then for the slot ‘client_documents:driving_licence’, then for the slot ‘client_documents:insurance_certificate’. Then save and close the class object.

Do something similar for the slots in the ‘client_status’ class. ‘employment’ should get the prompt question What is the client's employment status?, ‘home’ should get Does the client own his/her own home?, time_in_job should get How long has the client been working in this job?, and income should get What is the client's annual income in pounds?. Then save and close the class object.

3. Classes and slots. We are going to store the client’s name, and their credit limit; we will need slots to do this. Invent a new class, under ‘root’, called client_name. Give it three slots – style, first_name, and surname. Add the slot called credit_limit to the class ‘client’. Give it 'Value Type' NUMBER, and 'Min. Value' 0.

4. User interface. Modify the session window so that it looks like the picture below. Go into layout mode, add the extra three components, and move the others around to make room for them.

The extra button obviously has the title Produce a report. It should also have an action called report. The other two new components – the small box in the top left hand corner, and the larger box at the bottom – are both transcript images. Use the Select/Image menu (or the Image palette) to insert them. Give the first the title Loan application in the name of and the second the title Report. Kappa will automatically give the first the name (as opposed to the title) ‘Transcript1’ and the second the name ‘Transcript2’.

5. Rules. We need a pair of rules to calculate the credit limit; apart from that, we have all the rules we require. Make the two rules as follows:

rule:
if-part:
then-part:

get_credit_limit1
(client:loan #=

"has been approved")

And

(client_status:employment #= employed);
SetValue(client:credit_limit, client_status:income / 10);

get_credit_limit2
(client:loan #=

"has been approved")

And

(client_status:employment #= self_employed);
SetValue(client:credit_limit, client_status:income / 15);

The ‘SetValue’ function used in the then-part of these two rules is a standard way of getting a value and putting it into a named slot in Kappa. The first item inside the brackets is the name of the slot that is to be filled. The second item involves taking a value out of another slot and doing some arithmetic on it to provide the value needed. [In fact, ‘SetValue’ is useful in a wide variety of circumstances. We could have used it in all the rules we have written so far. The ‘class:slot = value’ form we have been using is just a shorthand for the full SetValue form].

6. The ‘Process’ function. The main change to be made to this program is to elaborate the function ‘process’ which is triggered by clicking on the ‘Process application’ button. In the old version of the program, it simply started the backward-chaining process in order to fill the ‘client:loan’ slot. In the new version, it will get the client’s name from the user and store it, put this name on screen in the first of the transcript boxes, perform backward chaining as just described, and finally, if the loan application has been successful, perform more backward chaining to discover the client’s credit limit and display this too.

Get the Function editor for ‘process’ on screen and modify the contents of the body so that they read like this:

{

PostInputForm("Please enter the client's name",

client_name, style, "Style (Mr, Mrs, Ms etc):",

client_name, first_name, "First name:",

client_name, surname, "Surname:");

DisplayText(Transcript1, client_name:style, " ",

client_name:first_name, " ", client_name:surname);

BackwardChain(Goal1);

If (client:loan #= "has been approved")

Then

{BackwardChain(Goal2);

PostMessage("The client's credit limit will be: ",

 client:credit_limit);};

};

The ‘PostInputForm’ function used at the beginning is another way to ask the user for information. It makes a form appear on screen, for the user to fill in, and then puts the responses into the named slots of the named classes.

The ‘DisplayText’ function makes the specified text (which may be taken from specified slots, as here, and assembled into sentences) appear in the specified transcript image window.

Notice the way that the second instruction to perform backward chaining (to find the credit limit) only happens if the right conditions are met – namely, that the loan has been approved.

Having typed all this in, save the new version of the function.

7. The ‘report’ function. This is triggered by the ‘Report’ button. It constructs a file, based on the results of the program run just completed, and displays it in the second transcript image window. Get a Function editor for the new ‘report’ function on screen and type the following into its body:

{

OpenWriteFile(report.txt);

WriteLine("The application for a loan by",

client_name:style, client_name:first_name, client_name:surname);

WriteLine(client:loan, ".");

If client:loan #= "has been approved"

Then

WriteLine("The credit limit for this loan will be £", client:credit_limit, ".");

CloseWriteFile();

DisplayFile(Transcript2, report.txt);

};

Then save it. This not only creates a file called ‘report.txt’, puts the specified text (including slot contents) into it, and displays it in the ‘Transcipt2’ transcript image window, it saves it in your Kappa directory from where it could be printed out.

8. The ‘reset’ function. This needs minor modifications, to take account of the extra slots that have been created, and also to clear the contents of the two transcript image windows, ready for the next program run. The body of the function should read as follows:

{

ResetValue(client:loan);

ResetValue(client:credit_limit);

ResetValue(client:employment);

ResetValue(client:identification);

ResetValue(client:salary);

ResetValue(client_documents:credit_card);

ResetValue(client_documents:driving_licence);

ResetValue(client_documents:insurance_certificate);

ResetValue(client_documents:passport);

ResetValue(client_status:employment);

ResetValue(client_status:home);

ResetValue(client_status:income);

ResetValue(client_status:time_in_job);

ResetValue(client_name:style);

ResetValue(client_name:first_name);

ResetValue(client_name:surname);

ClearTranscriptImage(Transcript1);

ClearTranscriptImage(Transcript2);

};

9. The second backward chaining operation needs a goal. So make one, called Goal2, with the following in its body:

KnownValue?(client:credit_limit);

10. Having modified the program as specified above, try it out to see whether it works. If it doesn’t, locate the bugs and correct them. Also ask yourself whether the program could be improved. Are there any features that are missing? Or that could function better? Make a list.

Workshop 9 - Using Instances in Kappa-PC

The purpose of this workshop is to

· Develop a frame based expert system

· Introduce Instance

· Introduce a new feature of the user interface: Combo Box

This workshop is to create an accommodation advice system for Middlesex University student. It also demonstrate how we can create a hybrid system of objects (classes and instances) and rules.

1. Class.

Load Kappa-PC. When you have the object browser on screen, with the ‘Root’ class highlighted, use the ‘Add Subclass’ option on the ‘Edit’ menu to make a class called accommodation. Then make another class under ‘Root’ called student.

2. Slots.

a. Double click on the ‘accommodation’ class. Using the ‘slots’ menu in the class editor, make a slot called sport_facility. Set the ‘Value Type’ as ‘Boolean’.

b. Now create more slots for ‘accommodation’.

Slot
Value Type

Distance_from_clondon
Number

Distance_from_boundsgreen
Number

Distance_from_hendon
Number

Distance_from_campus_ok
Boolean

Distance_from_clondon_ok
Boolean

Sport_facility_ok
Boolean

Accommodation_ok
Boolean

Location_ok
Boolean

c. Now create more slots for ‘student’.

Slot
Value Type
Allowable values

Campus
Text
“Bounds Green”

Hendon

max_distance_from_campus
Number

max_distance_from_clondon
Number

need_sport_facility
Boolean

3. Instances.

The system only needs to provide advice to one student at a time. You will create three instances for the different accommodation.

a. Ensure that the object browser window appearing on screen.

b. Click on ‘accommodation’ sub-class and use the ‘Add Instance’ option on the ‘Edit’ menu to make an instance called Gubbay_Hall.

· Double click on the ‘gubbay_hall’ instance. Edit the slot called “sport_facility” and type TRUE in ‘Value’ box, then click on OK button.

· Edit the slot “distance_from_clondon” and type in 12.8
· Edit the slot “distance_from_boundsgreen” and type in 4.5
· Edit the slot “distance_from_hendon” and type in 9.5
· Save the instance.

c. Now create more instances and enter the values for slot ‘accommodation’.

Slot
WoodGreen_Hall
Usher_Hall

sport_facility
FALSE
TRUE

distance_from_clondon
7.6
9.3

distance_from_boundsgreen
1.6
6.4

distance_from_hendon
5.8
0.1

4. Rules.
We need to create rules, which can help us to find the best accommodation. The first rule is to find an accommodation near to the student main campus. In the ‘Edit Tools’ window, click on the ‘Rule’ button and select ‘New’ to create a new rule. Call this rule near_campus.

· In the ‘Patterns’ text box, type in x|accommodation
· In the ‘If’ text box, type in

(student:campus #= "Bounds Green" And x:distance_from_boundsgreen <= student:max_distance_from_campus) Or

(student:campus #= Hendon And x:distance_from_hendon <= student:max_distance_from_campus);

· In the ‘Then’ text box, type in

x:distance_from_campus_ok = TRUE;
Make a rule called clondon
· In the ‘Patterns’ text box, type in x|accommodation
· In the ‘If’ text box, type in

x:distance_from_clondon <= student:max_distance_from_clondon;

· In the ‘Then’ text box, type in

x:distance_from_clondon_ok = TRUE;

Make a rule called location
· In the ‘Patterns’ text box, type in x|accommodation
· In the ‘If’ text box, type in

x:distance_from_clondon_ok #= TRUE And x:distance_from_campus_ok #= TRUE;

· In the ‘Then’ text box, type in

x:location_ok = TRUE;

Make a rule called sport_facility
· In the ‘Patterns’ text box, type in x|accommodation
· In the ‘If’ text box, type in

student:need_sport_facility #= x:sport_facility;

· In the ‘Then’ text box, type in

x:sport_facility_ok = TRUE;

Make a rule called best_accommodation

· In the ‘Patterns’ text box, type in x|accommodation
· In the ‘If’ text box, type in

x:location_ok #= TRUE And x:sport_facility_ok #= TRUE;

· In the ‘Then’ text box, type in

{

x:accommodation_ok = TRUE;

PostMessage("The best hall is, ", x);

};

5. Functions.
· In the ‘Edit Tools’ window, click on the ‘Functions’ button and select ‘New’ to create a new function. Call this function proceed. In the body of the function type
{

 SetForwardChainMode(DEPTHFIRST);

 ForwardChain ([NOASSERT]);

};
· The DepthFirst search method requires the system to follow the tree to the end of every branch before backtracking up the tree and considering alternative sub branches. Dynamically search using Depth First sets the order that the branches are created. As every branch and every node of the tree is accessed, the search method is exhaustive and guaranteed to find a solution if one exists. However, as it searches the whole tree it is not every efficient and is considered to be an uninformed search strategy. Depth First searching works best with narrow & deep trees.

· Create another new function call reset. In the body of the function type

{

 ForAll [x|accommodation]

{

 ResetValue(x:accommodation_ok);

 ResetValue(x:distance_from_campus_ok);

 ResetValue(x:distance_from_clondon_ok);

 ResetValue(x:location_ok);

 ResetValue(x:sport_facility_ok);

}

};

6. User Interface.
a. Get the ‘Session’ window on screen. Type <ctrl L> to go into layout mode. Insert a button into window, double click on it to get the Button Options dialogue on screen, make its Title Process, and make its action process. Click on OK, then resize the button so that it’s large enough to show the title properly.

b. In the same way, make another whose title is Reset, and whose action is reset.

c. Insert a Check Box into window, double click on it to get the Check Box Options dialogue on screen.

· make its Title Do you need sport facility?
· make its Owner student and make its OwnerSlot need_sport_facility
· click on OK button

d. Insert a Text Box into window, double click on it to get the Text Box Options dialogue on screen.

· make its Title Student Accommodation Adviser
· change the font size to 18
· click on the check box labelled ‘ShowBorder’, so that it is tick

· click on OK button

e. Insert a Combo Box into window, double click on it to get the Combo Box Options dialogue on screen

· make its Title Main Campus, make its Owner student and make its OwnerSlot campus

· make its Allowable value TRUE
· click on the check box labelled ‘Edit’, so that it isn’t tick

· click on OK button

f. Insert a Text Box into window, double click on it to get the Text Box Options dialogue on screen.

· make its Title Maximum distance from main campus (Miles)

· click on the check box labelled ‘ShowBorder’, so that it is tick

· Click on OK button

g. Insert an Edit Box (from the select menu, click on Image | Edit) into window, then double click on it to get the Edit Box Options dialogue on screen.

· make its Owner student
· make its OwnerSlot max_distance_from_campus
· click on OK button

· move the Edit Box next to the Text box

h. Insert another Text Box into window, double click on it to get the Text Box Options dialogue on screen.

· make its Title Maximum distance from central London (Miles)

· click on the check box labelled ‘ShowBorder’, so that it is tick

· click on OK button

i. Insert an Edit Box (from the select menu, click on Image | Edit) into window, then double click on it to get the Edit Box Options dialogue on screen.

· make its Owner student
· make its OwnerSlot max_distance_from_clondon
· click on OK button

· move the Edit Box next to the Text box

Supplement to workshop 6: why won’t the second indicator come on, and what’s to be done about it?

· The slot ‘client:loan’ stores the result of the reasoning process. Like any of the slots in this system, before any program runs have taken place it contains the value ‘null’ – in other words, no particular value. This will only change if some rule fires that has the effect of changing the contents of this slot. If the rule ‘loan_approved’ fires, this will change the slot contents to ‘”has been approved”’, and the first indicator will respond by lighting up. If this rule doesn’t fire, the slot value will continue to be ‘null’, and there’s no reason why the second indicator should respond to that.

· To make the second indicator do a useful job, we will need to add some more rules. If we add the following , it should work:

rule:
if-part:
then-part

loan_not_approved
(client:identification #= "not satisfactory")

Or

(client:employment #= "not satisfactory")

Or

(client:salary #= "not satisfactory");
client:loan =

"cannot be approved";

employment_not_ok
(client_status:employment #= unemployed)

Or

((client_status:employment #= self_employed) And

(client_status:time_in_job #= "less than a year")) Or

((client_status:employment #= self_employed) And

(client_status:home #= "client does not own it"));
client:employment =

"not satisfactory";

identification_not_ok
Not(client_documents:credit_card #= "has one") And

Not(client_documents:passport #= "has one") And (Not(client_documents:driving_licence #=

"has one")

Or

Not(client_documents:insurance_certificate #= "has one")

);
client:identification =

"not satisfactory";

salary_not_ok
(client_status:income < 15000)

Or

((client_status:employment #= self_employed) And

(client_status:income < 20000));
client:salary =

"not satisfactory";

I’ve used some quite complicated patterns of ‘and’, ‘or’ and ‘not’, together with extra pairs of brackets, to get the right combination of pieces of evidence that must be present, while still getting it all into four rules. There are other solutions, which would be equally effective, but which might involve more than four rules.

Appendix

That concludes my short course of workshops on Kappa-PC. If you browse through the on-line manual, you will realise that there are a lot of features of this package that I haven't covered. If you browse through the demonstration programs in the 'samples' directory, you can find some interesting examples of Kappa programming; by now you know enough to take them apart and see how they are constructed.

For your software assignment, you should be able to build a perfectly reasonable, useful, system using the features of Kappa described in this handbook. On the other hand, if you want to go further, and explore the package in more depth and incorporate other features in your system, please feel free to do so. The guiding principle is this: if it will make your system better (it will have desirable functions that it wouldn't otherwise have, or it will simply be programmed more elegantly), it's perfectly justifiable to include obscure or advanced features of Kappa. If the only effect is to make your program more complicated, without improving its functionality, then it isn't.

Treat the following as optional reading that you can ignore if you feel you already know enough about Kappa.

Some additional points about Kappa

1. Tests. The #= sign that you have used in the if-part of the various rules that you have written is a test ("Is the value in this slot the same as the following value?"). A fuller list of the tests available in Kappa is as follows.

test:
type of data it is used with:
the question that it answers:

#=
text or boolean
Is the first of these values the same as the second?

==
Numbers
Are these two values exactly the same number?

>
Numbers
Is the first of these two values numerically larger than the second?

<
Numbers
Is the first of these two values numerically smaller than the second?

>=
Numbers
Is the first of these two values numerically larger than, or the same size as, the second?

<=
Numbers
Is the first of these two values numerically smaller than, or the same size as, the second?

~=
Numbers
Is the first of these two values approximately the same size as the second; meaning, is it between 5% larger and 5% smaller than it?

!=
Numbers
Are these two values not numerically equal to each other?

The first value comes before the sign, the second after it. They can be used in the if-part of rules, and also in if-statements in functions and methods.

2. Patterns. You will have noticed that a rule editor, besides having a box for the if-part and a box for the then-part, has a smaller box at the top labelled 'patterns'. This allows you to write rules that apply to a number of different objects (all the instances of a class, say, or all the subclasses and instances of a class). Essentially, the 'pattern' treats part of the object:slot descriptions in the statements below as a variable, that can have any of a number of values. For example, suppose that in your knowledge base you have a number of products (available on the market), each represented as an instance of the class 'product'. Suppose that you want to write a rule that says "if the product passes the European safety standard, and its price is below 500, then it should have approved product status". This rule needs to be applied to each of the instances in turn. If we write it like this:

it will do the job. ' x|Products' means "in the rule below, wherever you find 'x', treat it as meaning any of the subclasses or instances of 'Products'".

3. Priorities. Once in a while you find that a rule-based system isn't giving the results that you wanted because, in one of the recognise-act cycles, there are several rules which could fire and the wrong one is firing. When this happens, you need to change the way the conflict resolution strategy decides which rule to fire. In Kappa, you can do this by changing the rule priorities. Each rule editor has a 'Priority' box next to the 'Patterns' box: normally, the number in it is 0. If you have two rules, A and B, and you want to be sure B will fire rather than A, change the priority number for B so that it is higher than the priority number for A.

4. Built-in functions. By now, you will be aware that you can write your own functions, and that when you do so, you can use the built-in functions - for instance, 'ResetValue' - that Kappa offers you to do certain essential jobs. These built-in functions are also useful in rules, in goals and in methods. There are actually far more built-in functions than I have mentioned so far: more than 300 of them. Using built-in functions, you can make your program modify the knowledgebase while it is running in a rather more drastic way than we have seen so far - inventing or deleting classes or instances, for example, or inventing or deleting slots in classes or instances.

Here is a list of some of the more useful built-in functions:

For rule handling:

Assert BackwardChain ForwardChain ResetForwardChain

SetForwardChainMode TestGoal

For object handling:

Class? DeleteClass DeleteInstance GetParent Instance? IsAKindOf? MakeClass MakeInstance ToClass ToInstance

For slot handling:

DeleteSlot GetSlotList GetValue KnownValue? LocalValue? MakeSlot ResetValue SetValue

For general control purposes (for instance, inside functions or methods):

AreAll? Break EnumList EnumSubClasses FirstValue For ForAll If IsThereAny? Let SelectList SelectSubClass While

Use the search facility in the on-line manual to find out what these functions do, and how they can be used.

5. Multi-valued slots. The slots that we have been dealing with so far have been single-valued. However, it is also possible for a slot to be multi-valued, in which case it contains a list rather than a single item. For example, suppose your knowledgebase contains instances that represent investors. Tom has three investments: textiles, chemicals and minerals. Dick has two: textiles and banking. Harry has one: farming. How should we store this information as slots? You could give the class 'investor' three slots: 'investment1', 'investment2', and 'investment3', so that the instance 'Tom' had values in all three, the instance 'Dick' had two with values in and one empty, and the instance 'Harry' had a value in one and the others empty. However, this would cause a number of problems: for example, suppose you had to add another investor who had five investments? Much better to have one slot called 'investments', which can have any number of items in it, from zero upwards.

If, when you are making a slot, you click on the 'Multiple' button in the 'Cardinality' portion of the slot editor, the slot will become multi-valued. If you type each of the required values in the 'Value(s)' window, one under the other, these will become the items in the list that lives in the slot.

The following are some of the built-in functions that Kappa has for handling lists. Once again, use the search function in the on-line manual to find out what these functions do, and how they can be used.

AppendToList ClearList GetElemPos GetNthElem InsertNthElem LengthList Member? RemoveFromList RemoveNthElem ReverseList SetNthElem SortList
Proceed with diagnosis

Reset

[You can use some other graphics package if you like, but it's important to save it as a .bmp file, and Paint does that by default. Also Paint produces a picture which is about the right size - about 15cm wide].

b) When you've finished it, save it in your Kappa directory, with the name engine.bmp.

c) Then make seven copies, with different bits coloured in, as follows:

First, if you haven't already got the picture 'engine.bmp' on screen, double-click on it to get it on screen. Use the 'fill' facility to colour in the fuel tank in red. Use the 'save-as' option on the 'file' menu to save the file under the name engine2.bmp, in the Kappa directory. Close the file.

(((

((

(((

Reset

Proceed with diagnosis

(Is there petrol in the tank?

(Does the engine turn over?

(Do the lights turn on?

(Is petrol reaching the carburettor?

(Battery properly charged when tested with a voltmeter?

Reset

Proceed with diagnosis

(

			

(

(

(

Loan Decision

Process application

Align Image Edit Control Options Window Select 	 Help

cannot be approved

Reset

Result of application for loan

has been approved

(

			

(

(

(

Loan Decision

Align Image Edit Control Options Window Select 	 Help

Loan application in the name of

cannot be approved

Process application

Result of application for loan

has been approved

Reset

Produce a report

Report

Patterns:

x|Products

If:

(x:euro_safety_std #= TRUE) And

(x:price < 500);

Then:

x:status = approved;

_1062341490.doc

[image: image1.png]spark plugs _cabling

fueltank fuel pipe engine battery

starter
carburettor motor

_1062412309.doc

[image: image1.png]spark plugs _cabling

fueltank fuel pipe engine battery

starter
carburettor motor

