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Abstract – This paper presents a novel approach to im-
plementation of finite state automaton (FSA) using fatigu-
ing Leaky Integrate and Fire (fLIF) neurons. This approach
uses fLIF neurons because they are a model of biological
neurons that closely approximates the basic functions of
neurons. FSAs are an important mechanism for processing
information. In this paper, the creation and implementa-
tion of two FSA models is described; the results show that
all input sentences are correctly marked as acceptable or
unacceptable.

Keywords: Fatiguing Leaky Integrate and Fire Neu-
rons, Finite State Automata, Parser

1 Introduction
A Finite State Automata (FSA) is a stan-

dard mechanism for processing information
[Lewis and Papadimitriou, 1981]. FSAs are not Tur-
ing complete, but they can be (and are) used for a wide
range of software and hardware applications.

A fatiguing Leaky Integrate and Fire (fLIF) neuron is a
model of a biological neuron that is reasonably accurate
[Huyck, 2007]. This model has been used to learn Cell
Assemblies (CAs) [Hebb, 1949]. CAs are a widely agreed
upon neural basis for concepts and are thus quite important.
However, a CA is an attractor state. While recognising ob-
jects and moving to attractor states is important, a complete
processing system needs to do more than this; it needs to
move to new states for processing.

A games agent has been implemented in
fLIF neurons for the CABot project (http :
//www.cwa.mdx.ac.uk/CABot1/CANT.html);
the agent views the environment, takes one of several
commands from the user, parses [Huyck and Fan, 2007]
the commands into semantic frames, sets goals based on
the semantics and executes actions. For example, when
the user types ”turn toward the pyramid”, the agent parses
it, sets up a goal of ”turn toward pyramid” and executes
an action of either ”turn left” or ”turn right” depending on
the location of the pyramid. This agent uses an informal
processing system.

In this paper, a more formal processing system, FSAs,
are described. The core pieces are described, along with
implementations of several particular FSAs.

2 Basic fLIF Model
The basic fLIF model is an idealized model of a biologi-

cal neuron, which is a modification of the integrate and fire
neuron [McCulloch and Pitts, 1943, Hopfield, 1982]; this
has been extended to the commonly used Leaky Integrate
and Fire model [Maass and Bishop), 2001].

2.1 Leaky Integrate & Fire Neurons
The integrate and fire neuron is a spiking neuron, i.e.,

each neuron collects energy from other connected neurons.
When the energy (activation, or potential) passes a thresh-
old, the neuron fires and sends out energy to other neurons.
A mathematical model of the neuron is given by Equation 1

Ei(t) =
1
d
Ei(t− 1) +

∑
Wji (1)

where, Wji is the connection weight between neuron-i and
neuron-j, and neuron-j is fired in the prior step; Ei(t) is
the new energy of neuron-i, Ei(t − 1) is the old energy of
neuron-i, and d is a decay constant (leak) that is greater than
1. That means if a neuron does not fire, its energy is reduced
by a decay parameter d; some of its energy leaks away. If a
neuron fires, it loses all its energy.

2.2 Fatigue and Fatigue Recovery
Each neuron has a fatigue value associated with it. When

a neuron fires, its fatigue is increased, and when it does not
fire the fatigue is reduced. A neuron fires if it has enough
activation to surpass the firing threshold plus the neurons
fatigue. This means a neuron becomes more difficult to fire
the more it is fired.

Equation 2 shows the change of fatigue level depending
on the neurons firing behaviour. F i

t and F i
t−1 are the fatigue

values of neuron i at times t and t − 1; Fc is the fatigue
constant for increasing the fatigue value of the fired neuron;
Fr is the fatigue recovery for reducing the fatigue value of
the unfired neuron; both are positive.

F i
t =

{
F i

t−1 + Fc fire
F i

t−1 − Fr not fire (2)

Equation 3 represents the effective change in firing
threshold at each cycle, a combination of Equation 1 and
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Figure 1: A Sample CA Network.

Equation 2.
θi

t = θ + F i
t (3)

θi
t is the new threshold for neuron i and θ is the initial

threshold. Again θ is a constant for all neurons in a sub-
net.

Based on Equations 1, 2 and 3, when Ei
t ≥ θi

t, the neuron
fires, otherwise it does not fire. Firing behaviour can be
restated as Equation 4.

{
Ei

t − F i
t ≥ θ fire

Ei
t − F i

t < θ not fire (4)

2.3 Topological Structure of the Network
A network of neurons can be described by a two dimen-

sional matrix. An example net is shown in figure 1, which
is a 15 × 15 net containing 225 neurons, where each circle
represents a neuron, a filled circle shows a fired neuron and
a white circle shows an unfired neuron. If the activation of a
neuron surpass a threshold, the neuron is activated or fired,
it spreads energy to other connected neurons, then loses all
energy. Each neuron is a fLIF neuron.

3 Finite State Automaton
The FSA technique is a ‘language recog-

nition device’ or a translator, like a compiler
[Lewis and Papadimitriou, 1981]. An FSA contains a
finite number of states, and its mathematical model can be
represented by: (S, Σ, T, S0, A), where:

S is a finite non empty set of states.
Σ is the input alphabet (a finite non empty set of sym-

bols).
T is a transition function (T: S×Σ→S).
S0 is start state, an element of S.
A is a set of accept states, a (possibly empty) subset of S.
A state indicates information about the past; i.e. it re-

flects the changes of state due to earlier input. A transition
indicates a change of state due to the current input.
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Figure 2: A Simple FSA for a*bc.

An FSA is commonly represented or described by three
methods: state diagram, state transition table and state
logic. For instance, figure 2 shows a simple example of
FSA drawn in a state diagram.

Where, ‘a’, ‘b’ and ‘c’ are the inputs, state0 is the start
state, and state2 is the final state. When the FSA is in state0
and the input is ‘a’, the FSA remains in state0; when the
input is ‘b’, the FSA switches to state1. When the FSA is
in state1 and the input ‘c’, the final state2 comes on, i.e.,
the goal has been achieved. That is, for this FSA, the input
string abc is an element of the language it recognizes. In
general, there are many routes for reaching the final state,
depending on the particular FSA and on the input sequence.
FSAs only accept the correct sequences of input reading, so
that the final goal can be achieved.

4 Structures
There are many ways to implement FSAs with fLIF neu-

rons. In this paper, three particular structures are used to
implement FSAs. The first is called a persistent net, which
continues to fire until shut down by another net; the second
is called an instant net, which only fires for a few cycles
and dies off. Instant nets and persistent nets are sufficient to
implement many FSAs. The third type of structure is called
a resistant net, which acts as a stub for the end of an arc
to avoid problems that some FSAs cause for systems based
solely on the first two structures.

4.1 Persistent net
The main feature of a persistent net is that, once started,

the net continues to fire without external input from outside
the net. This persistence is a basic function of CAs, but, for
clarity, in this paper, it is done with only six neurons. The
parameters and topology determine the performance of a
fLIF net. The main parameters are threshold, decay, fatigue,
fatigue recovery, the connections and connection weights.

Figure 3 shows the topology of a persistent net. A
circle represents a neuron and they are labelled A to F .
Connections are weighted and the bidirectional arrow (e.g.
A←→B) represents two uni-directional connections. The
values of threshold, decay, fatigue and fatigue recovery are
4, 2, 1 and 2 respectively. The Activity is governed by equa-
tion 1, fatigue by 2 and firing by 4. A persistent net has
a repeatable firing pattern, which makes each state of an
FSA model deterministic and stable. If ABC fire, the sys-
tem will oscillate between ABC and DEF . This particular
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Figure 3: The Topology of a Persistant Net of fLIF Neurons.
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Figure 4: The Topology of an Instant net of fLIF neurons.

system more or less ignores the fatigue behaviour by hav-
ing each neuron fire every other cycle and having fatigue,
Fc, less than fatigue recovery, Fr.

4.2 Instant net
The instant net fires for a few cycles and then dies off.

An instant net can be easily obtained by modifying the con-
nections of a persistent net. Figure 4 shows an instant net;
it is a simple modification of the persistent net by chang-
ing some connections and weights. The instant net is used
to represent the input of an FSA model. If ABC are fired,
DEF will fire in the next cycle, then C and then nothing.

4.3 Resistant Net
A resistant net is used in simulating particular FSAs.

FSA transitions are represented by resistant nets and once
activated, the resistant nets pass on energy to the destina-
tion state. The resistant net has the same topology as the

persistent net, but there are different connections between
structures.

5 FSA Implementation
These basic components can be combined to implement

FSAs. Input is represented by instant nets, and states are
represented by persistent nets. This is enough to implement
many but not all FSAs, and one that can be implemented is
described next. After that the resistant net is introduced to
account for two problems, and thus all remaining FSAs.

5.1 FSA Components
Each state is represented by a persistent net. The system

starts by turning on the initial state. Neurons ABC of figure
3 are fired by external activation (outside the network). This
state will remain active until there is an input. After this
initial firing, the state nets never receive external activation.
Aside from during state transition, only one state is active
at a time.

Each input is represented by an instant net. When there
is an input, the appropriate input instant net is started. It
is assumed that inputs come at least 10 cycles apart, but
anything longer than that is acceptable. The input net is
started by firing ABC of figure 4 by external activation.

The combination of activity from the current state and the
input neurons causes a new state to become active. This new
state suppresses the old state, and only one state remains on.
The activity is propagated by connections from the current
state to all states that are immediately after it.

The connection weights between states are supported
neurally by one to one connections with weight 1.5; e.g.
neuron A in state S0 is connected to neuron A in state S1,
B is connected to B. Alone, these connections do not cause
the neurons in the next state to fire. There are also connec-
tions from each input to all states that are transited to on a
particular input. The connection weights of input to state
are again neuron to neuron (A to A ... F to F ) with weight
2.5. Again, alone these connections are insufficient to cause
the neurons to fire.

The combination of connections from the state and the
input is sufficient to cause the neurons in the next state to
surpass their firing threshold and fire. This starts the cycle
in the new state.

There are also inhibitory back connections from state to
state. The connections are one neuron to one neuron and the
weight is -10. An example of this process is shown next.

5.2 Implementation of FSA 1
The neural implementation of the FSA model in figure

5 is described in this section. The ‘A choice-free version’
recognises simple noun phrases like ‘a big cat’, or ‘the big
black book’.

There are five states in this model, S0, S1, S2, e1, and
e2 with S0 being the start state and S2 the final state (goal).
C1, C2 and C3 are the inputs; C1 is either ‘a’ or ‘the’; C2



½¼

¾»
S0

½¼

¾»
S1

½¼

¾»
e2

6C1, C2, C3

½¼

¾»
S2

½¼

¾»
e1

µ´
¶³

HH
©©

- -
¡

¡
¡

¡
¡¡µ

.
..................

...............

............
.........
...... .... .... ...... .........

...........
.

..........
.....

..........
........N

C1

.
..................

...............

............
.........
...... .... .... ...... .........

...........
.

..........
.....

..........
........N

C2

C2 C3

C1

.
.......................

..................

............................
............

...................................
....

...................................... ..................................... .................................... .................................... .....................................
......................................

.......................................

........................................

.........................................

C3
µ

Figure 5: The FSA model-1, ’A choice-free version’.

is ‘big’, ‘fat’ or ‘black’; and C3 is ‘cat’, ‘dog’ or ‘book’.
Each state is represented by a persistent net and each of the
8 inputs is represented by an instant net.

Figure 6 shows the coarse connections. Solid arrows are
the ‘excitatory connections’, which show an active state or
input spreading energy to another state following the arrow;
dashed arrows are the ‘inhibitory connections’, which show
an active state switching off another state. The inputs are
‘a’, ‘the’, ‘big’, ‘fat’, ‘black’, ‘cat’, ‘dog’ and ‘book’. The
error states, e1 and e2, show an error message if the input
reading cannot be accepted by the FSA model. The im-
plementation has been tested on several different sentences.
The correct test sentences are ’cat’, ‘fat dog’, ‘a big cat’,
‘the big black book’ and ’a big fat black cat’; the incorrect
test sentences are ‘a black fat the cat’, ‘big fat the book’, ‘a
the book’ and ’book big’.

When the input reading is ‘the big black book’, the firing
procedure of the FSA model is as below:

1. At the beginning, the S0 persistent net is activated.
While there is no input, S0 continues to fire.

2. When the input is ‘the’, the FSA stays in S0.

3. When the input is ‘big’, S1 starts to fire due to exci-
tation from S0 and the ‘big’ instant net. At the same
time, S0 is shut down by S1.

4. When the input is ‘black’, S1 does not change and
keeps firing.

5. When the input is ‘book’, S2 starts to fire because of
S1 and the input ’book’; S1 is shut down by S2.

When the input is the incorrect sentence ‘a black fat the
cat’, e1 is the final state. After input of ‘a’, ‘black’ and ‘fat’,
the state is S1; the input of ‘the’, causes the e1 net to fire
because both of S1 and ‘the’ spread energy to it. The test
results show that it recognizes all the sentences correctly.

5.3 Implementation of FSA 2
The keen observer will note that there are two types of

problems that the above method does not handle. The first is
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Figure 6: the detail of connections in FSA model-1.
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the backward transition, an FSA with a transition from one
state Sm to another Sn and another transition back from Sn

to Sm. They both need to excite and inhibit each other. The
second problem is the exclusive-or problem. An example
of the exclusive-or problem is shown in figure 7. The prob-
lem is that the final state can be reached via two paths. For
example, if the system is in S1, an input of ‘a’ causes it to
incorrectly transit to S3. In order to overcome this problem,
two resistant nets are used to delay spreading energy to S3

from condition ‘a’ or ‘b’.
The connections to and from the resistant net are again all

one to one. The weights to the resistant net are the same as
those to the persistent net, from predecessor state 1.5, from
input 2.5, and from the successor state -10. The weight from
the resistant net to the successor state are 3.5 enabling an
automatic transition in 4 cycles. The weight from resistant
net to the predecessor state is -10.

Figure 8 shows the coarse connections between nets. The
solid arrows are ‘excitatory connections’, and the dashed
arrows are the ‘inhibitory connections’. The inputs are ‘a’,
‘b’ and ‘c’; S0 is the start state, S3 is the final state, and the
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Figure 8: the detail of connections of FSA model-2.

e1 and e2 are the error states. Ra and Rb are the resistant
nets.

For example, the input is ‘acb’. The start state is S0;
state S1 will fire because ’a’ and S0 are active; e1 will not
fire because ’a’ alone does not activate it. When ’c’ is read
there is no change of state. When ’b’ is presented, Rb starts
to fire because of energy from S1 and ’b’; state S3 is then
activated by energy from Rb alone.

Four main input readings of ‘abc’, ‘aca’, ‘bca’, and ‘bcb’
were tested, and the test results show that the FSA model-2
accepts the input readings of ‘abc’ and ‘bca’, and does not
accept input reading of ‘aca’ and ‘bcb’.

In general, each transition can be replace by a resistant
net. A transition Sm, σ, Sn would be represented by two
persistent nets Sm and Sn and a resistant net Rx. There
would be input from σ and Sm to Rx, and Rx would stim-
ulate Sn. Sn would inhibit both Rx, and Rx would inhibit
Sm. This solves both the exclusive-or problem, and the
backward connection problem.

6 Conclusion
The FSAs have been successfully implemented using

nets of fLIF neurons, and the experiments show that the
neural implementations recognize the acceptable sentences
correctly and note unacceptable sentences. It should be ob-
vious how any FSA can be implemented in this fashion.
This shows that a wide range of traditional programs – such
as language parsing system, environment control, decision-
making and control system – can be readily implemented by
simulated neurons. Perhaps more importantly, this shows
how a standard programming paradigm, FSAs, can be used
to implement process in a neural system. These neural
FSAs can then be used as a skeleton to integrate neural com-
ponents that implement more sophisticated behaviour such

as learning. This has been the approach described elsewhere
in these proceedings [Huyck, 2008].
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