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Abstract. There are many examples of intelligent and learning systhe emergence of logical rules. Although the process relies heavily
tems that are based either on the connectionist or the symbolic apn Hebbian learning of synaptic weights, it employs the interaction
proach. Although the latter can be successfully combined with staef several networks with polar functionality. Thus, the resulting dy-
tistical learning to create a hybrid system, it is not so clear hownamics of the system emerges from the interaction of large groups of
symbolic processing can emerge from a connectionst system. Hureurons, and it can be seen as a meta—learning process.

man mind is a living proof that such a transition must be possible. In the next section, the model of a fatiguing, leaky, integrate and
Inspired by biological cognition, our project explores the ways sym-fire (FLIF) neuron is described, and the CAs are formed and used
bolic processing can emerge in a system of neural cell-assembligs represent symbols. In the following section, information—theoretic
(CAs). Here, we present the meta—process that regulates learniragnalysis if stochastic learning will be outlined and its implementa-
of associations between the CAs. The process is compared with thn in our system will be presented. The final sections will present a
stochastic learning theory, and its outcome is a set of optimal rulesimple experiment illustrating the working of the system and its re-
The paper concludes by an example of a working system and thiation to other works will be discussed. Biological plausibility of the
discussion of it biological plausibility. learning process will also be considered.in the last section.

1 INTRODUCTION 2 OVERVIEW OF THE ARCHITECTURE

In the last decades, theories of cognition have been developed aloﬁlow IS an overview of the neural model and its parameters. A more
different paradigms — some are based entirely on studies and sim- tailed presentation can be found in [11].

ulations of biological neural processing, while others pursue a more

abstract approach by simulating the behaviour. The former facilitate®.1 ~ Fatiguing Leaky Integrate and Fire neurons

the solution of a great variety of engineering problems (e.g. signal,. loqical | d the levels of detail
rocessing, pattern recognition), while the latter have revolutionise lojogical neurons are complex systems, and the levels of detalls
P ' y varied significantly even in the early models [17, 9]. Our system

cognitive psychology [18]. Despite the successes, the process of un I - i . . -
fication of neural and symbolic cognitive systems have been slo yses spiking, fatiguing, leaky, integrate and fire (FLIF) units (art

Wicial cells) [16]. Our model is a compromise between computational

even though human cognition — the main subject of both aplOroaChe@l‘ficiency and biological plausibility reflecting properties that are, in

o Asltﬁoclljeirae:ﬁmlgi;ﬁ?;r??:?nacrlz ;Wsio s;dlgrs ce)frtzsnzzrrn(ff Cc:tr:éms i<t)ur opinion, particularly important for the emerging dynamics.
9 g fy 9 P ' The ‘integrate and fire’ component is based on the classical idea

Is believed that the_ groups of con_n_ected cells catielt-assemblies [17] that the neuron ‘fires’ if its action potentiad, exceeds a certain
(CAs) form the basis human cognition [8]. However, recent ad\ancethreshold valud). The action potential is a function of the inner—
in modelling human—level cognition were made mostly using Sym'product (integratorfw, z) — S°* . w; z;, wherez € R* is the
bolic cognitive architectures, such asA&R [18] and ACT-R [1]. The timulus vector (pre—éynaptic) ;:mtzzl é ]R?”“ is the synaptic weight
success of the latter can be explained largely by using the hybri@ ctor of the neuron. Her®" i:s k—dimensional Euclidean space
approach, where symbols are applied selectively based on statisticaT]erek is the number of synapses of the neuron '
associations and other sub—symbolic computations. This work is pa‘r’¥ The action potential depends on the pre and p.ost synaptic activity
of the project attempting to achieve complex symbolic processin%\/er several time moments:
and learning in a connectionist system.

Previously, the authors have demonstrated how states in a CA— Apsr = A 4 (weyzi), di= { +oo iffired _
based system can be controlled and used to perform a typical sym- dy Y d>1 otherwise

bollc.t.ask (cogntlng) [12]. This work has developed |.nto. amuch moreThus, the action potential is accumulated if the neuron does not fire.
ambitious project called CABT, where the same principles are ap- Parameter] > 1 allows for some of this activation to ‘leak’ away.
plied in a system integrating elements of vision, categorisation, nat.-l.he threshold of a neuron is also dynamic

ural language processing and learning in virtual environments, while
based entirely on CAs. This paper presents a part of this project
— learning the connections between different CAs that allows for
learning combinations of symbolic representations and uItimateIXN

Fy >0 iffired

b =6+, Fi= { F_ <0 otherwise

here valued; and F_ represent théatigueand fatiguerecovery
1 Middlesex University, London NWwW4 4BT, UK, email: rates. Thus, if a neuron fires at timeits threshold increases, and it
R.Belavkin@mdx.ac.uk is less likely to fire at time + 1, even ifxi41 = .




Finally, the weightsw;: can adapt according to the compensatory ing of the connections between different modules involves a meta—
learning rule [11], which is an implementation of the Hebbian prin- process. Indeed, although the connections between the correlated
ciple [8], wherew;11 depends on the correlation between the pre—cells are strengthened via the Habbian learning, it is the meta—process
synapticz+, and the post—synaptig;, activities. One can see thatthe that controls which connections are supported. This meta—process is
post-synaptic activity is a non-linear functional of the pre—synaptidbased on the stochastic learning theory, which is briefly outlined in
activity: y: : v — R. the next section.

2.2 Cell-assemblies 3 STOCHASTIC LEARNING

The system is based on networks of sparsely connected cells. TT e meta—process for qurning.the conne_ctivity bereen_the modules
topology of the network is pre—defined by some random pattern, anlf b:_ase_d on th.e_ stocha_stlc action—selection glgorlthms_ implemented
it can be highly recurrent similar to the Hopfield networks [10]. Un- earlier in cognitive architectures and stochastic symbolic systems [3,

like the Hopfield nets, however, the links are unidirectional making4]' Theoretic_al foundgtions of this theory are basef’ Or_' the variqtiopal
our model more biologically plausible. problems of information theory [19, 20], a generalisation of which is

The non-linearity of the cells in the network leads to a complexOlJtIIned below.
dynamics similar to that in attractor nets with some of the states bein

more probable. These stable states can be characterised by grm?bsl Optimisation with information constraints

of cells that remain significantly more active than the other cells ing ajona| action selection is related to the theories of choice and op-
the sygtem. Such reverberating groups.of cells are often referred ignication. Fundamental in the theory of choice is the concept of a
accordmg to Hebb [8] as th&ell—?ssembyee(_:As)._ . preference relation on a set (total and transitive binary relation). Of-
An |_mp_ortant propgr_ty Of_ CAs dynaml_cs is their perssten_cg [14]: ten, the preference relation can be represented by a monotone func-
Once ignited, the activity within the cells in a CA may be sufficientto ;. . o _, R referred to as thetility, and the choice problem is
support itself. Many variables can contribute to this effect. In partic-solved by maximisation of () (i.e. optimisation).
ular, the fatigue and recovery rate parameters in our system are usedUnder uncertainty, the choice problem is solved by using the pref-
to control the persistence. A CA can be extinguished by another CAyrgnce relation on sét of all probability measures, which are non—
which can ignite due to the change of the external pattern. negative functiong : F — [0, 1] defined on ther—algebraF of
The correlations between the external patterns and CAs have be?p, and such thab(2) = 1. The’preference relation o is induced

used to encode and store the information about the external patterp o
; S theexpected utilityp, u) = [, u(w dw, so that for anyp,
in the CA networks. Note that CAs are not necessarily disjoint sets§/ b W, u) = J o UWp(w)dw w

) . € P, measure is preferred if(p,u) > (¢, u), and it is the classi-
of cells. A single cell may be a member of several overlapping CAsq PISP (p,u) 2 (g u)

his b q de hi hi : cal Bayesian estimation procedure [24, 23].
This feature can be used to encode hierarchies of patterns [11]. More generally, the problem of optimisation under uncertainty can

be viewed as maximisation in the conjugate space. Indeed, given a
2.3 Symbolic processing with CAs Banach spacé/, the conjugate spac¥ is the totality of all linear
functionals(v, u), where(-, -) is the inner—product. Thus, given util-
In the system described, a network with several CAs encoding a s, function» € U, the maximisation of the expected utility corre-
of external patterns is referred to asn@dule Several modules can sponds to finding the maximum element P C V, whereP is the
be interconnected to create more complex systems. It was demoget of all probability measures.
strated earlier that state transitions in such systems are sufficiently |t is often the case that the choice set under uncertainty is not the
controllable allowing for an implementation a broad range of algo-entire setP, but some subset of it defined by constraints. In partic-
rithms similar to symbolic systems. For example, a simple systeny|ar, adaptive and learning problems are concerned with constraints
with four CAs A, B, C' and D oscillating in theABC'D order can  on information, which can be defined in general form usingitie
be created using two modules” and B D, where the CAs are linked  formation divergence
by excitatory connections as shown below

1,0) = [ 1% p(d) ®
A——B Q q
where measures, ¢ € P are such thap is absolutely continuous
with respect to the reference measgreanddp/dq is the Radon—
C——>D Nikodym derivative. Note that foy = const, information diver-

gence corresponds to minus entropy, and whandgq are the condi-

The same principle can be used to simulate more complex behaviouional and the marginal probabilities respectively, tép, ¢) is the
For example, a system of ??? modules and ??? CAs was used to ihannon information.
plement a simple counting task [12]. More complex systems have The important properties of information divergence is that it is
been successfully used to parse natural language and implement cebnvex, non-negative and its minimum is achievedgfor ¢ (see
lar automata. [15]). The maximum of (p, ¢), which can be infinite, is achieved for

Although the CAs within the individual modules of these systemsp — 4,7, Which are the probability measures concentrated entirely
could be formed due to the Hebbian learning between the cells in then single elements d® (hered,,, is the Kronecker symbol). Thus,
network, the connections between the modules had to be set up the constraintd (i, v) < I = const < oo define some convex set
a controlled way for the system to operate in a desired manner. Th®' C P, and the problem can be formulated as the following convex
next stage in the development of the project is the ability to learroptimisation problem with information constraints:
the connections between different modules, and it is the main fo- ;o )
cus of this paper. Before describing the process, we note that learn- gé%:}f (p,u), Pr={peP:lpg) =T <oo}



This variational problem can be solved using the standard proceduttbe setY” of actions of the agent. In our system, these sets can be
of Lagrange multipliers, and the solution is the following probability represented by two modules, Goals and Actions, with CAs in the

measure: first module representing the input patterns (i.e. goals) and CAs in
pldw) = gq(dw) e?*)=TA) (2)  the second module representing different acts:
whereg > 0 is the Lagrange multiplier defined by u, v) = I, and
o S Goall Act 1
r'(B) = [,e”“ dq due to the normalisation conditiop(§2) = _ ,
q(22) = 1). Note that the Gibbs distribution, known from thermody- : :
namics, is a special case of function (2) (i.e. wiyéikv) = const). Goalm Actn

Probability measure (2) corresponds to the maximum of the ex- Our aim of learning the connections between these two modules
pected utility when the information divergence is bounded abovq:an be described as learning some binary relafiort X x Y

I(p,q) < I. Furthermore, the problem of minimisation of informa- |, tct this is similar to defining a preference relation on@et-
tion dlvergeqce with constraints on expected utilityu) > U has X x Y. Indeed, if some pairér, y) are preferred to the others, then
the solution in exactly the same form, but parametafetermined ;0 - = x| there is a preference relation dh Moreover, if the
fr‘_)m condltlor_1(p, u) = U.The relatlo_n _between th_e |nformat_|on— agent has a preference relationf@r= X x Y, then obviously it has
utility constraints anq parametet, defining the optimal solution, to learnR C X x Y that corresponds to this preference relation.
can be expressed using the Legendre—Fenchel transform of pbtentia Initially, there are excitatory connections from every CA in mod-
L(6): ule X to all CAs in moduleY’, which means that all pairs:, y) are
equally preferred (i.e. indifference) and given geat X, any action
1 =s -T r =s -1 . . .
) &;p[Uﬁ )1, 8) SE‘}’[M GRS y € Y can be triggered. However, due to the Hebbian learning, the
_ ) ) ) connectionz — y is reinforced each a particular pair of CAs ignite
which correspond to the following canonical equations together, and the pair has a higher chance to ignite in the future. Thus,
dar A1 (U simply by virtue of Hebbian learning the system can learn eventually
UB) = dr) . BU) = drw) (4)  some random preference relation. The meta—process is designed to
dg du support the learning only of a particular preference relation, and it

In particular, the second equation above suggest that an incread®/olves two additional modules: Explore and Value.
of the expected utility and information during learning corresponds

to a positive value of parametg: Moreover,I'(3) is convex, and Valuel---- ’ Explore‘
thereforel (U) is convex as well (property of the Legendre—Fenchel
transform). Thusj3(U) is a non—decreasing function. One can see
from (2) that for alldw C Q such thai(dw) > 0 andu(w) > —oo, Goall Act1
the condition3 > 0 impliesp(dw) > 0 as well. Thus, the optimal . .
solution for optimisation with information constraints is a stochastic
process (i.e. non—deterministic, pfdw) # 1 for all w € Q).

It has been known for a long time that stochastic algorithms out- The purpose of the Explore module is to randomise the activity of
perform deterministic strategies in problems involving informationthe Action module. The Explore module contains cells that can be
constraints, such as the problems of rare event estimation and adagetive without any external stimulation due to the spontaneous acti-
tive problems. The Gibbs distribution has been used in many optivation. The connectivity and the parameters of the cells in the module
misation techniques and machine learning algorithms to control exare such that the activation can support itself. The cells in the Explore
ploration (e.g. simulated annealing). A similar random strategy hasnodule send excitatory signals to all CAs in the Action net, and the
been employed by the @R cognitive architecture [1] to simulate weights on of these connections do not change. Thus, the activity
statistical learning of human subjects and animals. The informationin the Explore module can trigger randomly any CA in the Action
theoretic analysis, outlined here, allows for a solid theoretical justimodule, and this process does not have a memory. The activity of the
fication of this result. Moreover, the information—utility constraints Explore module implements the effect of the temperature parameter
can be used to determine the optimal dynamics by controlling pag” = % in equation (2).
rameters (or thetemperaturgparameter defined &= 3). The purpose of the Value module is to represent the values of the

It has been shown earlier how the entropy feedback from the posutility function — higher activity in the Value module corresponds
terior probability can be used to conty@in the ACT-R architecture,  to higher utility values: = u(z, y). The input of the module can be
which significantly improves cognitive models of human and animalconfigured according to the application. For example, it may receive
learning [3, 5]. A similar stochastic control has been used to impleinputs from the environment so that the activity of the Value module
ment optimal learning and adaptation of agents in stochastic envirorrepresents the agent's preference relation on the states of the environ-
ments [4]. In the next section, we present how such a stochastic prenent. In the simplest case of a binary utility function (i.e. the utility
cess was implemented in our system of CAs of FLIF neurons, anthas only two values corresponding to a success or failure), the Value
how it is used to learn the connections between different CAs angnodule should have only two distinct states (on or off). For example,
modules. We shall also discuss biological plausibility of this meta-the module may ignite if the change of the environment is recognised
process. as positive.

The Value module sends inhibitory connections to the Explore
module, so that high activity of the Value cells may shut down the
activity in the Explore module. As a result, any CA that has been ig-
In the problems of learning agents, one often considers th&'set nited in the Action module will persist until itis shut down by another
of input patterns (e.g. describing the environment or the goals) anédction CA. The latter may ignite if the input from the Goal module

Goalm Actn

3.2 Stochastic control in cell-assemblies



changes or if the activity of the Explore module resumes. This coneycles). Because the goal sequence was ranomly generated in each
nectivity implements a very simple yet effective learning scheme. Ifexperiment, there is a variance in the results represented by differ-
a particular goal—action pa(r;, y) results in a high utility value, then ent curves on Figure 1. The increase of the probability of success
high activity of the Value module inhibits the Explore module, and corresponds to an increase the expected utility vgiie) = U.

the responsible goal—action pair is allowed to persist longer. The con-
nectionz — y is reinforced due to the Hebbian learning rule of the \ \ \ \ \
synaptic weights.

Because the meta—process supports strengthening of the connec0-8
tions between the goal—action pairs corresponding to high utility val-
ues, the system learns the preferred binary relaitot X x Y. 0.6
As a consequence, the average activity of the Value module should
increase with time, while the activity of the Explore module should (4
decrease. This dynamics corresponds an increase of the exptileted u
ity value (p, u) = U, and the decrease of the temperature parameter 0.2 a
T= % making the system less random and more deterministic. '

The process of learning the binary relatiBnC X x Y favouring 0 | | | | |
high utility values results in a transition from a stochastic system to 50 100 150 200 250 300
an almost deterministic rule—based system. The process of learning Cycles (x10)
the connections: — y between the CAs can be seens as the emerrigyre 1. The proportion of correct action cboices (ordinate) as ation
gence of ‘if—then’ rules, where the conditions are represented by CAscycles (abscissa). The curves represent the results efeliff experiments.

in one module and the actions by CAs in another. 1 i i i i i
v T AN N R N
4 EXPERIMENTAL EVALUATION 081 fr [ LR A
S I A P A N T U T A
The working of the described meta—process has been implemented . 7 P : 5 L
and tested in our system based on FLIF neurons, and here we report™ "l i © 15/ 1 1 Ty Y o ‘V'l::} '
its performance in a fraily simple experiment. 04 g Exp%}g: ﬂ

4.1 Learning dichotomies 0.2

In this simple experiment, there are two CAs in the Goal module
(goal 1, goal 2) and two CAs in the Action module (act 1, act 2). 0 0 1(‘)0 20 500 550 300
Each module consisted of 800 cells, with 400 cells in each CA. The Cycles (x10)

modules were set up with connections from every goal CA to all
action CAs, shown by four arrows on the left diagram below. The
task was to learn two rules, shown by two solid arrows on the right Figure 2 shows the activity in the Value and the Explore mod-

Figure 2. Activites of the Value and Explore modules in one experiment.

diagram. ules in one of the experiments. One can clearly see that the activ-
ities anticorrelate: An increase in the Value module coincides with
Goal 1—— Act1 GOﬁ'}H/ACt 1 the decrease of the Explore module activity. More significantly, the

S~ chart shows that the average activity of the Value module increases as

RN learning progresses, while the average activity of the Explore mod-

Goal 2—— Act 2 Goal 2—— Act 2 ule decreases. As expected, this dynamics corresponds to the opti-

mal dynamics oU and parametel’ = % whereg = B(U) is an
The training procedure consisted of a random presentation of an inncreasing function defined by equtions (4).
put pattern activating one of the goal CAs every 100 cycles. It takes The performance of the system is quite sensitive to the parameters
on average 10-20 cycles for one of the action CAs to ignite. If theof the architecture. Although finding the optimal set of patameters
correct action is selected, then the activation of the Value module inwas not the purpose of this study, we note some of the effects ob-
hibits the Explore module after another 10-20 cycles. The activitiegerved during the experiments. For example, the values of the fatigue
of the goal and action CAs persist until a new pattern is presentedind fatigue recovery rates of the cells influence the persitence of the
Otherwise, if an incorrect action is selected, the activity from the EX-CAs as well as how rapidly one CA may extinguish another. Be-
plore module causes another action CA to ignite after approximatelgause learning of the connections between the correct pairs of the
another 10-20 cycles. CAs depends on the differences between the times the ‘correct’ and
‘incorrect’ CAs persist in the system, these settings may influence
4.2 Results and analysis significantly the ability of the system to learn. Another important

parameter is the connectivity of the cells in the module. The net-
Figure 1 shows the proportion of the correct actions selected (vertiworks in the system are sparsely connected, and the average number
cal axis) as a function of cycle number (horizontal axis). The charbf cells each cell is connected to can also signifincatly contribute to
shows the results of five similar experiments. One can see that thiae behaviour of the CAs. The learning rate parameter of the Hebbian
system starts making only half of the choices correct. After 1000 cydearning rule can also signifincantly influence the performance of the
cles, the proportion of correct choices increases up to 80—90%. Notgystem. If the rate is to high, then binding of an incorrect pair of CAs
that the goal may change up to 10 times per 1000 cycles (every 10@ay occur before the meta—process has its effect.



5 CONCLUSION

The computational learning theory has advanced greatly during thél]
last decades, and there are excellent examples of connectionst and
symbolic learning systems. Yet it is not clear how biological congi- [2]
tion combines these quite different approahces in one system. This
guestion has been partially resolved by theTAR cognitive archi-
tecture [1], which uses a hybrid approach and combines the symbolié"s]
system with sub—symbolic computations based on statistical learning
principles. In this work, we attempt to close the gap from the oppo- [4]
site direction. By using cell-assemblies (CAs) as representations of
symbols, we achieve the level of control in a complex system suf-
ficient to implement symbolic algorithms. One of the problems that
remains difficult to solve is how the connections between different
and quite remote CAs can be learnt in this system, and it is the focus
the current paper. (3]

The solution proposed is based on a stochastic meta—process that
radnomises the activation of the system accodring to the utility of its
experience. This method has many similarities with the reiforcement
learning algorithms, where randomisation is used to control explo-[6]
ration [13, 22], and with the adaptive networks where the reward
signals were used to train artificial neurons [21, 2]. Here we have[7]
demonstrated how such an process can be implented in a sparcely
connected system of FLIF neurons, where the formation of cell-[8]
assemblies can be employed for a symbolic—like processing. The im-[g]
plentation is inspired by the earlier cognitive modelling work, where
entropy feedback was used to control the stochastic learningir A
R signifincatly improving models of action selection in human sub-[10]
jects and animals [3, 5]. Information—theoretic analysis suggests that
such a control corresponds to optimisation with information con-[11]
straints.

Finally, recent studies in neuroscience of exploratory behaviouf12]
suggest that the method proposed may have some biological plau-
sibility. In particular, [6] failed to identify conclusively any specific
area of the brain correlated with the exploration function, and the
model based on the Gibbs distribution was proposed as the mogts)
plausible. Some researchers have speculated about the role of ton-
ically active cholinergic neurons in the basal ganglia and striatal
complex [7]. These neurons account for a small proportion of theé#!
connections that are quite uniform and nontopographic. It was sug-
gested that these neurons may play the role of a stochastic noiges]
Interstingly, their activation is reduced when the reward path is acti-
vated. This idea has remarkable parallels with the functioning of thﬁ%
Value and Explore modules in our system. Because learning occufs
throughout the brain, it is possible that similar meta—processes exist
in various areas of the central nervous system. [18]

Our project is developing towards a complex system where manE/19
modules are combined together implementing very different ifor- ]
mation processing functions. All the modules, however, are based
on the same biologically inspired paradigm — cells—assemblies qbo]
FLIF neurons. The implementation of learning between these differ-
ent modules in our system is an important step in its evolution, an%ll
the development of a biologically plausible mechanism creates ne
opportunities for the project as well as our understanding of the bio-
logical cognition. [22]
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