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Abstract. There are many examples of intelligent and learning sys-
tems that are based either on the connectionist or the symbolic ap-
proach. Although the latter can be successfully combined with sta-
tistical learning to create a hybrid system, it is not so clear how
symbolic processing can emerge from a connectionst system. Hu-
man mind is a living proof that such a transition must be possible.
Inspired by biological cognition, our project explores the ways sym-
bolic processing can emerge in a system of neural cell–assemblies
(CAs). Here, we present the meta–process that regulates learning
of associations between the CAs. The process is compared with the
stochastic learning theory, and its outcome is a set of optimal rules.
The paper concludes by an example of a working system and the
discussion of it biological plausibility.

1 INTRODUCTION

In the last decades, theories of cognition have been developed along
different paradigms — some are based entirely on studies and sim-
ulations of biological neural processing, while others pursue a more
abstract approach by simulating the behaviour. The former facilitated
the solution of a great variety of engineering problems (e.g. signal
processing, pattern recognition), while the latter have revolutionised
cognitive psychology [18]. Despite the successes, the process of uni-
fication of neural and symbolic cognitive systems have been slow
even though human cognition — the main subject of both approaches
— is a clear example that both are two sides of the same coin.

Although a single neuron can classify a large number of patterns, it
is believed that the groups of connected cells calledcell–assemblies
(CAs) form the basis human cognition [8]. However, recent advances
in modelling human–level cognition were made mostly using sym-
bolic cognitive architectures, such as SOAR [18] and ACT–R [1]. The
success of the latter can be explained largely by using the hybrid
approach, where symbols are applied selectively based on statistical
associations and other sub–symbolic computations. This work is part
of the project attempting to achieve complex symbolic processing
and learning in a connectionist system.

Previously, the authors have demonstrated how states in a CA–
based system can be controlled and used to perform a typical sym-
bolic task (counting) [12]. This work has developed into a much more
ambitious project called CABOT, where the same principles are ap-
plied in a system integrating elements of vision, categorisation, nat-
ural language processing and learning in virtual environments, while
based entirely on CAs. This paper presents a part of this project
— learning the connections between different CAs that allows for
learning combinations of symbolic representations and ultimately
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the emergence of logical rules. Although the process relies heavily
on Hebbian learning of synaptic weights, it employs the interaction
of several networks with polar functionality. Thus, the resulting dy-
namics of the system emerges from the interaction of large groups of
neurons, and it can be seen as a meta–learning process.

In the next section, the model of a fatiguing, leaky, integrate and
fire (FLIF) neuron is described, and the CAs are formed and used
to represent symbols. In the following section, information–theoretic
analysis if stochastic learning will be outlined and its implementa-
tion in our system will be presented. The final sections will present a
simple experiment illustrating the working of the system and its re-
lation to other works will be discussed. Biological plausibility of the
learning process will also be considered.in the last section.

2 OVERVIEW OF THE ARCHITECTURE

Below is an overview of the neural model and its parameters. A more
detailed presentation can be found in [11].

2.1 Fatiguing Leaky Integrate and Fire neurons

Biological neurons are complex systems, and the levels of details
varied significantly even in the early models [17, 9]. Our system
uses spiking, fatiguing, leaky, integrate and fire (FLIF) units (arti-
ficial cells) [16]. Our model is a compromise between computational
efficiency and biological plausibility reflecting properties that are, in
our opinion, particularly important for the emerging dynamics.

The ‘integrate and fire’ component is based on the classical idea
[17] that the neuron ‘fires’ if its action potential,A, exceeds a certain
threshold valueθ. The action potential is a function of the inner–
product (integrator)(w, x) =

Pk

i=1 wi xi, wherex ∈ R
k is the

stimulus vector (pre–synaptic), andw ∈ R
k is the synaptic weight

vector of the neuron. Here,Rk is k–dimensional Euclidean space,
wherek is the number of synapses of the neuron.

The action potential depends on the pre and post synaptic activity
over several time moments:

At+1 =
At

dt

+ (wt, xt) , dt ≡



+∞ if fired
d ≥ 1 otherwise

Thus, the action potential is accumulated if the neuron does not fire.
Parameterd > 1 allows for some of this activation to ‘leak’ away.
The threshold of a neuron is also dynamic

θt+1 = θt + Ft , Ft ≡



F+ ≥ 0 if fired
F− < 0 otherwise

where valuesF+ andF− represent thefatigueand fatiguerecovery
rates. Thus, if a neuron fires at timet, its threshold increases, and it
is less likely to fire at timet + 1, even ifxt+1 = xt.



Finally, the weightswt can adapt according to the compensatory
learning rule [11], which is an implementation of the Hebbian prin-
ciple [8], wherewt+1 depends on the correlation between the pre–
synaptic,xt, and the post–synaptic,yt, activities. One can see that the
post–synaptic activity is a non–linear functional of the pre–synaptic
activity: yt : xt → R.

2.2 Cell–assemblies

The system is based on networks of sparsely connected cells. The
topology of the network is pre–defined by some random pattern, and
it can be highly recurrent similar to the Hopfield networks [10]. Un-
like the Hopfield nets, however, the links are unidirectional making
our model more biologically plausible.

The non–linearity of the cells in the network leads to a complex
dynamics similar to that in attractor nets with some of the states being
more probable. These stable states can be characterised by groups
of cells that remain significantly more active than the other cells in
the system. Such reverberating groups of cells are often referred to
according to Hebb [8] as thecell–assemblies(CAs).

An important property of CAs’ dynamics is their persistence [14]:
Once ignited, the activity within the cells in a CA may be sufficient to
support itself. Many variables can contribute to this effect. In partic-
ular, the fatigue and recovery rate parameters in our system are used
to control the persistence. A CA can be extinguished by another CA,
which can ignite due to the change of the external pattern.

The correlations between the external patterns and CAs have been
used to encode and store the information about the external patterns
in the CA networks. Note that CAs are not necessarily disjoint sets
of cells. A single cell may be a member of several overlapping CAs.
This feature can be used to encode hierarchies of patterns [11].

2.3 Symbolic processing with CAs

In the system described, a network with several CAs encoding a set
of external patterns is referred to as amodule. Several modules can
be interconnected to create more complex systems. It was demon-
strated earlier that state transitions in such systems are sufficiently
controllable allowing for an implementation a broad range of algo-
rithms similar to symbolic systems. For example, a simple system
with four CAsA, B, C andD oscillating in theABCD order can
be created using two modulesAC andBD, where the CAs are linked
by excitatory connections as shown below

A //
``

@@
@@

@@
@ B

C //
~~

~~~~~~~
D

The same principle can be used to simulate more complex behaviour.
For example, a system of ??? modules and ??? CAs was used to im-
plement a simple counting task [12]. More complex systems have
been successfully used to parse natural language and implement cel-
lar automata.

Although the CAs within the individual modules of these systems
could be formed due to the Hebbian learning between the cells in the
network, the connections between the modules had to be set up in
a controlled way for the system to operate in a desired manner. The
next stage in the development of the project is the ability to learn
the connections between different modules, and it is the main fo-
cus of this paper. Before describing the process, we note that learn-

ing of the connections between different modules involves a meta–
process. Indeed, although the connections between the correlated
cells are strengthened via the Habbian learning, it is the meta–process
that controls which connections are supported. This meta–process is
based on the stochastic learning theory, which is briefly outlined in
the next section.

3 STOCHASTIC LEARNING

The meta–process for learning the connectivity between the modules
is based on the stochastic action–selection algorithms implemented
earlier in cognitive architectures and stochastic symbolic systems [3,
4]. Theoretical foundations of this theory are based on the variational
problems of information theory [19, 20], a generalisation of which is
outlined below.

3.1 Optimisation with information constraints

Rational action selection is related to the theories of choice and op-
timisation. Fundamental in the theory of choice is the concept of a
preference relation on a set (total and transitive binary relation). Of-
ten, the preference relation can be represented by a monotone func-
tion u : Ω → R referred to as theutility, and the choice problem is
solved by maximisation ofu(ω) (i.e. optimisation).

Under uncertainty, the choice problem is solved by using the pref-
erence relation on setP of all probability measures, which are non–
negative functionsp : F → [0, 1] defined on theσ–algebraF of
Ω, and such thatp(Ω) = 1. The preference relation onP is induced
by theexpected utility(p, u) =

R

Ω
u(ω)p(ω)dω, so that for anyp,

q ∈ P , measurep is preferred if(p, u) ≥ (q, u), and it is the classi-
cal Bayesian estimation procedure [24, 23].

More generally, the problem of optimisation under uncertainty can
be viewed as maximisation in the conjugate space. Indeed, given a
Banach spaceU , the conjugate spaceV is the totality of all linear
functionals(v, u), where(·, ·) is the inner–product. Thus, given util-
ity function u ∈ U , the maximisation of the expected utility corre-
sponds to finding the maximum elementp ∈ P ⊂ V , whereP is the
set of all probability measures.

It is often the case that the choice set under uncertainty is not the
entire setP , but some subset of it defined by constraints. In partic-
ular, adaptive and learning problems are concerned with constraints
on information, which can be defined in general form using thein-
formation divergence:

I(p, q) =

Z

Ω

ln
dp

dq
p(dω) (1)

where measuresp, q ∈ P are such thatp is absolutely continuous
with respect to the reference measureq, anddp/dq is the Radon–
Nikodym derivative. Note that forq = const, information diver-
gence corresponds to minus entropy, and whenp andq are the condi-
tional and the marginal probabilities respectively, thenI(p, q) is the
Shannon information.

The important properties of information divergence is that it is
convex, non–negative and its minimum is achieved forp = q (see
[15]). The maximum ofI(p, q), which can be infinite, is achieved for
p → δωω′ , which are the probability measures concentrated entirely
on single elements ofΩ (hereδωω′ is the Kronecker symbol). Thus,
the constraintsI(µ, ν) ≤ I = const < ∞ define some convex set
P ′ ⊂ P , and the problem can be formulated as the following convex
optimisation problem with information constraints:

max
p∈P ′

(p, u) , P ′ ≡ {p ∈ P : I(p, q) ≤ I < ∞}



This variational problem can be solved using the standard procedure
of Lagrange multipliers, and the solution is the following probability
measure:

p(dω) = q(dω) eβu(ω)−Γ(β) (2)

whereβ ≥ 0 is the Lagrange multiplier defined byI(µ, ν) = I, and
Γ(β) =

R

Ω
eβu(ω)dq due to the normalisation condition (p(Ω) =

q(Ω) = 1). Note that the Gibbs distribution, known from thermody-
namics, is a special case of function (2) (i.e. whenq(dω) = const).
Probability measure (2) corresponds to the maximum of the ex-
pected utility when the information divergence is bounded above
I(p, q) ≤ I. Furthermore, the problem of minimisation of informa-
tion divergence with constraints on expected utility(p, u) ≥ U has
the solution in exactly the same form, but parameterβ determined
from condition(p, u) = U . The relation between the information–
utility constraints and parameterβ, defining the optimal solution,
can be expressed using the Legendre–Fenchel transform of potential
Γ(β):

I(U) = sup
β

[Uβ − Γ(β)] , Γ(β) = sup
U

[β U − I(U)] (3)

which correspond to the following canonical equations

U(β) =
dΓ(β)

dβ
, β(U) =

dI(U)

dU
(4)

In particular, the second equation above suggest that an increase
of the expected utility and information during learning corresponds
to a positive value of parameterβ. Moreover,Γ(β) is convex, and
thereforeI(U) is convex as well (property of the Legendre–Fenchel
transform). Thus,β(U) is a non–decreasing function. One can see
from (2) that for alldω ⊆ Ω such thatq(dω) > 0 andu(ω) > −∞,
the conditionβ > 0 impliesp(dω) > 0 as well. Thus, the optimal
solution for optimisation with information constraints is a stochastic
process (i.e. non–deterministic, orp(dω) 6= 1 for all ω ∈ Ω).

It has been known for a long time that stochastic algorithms out-
perform deterministic strategies in problems involving information
constraints, such as the problems of rare event estimation and adap-
tive problems. The Gibbs distribution has been used in many opti-
misation techniques and machine learning algorithms to control ex-
ploration (e.g. simulated annealing). A similar random strategy has
been employed by the ACT–R cognitive architecture [1] to simulate
statistical learning of human subjects and animals. The information–
theoretic analysis, outlined here, allows for a solid theoretical justi-
fication of this result. Moreover, the information–utility constraints
can be used to determine the optimal dynamics by controlling pa-
rameterβ (or thetemperatureparameter defined asT ≡ 1

β
).

It has been shown earlier how the entropy feedback from the pos-
terior probability can be used to controlβ in the ACT–R architecture,
which significantly improves cognitive models of human and animal
learning [3, 5]. A similar stochastic control has been used to imple-
ment optimal learning and adaptation of agents in stochastic environ-
ments [4]. In the next section, we present how such a stochastic pro-
cess was implemented in our system of CAs of FLIF neurons, and
how it is used to learn the connections between different CAs and
modules. We shall also discuss biological plausibility of this meta–
process.

3.2 Stochastic control in cell–assemblies

In the problems of learning agents, one often considers the setX
of input patterns (e.g. describing the environment or the goals) and

the setY of actions of the agent. In our system, these sets can be
represented by two modules, Goals and Actions, with CAs in the
first module representing the input patterns (i.e. goals) and CAs in
the second module representing different acts:

Goal1
...

Goalm

//
//

//

Act 1
...

Act n

Our aim of learning the connections between these two modules
can be described as learning some binary relationR ⊂ X × Y .
In fact, this is similar to defining a preference relation on setΩ =
X × Y . Indeed, if some pairs(x, y) are preferred to the others, then
givenx ∈ X, there is a preference relation onY . Moreover, if the
agent has a preference relation onΩ = X ×Y , then obviously it has
to learnR ⊂ X × Y that corresponds to this preference relation.

Initially, there are excitatory connections from every CA in mod-
ule X to all CAs in moduleY , which means that all pairs(x, y) are
equally preferred (i.e. indifference) and given goalx ∈ X, any action
y ∈ Y can be triggered. However, due to the Hebbian learning, the
connectionx → y is reinforced each a particular pair of CAs ignite
together, and the pair has a higher chance to ignite in the future. Thus,
simply by virtue of Hebbian learning the system can learn eventually
some random preference relation. The meta–process is designed to
support the learning only of a particular preference relation, and it
involves two additional modules: Explore and Value.

Value // Explore

�� ����
Goal1

...
Goalm

//
//

//

Act 1
...

Act n

The purpose of the Explore module is to randomise the activity of
the Action module. The Explore module contains cells that can be
active without any external stimulation due to the spontaneous acti-
vation. The connectivity and the parameters of the cells in the module
are such that the activation can support itself. The cells in the Explore
module send excitatory signals to all CAs in the Action net, and the
weights on of these connections do not change. Thus, the activity
in the Explore module can trigger randomly any CA in the Action
module, and this process does not have a memory. The activity of the
Explore module implements the effect of the temperature parameter
T = 1

β
in equation (2).

The purpose of the Value module is to represent the values of the
utility function — higher activity in the Value module corresponds
to higher utility valuesu = u(x, y). The input of the module can be
configured according to the application. For example, it may receive
inputs from the environment so that the activity of the Value module
represents the agent’s preference relation on the states of the environ-
ment. In the simplest case of a binary utility function (i.e. the utility
has only two values corresponding to a success or failure), the Value
module should have only two distinct states (on or off). For example,
the module may ignite if the change of the environment is recognised
as positive.

The Value module sends inhibitory connections to the Explore
module, so that high activity of the Value cells may shut down the
activity in the Explore module. As a result, any CA that has been ig-
nited in the Action module will persist until it is shut down by another
Action CA. The latter may ignite if the input from the Goal module



changes or if the activity of the Explore module resumes. This con-
nectivity implements a very simple yet effective learning scheme. If
a particular goal–action pair(x, y) results in a high utility value, then
high activity of the Value module inhibits the Explore module, and
the responsible goal–action pair is allowed to persist longer. The con-
nectionx → y is reinforced due to the Hebbian learning rule of the
synaptic weights.

Because the meta–process supports strengthening of the connec-
tions between the goal–action pairs corresponding to high utility val-
ues, the system learns the preferred binary relationR ⊂ X × Y .
As a consequence, the average activity of the Value module should
increase with time, while the activity of the Explore module should
decrease. This dynamics corresponds an increase of the expected util-
ity value(p, u) = U , and the decrease of the temperature parameter
T = 1

β
making the system less random and more deterministic.

The process of learning the binary relationR ⊂ X × Y favouring
high utility values results in a transition from a stochastic system to
an almost deterministic rule–based system. The process of learning
the connectionsx → y between the CAs can be seens as the emer-
gence of ‘if–then’ rules, where the conditions are represented by CAs
in one module and the actions by CAs in another.

4 EXPERIMENTAL EVALUATION

The working of the described meta–process has been implemented
and tested in our system based on FLIF neurons, and here we report
its performance in a fraily simple experiment.

4.1 Learning dichotomies

In this simple experiment, there are two CAs in the Goal module
(goal 1, goal 2) and two CAs in the Action module (act 1, act 2).
Each module consisted of 800 cells, with 400 cells in each CA. The
modules were set up with connections from every goal CA to all
action CAs, shown by four arrows on the left diagram below. The
task was to learn two rules, shown by two solid arrows on the right
diagram.

Goal 1 //

$$IIIIIIIII Act 1

Goal 2 //

::uuuuuuuuu
Act 2

Goal 1 //

I
I

I
I

I Act 1

Goal 2 //

u
u

u
u

u
Act 2

The training procedure consisted of a random presentation of an in-
put pattern activating one of the goal CAs every 100 cycles. It takes
on average 10–20 cycles for one of the action CAs to ignite. If the
correct action is selected, then the activation of the Value module in-
hibits the Explore module after another 10–20 cycles. The activities
of the goal and action CAs persist until a new pattern is presented.
Otherwise, if an incorrect action is selected, the activity from the Ex-
plore module causes another action CA to ignite after approximately
another 10–20 cycles.

4.2 Results and analysis

Figure 1 shows the proportion of the correct actions selected (verti-
cal axis) as a function of cycle number (horizontal axis). The chart
shows the results of five similar experiments. One can see that the
system starts making only half of the choices correct. After 1000 cy-
cles, the proportion of correct choices increases up to 80–90%. Note
that the goal may change up to 10 times per 1000 cycles (every 100

cycles). Because the goal sequence was ranomly generated in each
experiment, there is a variance in the results represented by differ-
ent curves on Figure 1. The increase of the probability of success
corresponds to an increase the expected utility value(p, u) = U .
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Figure 1. The proportion of correct action cboices (ordinate) as a function
cycles (abscissa). The curves represent the results of different experiments.
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Figure 2. Activites of the Value and Explore modules in one experiment.

Figure 2 shows the activity in the Value and the Explore mod-
ules in one of the experiments. One can clearly see that the activ-
ities anticorrelate: An increase in the Value module coincides with
the decrease of the Explore module activity. More significantly, the
chart shows that the average activity of the Value module increases as
learning progresses, while the average activity of the Explore mod-
ule decreases. As expected, this dynamics corresponds to the opti-
mal dynamics ofU and parameterT = 1

β
, whereβ = β(U) is an

increasing function defined by equtions (4).
The performance of the system is quite sensitive to the parameters

of the architecture. Although finding the optimal set of patameters
was not the purpose of this study, we note some of the effects ob-
served during the experiments. For example, the values of the fatigue
and fatigue recovery rates of the cells influence the persitence of the
CAs as well as how rapidly one CA may extinguish another. Be-
cause learning of the connections between the correct pairs of the
CAs depends on the differences between the times the ‘correct’ and
‘incorrect’ CAs persist in the system, these settings may influence
significantly the ability of the system to learn. Another important
parameter is the connectivity of the cells in the module. The net-
works in the system are sparsely connected, and the average number
of cells each cell is connected to can also signifincatly contribute to
the behaviour of the CAs. The learning rate parameter of the Hebbian
learning rule can also signifincantly influence the performance of the
system. If the rate is to high, then binding of an incorrect pair of CAs
may occur before the meta–process has its effect.



5 CONCLUSION

The computational learning theory has advanced greatly during the
last decades, and there are excellent examples of connectionst and
symbolic learning systems. Yet it is not clear how biological congi-
tion combines these quite different approahces in one system. This
question has been partially resolved by the ACT–R cognitive archi-
tecture [1], which uses a hybrid approach and combines the symbolic
system with sub–symbolic computations based on statistical learning
principles. In this work, we attempt to close the gap from the oppo-
site direction. By using cell–assemblies (CAs) as representations of
symbols, we achieve the level of control in a complex system suf-
ficient to implement symbolic algorithms. One of the problems that
remains difficult to solve is how the connections between different
and quite remote CAs can be learnt in this system, and it is the focus
the current paper.

The solution proposed is based on a stochastic meta–process that
radnomises the activation of the system accodring to the utility of its
experience. This method has many similarities with the reiforcement
learning algorithms, where randomisation is used to control explo-
ration [13, 22], and with the adaptive networks where the reward
signals were used to train artificial neurons [21, 2]. Here we have
demonstrated how such an process can be implented in a sparcely
connected system of FLIF neurons, where the formation of cell–
assemblies can be employed for a symbolic–like processing. The im-
plentation is inspired by the earlier cognitive modelling work, where
entropy feedback was used to control the stochastic learning in ACT–
R signifincatly improving models of action selection in human sub-
jects and animals [3, 5]. Information–theoretic analysis suggests that
such a control corresponds to optimisation with information con-
straints.

Finally, recent studies in neuroscience of exploratory behaviour
suggest that the method proposed may have some biological plau-
sibility. In particular, [6] failed to identify conclusively any specific
area of the brain correlated with the exploration function, and the
model based on the Gibbs distribution was proposed as the most
plausible. Some researchers have speculated about the role of ton-
ically active cholinergic neurons in the basal ganglia and striatal
complex [7]. These neurons account for a small proportion of the
connections that are quite uniform and nontopographic. It was sug-
gested that these neurons may play the role of a stochastic noise.
Interstingly, their activation is reduced when the reward path is acti-
vated. This idea has remarkable parallels with the functioning of the
Value and Explore modules in our system. Because learning occurs
throughout the brain, it is possible that similar meta–processes exist
in various areas of the central nervous system.

Our project is developing towards a complex system where many
modules are combined together implementing very different ifor-
mation processing functions. All the modules, however, are based
on the same biologically inspired paradigm — cells–assemblies of
FLIF neurons. The implementation of learning between these differ-
ent modules in our system is an important step in its evolution, and
the development of a biologically plausible mechanism creates new
opportunities for the project as well as our understanding of the bio-
logical cognition.
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