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Introduction

We will develop a software agent based solely
on simulated neurons that uses natural lan-
guage. A parser based on simulated neurons
will have several benefits over symbolic parsers
and even other types of connectionist parsers.

Computationally, neural processors have an ob-
vious mechanism of symbol grounding; symbols
can be grounded in sensory data giving a mech-
anism for at least basic sensory semantics. So
neural processing has a hope of resolving the
classic AI symbol grounding problem (Fodor
2000), since its symbols are grounded in sen-
sory inputs. Semantics are critical for resolving
parsing ambiguities and for robust parsing. Us-
ing grounded symbols as the basis of semantics
will allow the parser to be more effective.

Scientifically, neural simulations can model
psychological phenomena and can be compared
to neural data by, for example, fMRI and elec-
trodes on individual neurons. Consequently,
psycholinguistic and neural data can be di-
rectly compared to the parsing system.

Theoretically, processing with attractor net-
works can be advanced. Attractor nets set-
tle into stable or pseudo-stable states as pro-
cessing progresses. Simulated neural nets may
act as attractor nets, and most attractor net
applications are limited to categorisation. We
will build a parser with the lexicon, grammar
rules, and rule application mechanism all en-
coded in neurons. These active symbols (Ka-
plan, Weaver, & French 1990) will process and
thus will apply rules and build structures. Cell
Assemblies (CAs) are a higher order struc-
ture within the network of neurons. They are
sets of highly connected neurons that remain
active even after external stimulation ceases
(Hebb 1949). Individual CAs are single attrac-
tor states, but applying rules rapidly generates
new attractor states, and allows the system to
move to new states. This real application will
be an advance on current attractor net appli-
cations.

A neural system that can understand natural
language, that is situated in an environment,
and can learn, will be a major advance over any
existing system. Indeed, it will be a significant

step towards an intelligent system.

Background

Parsing and Related Natural Lan-
guage Technologies

In the past twenty years, Natural Language
Processing (NLP) technologies have moved
from academia into the business world. Three
major reasons contribute to this move. First,
technologies have reached a stage of sufficient
maturity that they can work with real world
data. Second, NLP has made use of machine
learning to develop systems that learn key fea-
tures of the domain that is being processed.
Third, the popularity of the Internet has led to
a vast quantity of textual data that needs to be
processed in a range of ways so that it can be
used (Church & Rau 1995).

Parsing is the central NLP subtask, involving
processing a sentence to recognise its syntac-
tic structure, and it may generate semantic
structure. A standard mechanism for measur-
ing the effectiveness of a parser is to gauge
its performance on a large textual database
such as the Penn Tree Bank (PTB) (Marcus,
Santorini, & Marcinkiewicz 1993). The best
parsers score around 90% on this task. Collins’
system is a good example of a high scoring
parser (Collins 1997), although this is an en-
tirely syntactic measurement. The best work
in this area has taken advantage of machine
learning techniques to learn probabilities for se-
lecting between ambiguous syntax trees.

While the NLP field continues to advance, the
pace has slowed. This may be due to a lim-
itation of current symbolic techniques. With
the parsing problem, systems are on the 90%
plateau largely because ambiguity arises from
the semantics and pragmatics of the sentence.
The semantics of at least concrete nouns are
based, to a large degree, on the things that can
be done with the referent of the word (Gibson
1986). So pen is intimately related to writing
because that is what one does with a pen. Cur-
rent machine learning techniques are unable to
handle this type of natural semantics. Instead
they are usually based on a “bag of words” ap-
proach where the semantics of a word is based
on the frequency of the words with which it



appears (Lewis & Ringuette 1994).

More importantly, NLP needs to use semantics
because it is the semantics that are of inter-
est. The parsers that perform best on the PTB
do not generate a semantic analysis; they are
built to solve the syntactic task. There are no
standard tests for semantic evaluation, though
some tests have been proposed (Gaizauskas,
Hepple, & Huyck 1998).

An existing system, Plink (Huyck 1994; 2000),
uses semantics and syntax in parallel during
parsing. By using this information, preferences
can select the appropriate rule to apply, pars-
ing in linear time, to some extent like people. It
is important for computers to process language
as people do. Unlike formal languages, nat-
ural languages are ambiguous, are frequently
ungrammatical, and often omit important fea-
tures. By processing language like humans,
the system will be able to use meanings that
are similar to those of people. Existing text
engineering systems are usually built to solve
one task, like extracting database templates for
rocket launches (Huyck 1998). They are some-
what successful, but are limited by their singu-
lar nature and have to be re-engineered for an-
other task. A system that processed language
like a human would be able to function in a
wide range of domains. Since Plink parses like
humans, it is more closely related to psycholin-
guistic research than most other parsers.

Connectionist Parsers

There have been some connectionist Natural
Language Parsers including those by Mikku-
lainen (1993) and Henderson (2000). These
parsers are not based on anything like real
neurons and they have had basic problems
such as their inability to accomplish real world
tasks. These problems are usually solved
by a symbolic solution. Knoblauch’s system
(Knoblauch, Markert, & Palm 2005) uses a
more interesting solution. It is based on model
neurons with a medium degree of biological
faithfulness, implements a regular grammar,
grounds its semantics in the real world, and
resolves ambiguity dynamically.

While Knoblauch’s is the most sophisticated
CA-based system that we are aware of, it still
has shortcomings. Firstly, its parsing mecha-
nism is based on Regular Grammars; some sup-
port the notion that language is Regular (Blank
1989), but the consensus is that natural lan-
guage is at least Context Free. Secondly, each
word is preallocated neurons that are later con-
nected to sensory input; clearly words are not
preallocated particular neurons in the brain.
Both of these problems can be avoided, but re-
quire greater complexity. Thirdly, the binding
is done via synchrony. This has a limit to the
number of different bindings, but also requires
a great deal of computation because it needs a
fine time grain for simulation (≤ 1 ms) (Con-
nolly, Marian, & Reilly 2004).

Computation with Neurally Plausible
Attractor Nets

The scientific community has an incomplete
understanding of the brain and neurons. How-
ever, it is widely agreed that spiking leaky in-
tegrators are a simple, largely accurate model
of neurons, and that the brain contains CAs
(Hebb 1949). These two hypotheses are related
and are linked by the theory of attractor nets
(Amit 1989).

One large question in neural and connection-
ist research is what model to use. There are
a wide range of models from Hopfield nets to
complex conductance based models. Biological
faithfulness usually increases simulation time,
so it is hard to simulate a large number of very
sophisticated neurons. An example of the time
vs. faithfulness tradeoff is how frequently each
element is updated. Neural models that are up-
dated every 1 ms of simulated time usually in-
coporates spike transmission times and refrac-
tory periods. Models with larger time grains
do not need to account for these phenomena.

Though incomplete, spiking leaky integrators
are a good model for neurons because they are
a simple model that is inexpensive to simu-
late. They also have key features of neurons: 1)
leaky integrators collect activation from their
inputs; neurons collect activation from other
neurons; 2) when an integrator collects enough
activation, it fires; when a neuron has enough
activation it sends spikes to connected neurons;
3) if the integrator does not fire, some of its ac-
tivation leaks away; if a neuron does not fire
some of its activation leaks away.

A network of leaky integrators may act as
an attractor network. If enough integrators
fire and their mutual connections are strong
enough, they will enter an attractor state where
a large number of the integrators are firing
and will continue to fire. If enough neu-
rons spike and are connected with sufficient
synaptic strength, they will cause a CA to ig-
nite. According to Hebb (Hebb 1949), CAs
are the neural correlate of long-term human
concepts, and an active CA has been cor-
related with buffers, short-term memory and
other types of working memory (Hebb 1949;
Kaplan, Weaver, & French 1990; von der Mals-
burg 1986).

Neural nets and connectionist systems in gen-
eral are almost always used for categorisation
tasks. Attractor nets go to a state and stay
there. However, animals cannot have their
brains in a single state; they must move on to
new states. Certainly environmental input has
an effect on the stability of a state, but attrac-
tor nets can be modified to move on to new
states in a principled way.

To bridge the gap to human level cognition,
other types of calculations need to be imple-
mented. For example, it has been proposed



that rules can be implemented with attractor
nets (Huyck 2001b).

While other systems can implement rules, cal-
culating with attractor nets is of particular in-
terest because they can learn. Work in learning
with attractor nets is largely based on learning
categories. There has been little work on learn-
ing other processes and since there is little work
in rule-application, there has been no work in
learning rules in attractor nets.

Connectionist systems also make use of paral-
lelism. So attractor nets that implement com-
plex calculations on a parallel machine may be
very fast.

Our Work to Date

The PI’s background is in NLP. He developed
a symbolic human-like parsing system, Plink
(Huyck 1994; 2000), that parses linearly and
robustly. It is based on a large number of
preferences that determine the parse to pur-
sue; a small look-ahead allows Plink to avoid
backtracking. It uses a unification-based gram-
mar, integrating syntactic and semantic pro-
cessing. Plink performs well on the stan-
dard syntax parsing metrics but has not ex-
ploited machine learning techniques. Plink
has been used in a range of tasks including
the DARPA sponsored Message Understand-
ing Competitions (Lytinen et al. 1992; 1993;
Huyck 1998) and text mining tasks. Plink is
also being used in a symbolic conversational
games agent (Kenny & Huyck 2005).

It would be relatively simple to use machine
learning techniques to set Plink’s semantic
parsing preferences. However, we were inter-
ested in the mechanism that people use, feeling
that it would be easy to duplicate other’s CA
work. To our surprise, we found that very little
simulation work had been done with CAs and
even less work with CAs for practical AI tasks.
Consequently, we have spent the last several
years developing programs to solve basic CA
problems and some real-world tasks. This work
is more fully explained in the Previous Track
Record section.

One key weakness of AI connectionist systems
is binding (Fodor 2000). Binding enables cal-
culations beyond categorisation, and is easily
done on vonNeuman systems. The standard
solution to the problem in connectionist sys-
tems is to bind via synchronous firing (von der
Malsburg 1986), and simulations of this ex-
ist (Sougné 2001). We have implemented an-
other type of binding using spontaneous neu-
ral activation. Spontaneous neural activation
has several interesting computational proper-
ties including the spread of activation beyond
neurons that are directly activated by exter-
nal stimulation (Huyck & Bowles 2004). Our
simulations (Huyck 2005) using a single layer
model have shown that it can enable binding
via a form of medium-term memory that is

rapidly formed (on the order of seconds), and
persists for the order of minutes. This binding
via medium-term memory has no limit to the
number of different bindings. It is also more
computationally efficient than binding via syn-
chrony because it can work with a coarse time
grain of 10 ms.

Almost all NLP systems use rules, and gram-
matical theory is largely based on them. Con-
nectionist systems can apply rules if they have
variable binding. So, we now have the capabil-
ity of developing a neural-CA based NLP sys-
tem. It is now time to combine our NLP and
CA research.

Proposed Project

The ultimate goal of the project is to build
a system that is situated in an environment,
senses, acts, and uses natural language. It will
be based solely on simulated neurons, and will
learn critical aspects of the environment.

As this is uncharted territory, an iterative ap-
proach will be pursued developing three ver-
sions of the system with each scheduled for one
year of the project. This will provide steps, pe-
riods for reflection, and a good basis for publi-
cations throughout the project.

An interleaved engineering and neuro-
biological modelling approach will be pursued.
In the interest of making an advance on a
problem, an approach that is not biologically
valid may be pursued. However, this “hack”
will be replaced at a later stage by a more
biologically valid solution. For example, we
will initially provide CAs for words with
the neurons devoted solely to a given word.
Later, we will use a more biologically plausible
approach allowing the system to learn the
words, and those CAs will share neurons.

Critically, this project will explore the dual dy-
namics of neural-CA systems. The short-term
dynamics of CA ignition and cessation will be
explored via computations such as rule applica-
tion. The long-term dynamics of CA formation
via synaptic weight modification will be ex-
plored by the formation of medium-term bind-
ing CAs, learning rule selection preferences,
and rule learning.

NLP tests will use standard measurements such
as precision and recall. This will be on a re-
stricted domain, so comparison to general sys-
tems will not be readily available. However,
comparisons to the symbolic Plink system will
be made and the corpus will be made available
for others to test their parsing algorithms. The
corpora that will be used will be domain depen-
dent text. Initially, these will be sentences that
we will generate. These will include ambiguous
sentences, complex sentences, and ungrammat-
ical sentences. Later, the text will be used to
train the system. Finally, we hope to use the
system as an agent in an interactive videogame



(see Methodology). This will take open ended
text from a user, though it will only properly
understand text from the domain of the game.

Methodology

We propose a three step programme with each
step encompassing the development of a com-
plete system, test environment, and a test of
the system in its environment. All of the sys-
tems will be computer simulations of neural
processing. The three steps are first to build a
parser; second to develop a system that senses
its environment and to integrate sensing with
parsing; third to enable the system to inter-
act with other agents in the environment while
making use of language and sensing from the
earlier system.

The first major task will be to engineer a
parser. A similar mechanism has already
been developed (Knoblauch, Markert, & Palm
2005), but is based on a very simple Regular
Grammar, and implements binding via syn-
chrony. This first prototype will implement
the Plink algorithm using a unification-based
grammar. Additionally, it will bind via short-
term synaptic weight change. This first proto-
type will not learn words.

This will be a significant development, but
the initial idea was proposed several years ago
(Huyck 2001b). There will be long-term CAs
to represent words and grammar rules. Com-
pleted and partially completed phrases are rep-
resented by medium-term CAs, and these are
the stack elements; this medium-term memory
implements binding. Both rule application and
selection are required. A rule may be applied
when the appropriate phrases and words are
on the stack. The application of a rule changes
the contents of the stack. Though the algo-
rithm was proposed several years ago, an ap-
propriate variable binding mechanism, which
is necessary to implement rules, has only re-
cently been developed. Word representation is
crucial, but in this step will mimic earlier work
(Knoblauch, Markert, & Palm 2005) and use
predefined sets of neurons for each word. For
any given stack state, several rules may be ap-
plicable. The symbolic Plink parsing mecha-
nism uses preferences to resolve these ambigui-
ties; the neural-CA parser will use competition
between CAs to implement these preferences.
The preferences will be encoded in the weights
between rules, words, and larger constituents.

The binding mechanism uses spontaneous neu-
ral activation (Huyck & Bowles 2004) and a
compensatory learning rule (Huyck 2004) to
implement medium-term CAs. A special bind-
ing area is set up with slightly different neural
parameters and spontaneous activation. This
area has synapses to and from the areas with
long-term memories. When CAs in these areas
are active, they rapidly form a new CA that in-
cludes the original long-term CAs and neurons
in the binding area. This can be used after the

long-term CAs have stopped being active, but
is erased relatively quickly via synaptic weight
change driven by spontaneous activation.

The test of this system will be its production
of correct semantic interpretations in the form
of frames (Filmore 1968). The frames will ini-
tially be generated by statistical analysis of the
firing behaviour of the network after sentence
processing. Later, frames will be generated by
associating slot labels with concepts via simul-
taneous presentation. The labels will activate
when output is requested by a trained signal.
This is a type of actuatator.

The second step is to integrate sensing into the
system. This will enable the system to learn
words based on the environment. Again ear-
lier work (Knoblauch, Markert, & Palm 2005)
has done this but the words were prespecified
and were associated with the sensed items. The
second prototype will instead use a form of la-
belling where the system learns the neural rep-
resentation for the words. In essence, this is a
neural implementation of the bipolar represen-
tation of words described in Cognitive Gram-
mars (Langacker 1987). This will provide CAs
for words and semantically related words will
share some neurons. This simulated learning of
words is unique.

The environment will be the virtual environ-
ment of an interactive videogame. We have
some experience in this domain (Kenny &
Huyck 2005), it is an industrially important
domain (Laird & VanLent 2001), and the
videogame environment is very flexible. This
flexibility means it can range from a relatively
simple domain of simple objects to a very so-
phisticated dynamic one with active agents.
The environment will be the Sierra Half-Life
(Sierra Inc. 2005) system; this is flexible share-
ware game technology that has 3-D graphics
capabilities, internet capabilities, the ability to
create new environments, and hooks for agent
development.

The system will be able to resolve syntactic
parsing ambiguities like PP-attachment ambi-
guities. Ambiguity resolution will be signifi-
cantly based on the words.

Testing of the second prototype will repeat the
semantic test from the first step. The system
should also be able to name concepts in the
environment. Finally, ambiguity resolution will
be tested using a Parseval like measurement.

The third step will be to build an agent in
the Half-Life environment. This prototype will
have the ability to move, take other actions and
have goals, and these will inform sensing. A
spreading activation network (Maes 1989) will
be used for a simple form of planning. The
network selects actions based on the spread-
ing of activation between competence modules.
The spreading activation net should be directly
translatable into a neural-CA architecture.



Rule learning will be integrated into this agent.
Rule learning is common in cognitive archi-
tectures such as ACT–R (Anderson & Lebiere
1998) that are largely symbolic. The system
will be able to learn new grammar rules to
handle common ungrammatical phenomena. It
will also be able to learn behavioural rules to
improve its performance. Ideally, it will be
able to explore the environment and learn new
causal relations.

The SOAR (Newell 1990) and ACT–R (An-
derson & Lebiere 1998) cognitive architectures
have implemented and tested theories of pro-
duction rules learning. While SOAR has been
using an elegant and powerful chunking mech-
anism, the ACT–R theory has taken a more
constrained, but more controllable approach
in which procedural knowledge is formed from
declarative representations as a result of gen-
eralisation and abstraction (and in some cases
specialisation). This mechanism, called produc-
tion compilation, has been extensively used to
model many cognitive tasks including language
acquisition and use. This project will find a
neural equivalent of such mechanism, and the
variable binding mechanism using spontaneous
activation looks very promising.

A working agent that senses and uses nat-
ural language gives us a host of opportuni-
ties for exploration. These include, but are
not limited to, rule learning, simple conver-
sational output, 2-D mapping, cognitive map-
ping, language learning, planning, goal mech-
anisms, learning from instruction, and even
problem solving.

The initial tests for this third prototype will
be its ability to understand and follow instruc-
tions. This will be similar to our evaluation of
a symbolic agent in the same domain (Kenny
& Huyck 2005). Measurement of the agent’s
ability to take instructions will include specific
tests and open domain tests with users. Rule
learning will be tested initially by the ability to
generate addition tables. Other tests of more
sophisticated tasks, such as mapping and sim-
ple conversational output, will be developed as
necessary.

Research Impact

The basic engineering tasks will be successful,
and this will be a solid advance in computing
with attractor nets, with significant ramifica-
tions for anyone working in this area. This
basic engineering is mostly in the first proto-
type, but will also involve duplicating sensing
research in a neural-CA net, and the develop-
ment of a spreading activation net.

There will also be an advance in understand-
ing neural-CA dynamics. This includes the in-
terplay between short and long-term dynamics,
and the simultaneous use of neurons as trans-
ducers, stores, and processors of information.
This is largely done in the second phase, though

components are in both other phases. In par-
ticular, the dual dynamics and the interplay
between storage and transduction is essential
to the development of natural semantics based
on sensing. There will be a significant impact
on the learning of concepts, labelling concepts,
and the understanding of NLP.

Learning complex relations based on synap-
tic weight change will be concentrated in the
third phase. The development of a system that
learns rules based on synaptic weight change
will be a major advancement in itself.

The neural-CA development will improve un-
derstanding of neural processing and neural
learning. The UKCRC sponsored grand chal-
lenge on the Architecture of the Mind and
Brain and the challenge on Journeys in Non-
Classical Computation will also both benefit.

NLP research will benefit from an example sys-
tem that uses grounded symbols. In a related
fashion, parsing theory will be advanced by a
novel neural parser.

A games agent that is instructed by natural
language and learns as it plays will benefit
videogame users. This could also be a new mar-
ket for videogame companies.

Perhaps most importantly, a situated agent
that functions and learns from its environment
is an opportunity for a revolutionary advance.
The system may be able to learn the ramifica-
tions of its actions. This could lead to a system
with sophisticated natural semantics based on
sensing and action. Additionally, the system
could learn new processes. It might be able to
modify its spreading activation net so that it
can set new goals and have new ways of achiev-
ing them. The system may even be able to
learn from instruction. It is not currently clear
how this work will advance during this grant,
but at a minimum, this will be a platform to
explore these issues. It is conceivable that this
work will lead to a revolution in computer de-
velopment and cognitive science research based
around neural-CA nets that learn; this revolu-
tion may be underway by the end of the decade.

Dissemination

We plan on disseminating the results of this
work in a range of conferences and journals.
We intend to run a workshop on programming
with attractor nets at a conference such as
the European AI Conference in 2008. Other
conferences include the Computational Neuro-
science Conference, International Joint Confer-
ence on Neural Networks, Neural Computation
and Psychology Workshop, the International
Joint Conference on AI, the European AI Con-
ference, the International Conference on Cogni-
tive Modelling and the Association for Compu-
tational Linguistics Conference. Journals in-
clude Neural Networks, Neural Computation,
Connection Science, Neurocomputing, Compu-



tational Linguistics, and Artificial Intelligence.

A project web site will be maintained. All soft-
ware, benchmarks, and reports will be made
available on the site.

Resource Management

The PI will be responsible for the overall and
day to day management of the project. Dr
Connolly will work on this project full time
and consequently will be responsible for most
of the programming. It is envisioned that the
PhD student will concentrate on sensing. All
three will meet on a weekly basis to discuss
advancements and issues. There will be fur-
ther interactions, including the co-investigator,
through writing, system development, and pre-
sentations.

This is a major development project in the area
of neural computation. It is rare to find expe-
rienced researchers with skills in the develop-
ment of systems based on simulated neurons.
The availability of Dr Connolly, a researcher
with these skills, is an excellent opportunity for
a significant advance. Simultaneous training
of a new researcher in this area, the PhD stu-
dent, should help the project, and will add an-
other, rare, experienced neuro-computational
engineer and researcher to the small existing
pool.

Dr Belavkin will focus on rules and rule learn-
ing. Rules will be implemented in the first
phase and rule learning in the third phase. This
enables independent streams of development
throughout the project. Dr Belavkin’s exper-
tise in symbolic rule learning (Belavkin 2005)
and cognitive architectures (Belavkin 2001;
Belavkin & Ritter 2004) will be crucial to de-
veloping mechanisms for learning rules.

A substantial number of presentations will be
given during this project to disseminate results
in this novel area. Two laptops will be needed
for presentations along with a travel budget.

Middlesex University will provide accommo-
dation and use of laboratory facilities for the
named researcher and the PhD student. A con-
siderable amount of simulation activity will be
done with the University providing computers.
It will also supply technical and administrative
support for the project.
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Sougné, J. 2001. Binding and multiple in-
stantiation in a distributed network of spiking
neurons. Connection Science 13:99–126.
von der Malsburg, C. 1986. Am I thinking
assemblies? In Palm, G., and Aersten, A.,
eds., Brain Theory. 161–76.



Previous Track Record

Principal Investigator:
Dr Christian R. Huyck has been working
in AI for over 20 years. He has over 40 pub-
lications in AI journals and conferences. His
two main research tracks are NLP, and neural-
CA nets. He has been a lecturer at Middlesex
University since 1998 and is currently a princi-
pal lecturer. He heads Middlesex’s AI research
group consisting of a dozen academic staff and
a dozen PhD students.

Dr Huyck received his PhD from the Uni-
versity of Michigan in 1994. While there he
worked on a range of AI projects, but concen-
trated on NLP. He participated in the fourth
and fifth Message Understanding competitions
(Lytinen et al. 1992; 1993) while at Michigan,
and subsequently on the seventh (Huyck 1998).
He also began collaboration with the interdis-
ciplinary SESAME group while at Michigan.
This is a broad group of researchers includ-
ing researchers from AI, developmental psy-
chology, cognitive psychology, and even archi-
tecture. The group is interested in how peo-
ple think and is informed by a Hebbian neural
hypothesis. It will provide an excellent forum
for discussion of issues related to this research
project.

Dr Huyck’s PhD thesis was based on a sym-
bolic parser that was effective as an engineer-
ing tool, but also parsed like humans (Huyck
1994). Work on the Plink symbolic parser cul-
minated with an evaluation on the standard
parsing metric (Huyck 2000). This evalua-
tion showed that Plink performed well on the
standard syntactic measurement, 71/74 Preci-
sion/Recall, but below the best existing sys-
tems, 88/89 (Collins 1997). To improve the
system, some sort of automated technique was
needed to learn the parsing relationships. Con-
sequently, Huyck started research into CAs to
resolve these problems. Huyck has continued
his NLP work (LeThan, Abeysinghe, & Huyck
2004) and is collaborating with John Deere Inc.
on Text Mining. Huyck is currently working on
a conversational games agent (Kenny & Huyck
2005) that has also given us experience in the
games environment.

Huyck has concentrated on CA research for
several years proposing it as a good basis for a
cognitive model (Huyck 2001a). This work has
been based on simple spiking fatiguing leaky
integrators that are simulated in discrete cy-
cles that are approximately 10 ms of biological
time. These largely adhere to known neural
properties with the obvious exception of dis-
crete versus continuous time. The main ad-
vantage of these discrete cycles is that we can
ignore refractory times, synaptic delay, and
transmission times across the synaptic cleft as
they are much quicker than 10 ms. Conse-
quently, a large number of neurons can be sim-
ulated on a PC in real time.

This platform has been used to simulate a
range of behaviours. Like other connection-
ist systems, it has done real categorisation
tasks including information retrieval (Huyck
& Orengo 2005), categorisation of ambiguous
data (Huyck 2004), and hierarchical categories
(Huyck submitted). Crucially, this involves
neurons that are in multiple CAs. This plat-
form has been used for a novel form of vari-
able binding via medium-term memory (Huyck
2005).

Co-investigator: Dr Roman Belavkin
has been working in Cognitive Science for seven
years and is currently a Senior Lecturer at
Middlesex. He has focused on Cognitive Ar-
chitectures, cognitive models of learning and
decision–making. Recent work (Belavkin 2005)
has studied the effects of entropy in subsym-
bolic information processing on learning in hy-
brid architectures and how it affects behaviour
(Belavkin & Ritter 2004). Belavkin has also
shown how rules contribute to the U-effect in
learning (Belavkin 2001).

Roman Belavkin has worked as a senior lec-
turer at Middlesex since December 2002. He
was awarded his PhD in 2003 from the Univer-
sity of Nottingham. His thesis was a multidis-
ciplinary project on cognitive modelling, and
it was a candidate for the Distinguished Dis-
sertation 2003. Previously, Belavkin held the
position of a research assistant at the Depart-
ment of Physics in Moscow State University,
from which he obtained his MSc degree in at-
mospheric physics.

Since 1998, his interests have been in AI and
cognitive modelling using both symbolic and
subsymbolic approaches. One of the main con-
tributions of his work recently has been mod-
elling the effects of emotion on problem solving
and decision making. One of the outcomes of
this work was the creation of a new subsym-
bolic learning algorithm for the ACT–R cog-
nitive architecture (Belavkin & Ritter 2004),
which is currently used in studies of the effects
of caffeine, stress and other factors on cognitive
processing in humans.

Belavkin is also interested in neural and
Bayesian learning algorithms. He is a member
of the EPSRC funded research network on In-
dependent Component Analysis as well as the
Society for the Study of Artificial Intelligence
and the Simulation of Behaviour (AISB). At
Middlesex, Belavkin is a member of the AI re-
search group and the Interaction Design Cen-
tre.

Named Resarcher:
Dr Colm Connolly has recently received
his PhD from University College Dublin. His
thesis was based on a model of the visual sys-
tem. This model was divided into the “what”
and “where” pathways characteristic of mam-
malian visual systems. It was constructed from
laterally connected excitatory and inhibitory



spiking neurons which were trained with the
SOM learning algorithm. With this model he
proposed a possible solution for a psychophys-
ical phenomenon, known as repetition blind-
ness, based on the timing of waves of excita-
tory and inhibitory spikes (Connolly & Reilly
2005).

He has also written a spiking neuron simula-
tor, called Milligan, which facilitates exploring
binding in CAs by means of synchronous spik-
ing. The simulator can quickly process large
numbers of spikes with millisecond accuracy
(Connolly, Marian, & Reilly 2004).

Middlesex University School of Com-
puting Science The School of Comput-
ing Science at Middlesex University was es-
tablished in 1994. Middlesex has over 50 re-
search active academic staff, 50 PhD students,
and fourteen visiting research fellows includ-
ing seven international visiting professors. The
School also has staff dedicated to website de-
sign, development, and maintenance who will
assist with the project website.

Huyck is head of the AI research group. A large
number of faculty have expertise in neural nets
(e.g. Dr Siri Bavan, Dr Ian Mitchell and Dr Us-
ama Hasan), sensing (Dr Carl Evans, Dr Peter
Passmore, Dr Xiaohong Gao and Dr Shaehedur
Rahman), Visual Psycho-Physics (Dr Dan Di-
aper), Agent Technologies (Dr Satinder Gill),
NLP (Dr Elenor Maclaren), and Robotics (Prof
Anthony White). All can contribute expertise
to the project.
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