Two Simple NeuroCognitive Associative Memory Models

Christian R. Huyck (c.huyck@mdx.ac.uk)
Department of Computer Science
Middlesex University
London UK

Yuhue Ji (YJ097 @live.mdx.ac.uk)
Department of Computer Science
Middlesex University
London UK

Abstract

Human memory is associative and emerges from the behaviour
of neurons. Two models, based on commonly used biologi-
cal neural models are presented. The first model uses static
synapses to approximate timing behaviour for a Stroop task
with congruent conditions responding faster than incongruent
conditions. The second model uses plastic synapses to learn
a semantic net; it then duplicates the behaviour of a question
answering task. This behaviour not only answers correctly, its
times are similar to that of human subjects. These models are
flawed in many ways, for instance, they use hundreds of neu-
rons instead of the billions of neurons in the brain. They are
thus not proposed as anything near a complete final model, but
instead as early steps toward the development of more sophis-
ticated neurocognitive associative memory models.

Keywords: Associative Memory; Cell Assembly; Hebbian
Learning; Spiking Neuron.

Introduction

Human memory is associative in its nature (Anderson &
Bower, 1973). Concepts are associated with related concepts,
with, for instance, Dog associated with Bone and Canine.
Similarly, human cognition is a product of the behaviour of
the brain in general, and neurons in particular. Since asso-
ciative memory is a key component of the human mind, and
the mind is a product of the activity of neurons, developing
simulations of associative memory in neurons is important.

One modern description of associative memory is the se-
mantic net (Quillian, 1967). This symbolic representation
has been widely used in knowledge representation schemes in
Artificial Intelligence. Sub-symbolically, many connectionist
and simulated neural systems have been developed to account
for associative memory (for a review see (Lansner, 2009)).
The authors are, however, unaware of any cognitive models
of associative memory based on spiking neurons. As associa-
tive memory emerges from the behaviour of spiking neurons,
such a model is important.

What is a good way to evaluate a cognitive model of asso-
ciative memory? This paper describes two simple neurocog-
nitive models of associative memory. The first accounts for
the Stroop effect (Stroop, 1935) using static synapses. The
second accounts for some subcategorisation hierarchy effects
that subjects (Collins & Quillian, 1969) show in answering
questions; this model makes use of plastic synapses, but has
arigid training regime.

These neuro-cognitive models are simple. They are based
on simple neural models, and the second uses a simple Heb-
bian learning rule. As they are simple, they are flawed. These
flaws are discussed, along with relatively simple mechanisms
to add to build better neuro-cognitive models of associative
memories. The conclusion includes future work in this area.

Literature Review

The task modelled in this paper is associative memory. There
has been a great deal of associative memory modelling and
psychological exploration of associative memory, and there
is evidence that a crucial component of this memory at the
neural level is the Cell Assembly (CA). Below this psycho-
logical and neuropsychological area is reviewed along with
the neurobiological area of synaptic modification, and neural
modelling.

Associative Memory

Human memory is associative. Concepts do not exist in iso-
lation, but in a network of associations. A semantic net is
a symbolic representation of this memory (Quillian, 1967).
Collins and Quillian ran a psychological study that supports
this (Collins & Quillian, 1969). In this study, subjects were
given a statement such as a canary is yellow, and asked to say
if it was true or false. It took subjects longer to respond false,
but they also took longer if the fact was associated with a
super-category of the item. They hypothesised that bird was
the super-category of canary and animal the super-category
of bird. It took longer to respond to a canary has skin than to
a canary can fly, and the shortest was a canary is yellow. Sim-
ilarly, the time to answer a question about direct hierarchical
relations were longer the higher up the hierarchy. Shortest
was a canary is a canary, followed by a canary is a bird,
followed by a canary is an animal.

The Stroop effect (Stroop, 1935) is a consequence of as-
sociative interference. The original task has a colour name
presented in a coloured ink. So, the word blue might be pre-
sented in red ink. One task is for the subjects to name the
colour of the ink, in the example red. If the word and ink
are congruent, the subjects respond faster and make fewer er-
rors than if they are incongruent. This is a well known and a
well studied phenomenon (MacLeod, 1991). Associative in-
terference applies to many domains beyond colours and is a



window into human associative memory.

Cell Assemblies

The CA hypothesis is that the CA is the neural basis of,
among other things, concepts (Hebb, 1949). A CA is a group
of neurons that has relatively high synaptic connectivity, and
relatively highly weighted synaptic connectivity. Thus, once
the CA starts to fire, there is a cascade of firing that causes
many of the other neurons in the CA to fire. This firing is
the neural basis of a psychological short-term memory. The
synaptic change required to make this connectivity is a long-
term memory. Hebbian learning naturally leads to this type
of structure.

There is a large community of researchers that, in essence,
assumes that the CA hypothesis is correct, and the authors in-
clude themselves in this category. Though Hebb merely theo-
rised the CA based on the limited biological evidence to hand,
significant neurobiological evidence for CAs (see (Huyck &
Passmore, 2013) for a review) has accumulated in subsequent
decades. Indeed the authors are unaware of any evidence con-
tradicting the CA hypothesis. However, the brain’s complex-
ity leaves the exact nature of CAs unclear.

Simulated spiking neurons are powerful computational de-
vices. Itis relatively simple to build systems based on spiking
neurons that are incompatible with the CA hypothesis. These
systems are suspect as models of human psychological be-
haviour.

Synaptic Plasticity

In computational neuro-biological circles, the most popular
learning rule is currently spike timing dependent plasticity
(Bi & Poo, 1998) (STDP). It is Hebbian; that is, the synaptic
weight is increased if the pre-synaptic neuron tends to con-
tribute to the post-synaptic neuron firing. There are many
approaches to developing computational models of STDP.

There are also a wide range of learning mechanisms be-
yond STDP. One particularly useful system (Zenke, Agnes,
& Gerstner, 2015) uses several learning rules to learn stable
CAs. The network consists of both inhibitory and excitatory
spiking neurons. In their simulations, STDP alone leads to
unstable systems and stored CAs are erased over time. There
is a rule that depresses synapses at high firing rates, and a re-
lated rule that increases synapses at low firing rates; both are
based solely on one neuron, and are thus non-Hebbian. There
are short term potentiation and depression rules. Metaplastic-
ity rules are explored, and there are a range of time dynamics.

This enables the system to not only retain stored CAs, but
to learn new CAs. This addresses the long standing neural
stability plasticity dilemma (Carpenter & Grossberg, 1988).
If learning remains on, so that new things can be learned, the
old memories, stored synaptically, can be erased.

The range of synaptic weight modification mechanisms
shows biology contrasts and complements mathematics. Sim-
ple mathematical rules help to explain the mechanisms, and
can be implemented readily. They are usually approximations
to biological mechanisms that are still poorly understood. In

particular, the dynamic nature of the neural system, with spik-
ing effecting synapse weights and synapse weights influenc-
ing spiking, makes it difficult to understand.

One simple rule is known as Oja’s rule (Oja, 1982). This
rule leads to the synaptic weight reflecting the likelihood that
the post-synaptic neuron fires when the pre-synaptic neuron
fires, their correlation. It has two components, an increase
rule when the neurons co-fire, and a decrease rule when the
pre-synaptic neuron fires, but the post-synaptic neuron does
not. It can be modelled as the early part of equations 1 and 2.

Aswi; =R [(1—wyj) x2VB=W] (1)

A_W,'j = —Rx* [Wij * Z(Wkiwb,)] (2)

In these equations R is the learning rate, and w;; is the
current synaptic weight. The exponential components of the
equations are the compensatory modifiers, not used in Oja’s
rule and explained below. Using these rules, if the post-
synaptic neurons fires 40% of the times when the pre-synaptic
neuron fires, the weight will be approximately 0.4.

In addition to Oja’s correlation component, the equations
have a compensatory component that forces the total synap-
tic weight of a neuron toward a value Wp. The compensatory
modifier is the exponential value at the end of the equations,
and current synaptic weight of a neuron is Wy. The simula-
tion below uses a pre-compensatory rule, where only the total
synaptic weight of the pre-synaptic neuron is considered in
the weight update.

The compensatory rule initially speeds learning, but also
limits the synaptic weight. This limit prevents runaway
synaptic growth. The authors have used these rules exten-
sively (Huyck & Mitchell, 2014), and it has been suggested
that compensatory processes are required for Hebbian learn-
ing (Zenke & Gerstner, 2017).

Simulating Neurons

There are many different computational models of neurons
(see (Brette et al., 2007) for a review). One widely used class
of model is a spiking point neuron, and one popular model is
the adaptive exponential integrate-and-fire model (Brette &
Gerstner, 2005).

The authors are involved in the Human Brain Project
(HBP). To increase reproducibility and enable others to eas-
ily use models, the HBP uses a standard set of tools. Nest
(Gewaltig & Diesmann, 2007) is commonly used to simulate
neurons. PyNN (Davison et al., 2008) is used as middleware
to specify the topology and eases the switch from one neural
simulator or emulator to another.

Integrate and fire neurons are simple models of neurons,
but they are widely used, and can accurately model firing be-
haviour of biological neurons. They are also computationally
efficient to simulate.

One key question about cognitive behaviour is time. It has
been noted that many connectionist schemes do not have time
in them naturally (Elman, 1990). This is not the case with



simulations of biological neurons as they have a biological
time course. Moreover, the time course of the neural be-
haviour is the same as the time course of the psychological
behaviour it produces. So, while there are many connectionist
models of associative memory (e.g. (Willshaw, Buneman, &
Longuet-Higgins, 1969)), simulated biological neural models
of associative memory are needed.

Stroop Model

There are many empirical findings that fall into the cate-
gory of the Stroop effect (MacLeod, 1991). The cognitive
explanation of the effect include horse-racing models based
on different processing strength (Cohen, Dunbar, & McClel-
land, 1990), different perceptual acquisitions (Melara & Al-
gom, 2003) and different selective attention (Roelofs, 2003).
Different computational models have been proposed to sim-
ulate the Stroop effect based on different cognitive theo-
ries. The first connectionist model of the Stroop effect was
built in a multi-layer perceptron and trained using supervised
learning via back propagation (Cohen et al., 1990). In the
same year, Phaf and colleagues developed a selective atten-
tional model for the Stroop effect (Phaf, Van der Heijden,
& Patrick, 1990). A more detailed model was built with
sub-networks of sensory detection, motor response, atten-
tion control and habitual response (Kaplan, Sengor, Giirvit,
& Giizelis, 2007). In those models, the difference in response
time was achieved by setting higher distraction on colour
naming. A Hopfield network model for the Stroop effect was
built and trained with combined patterns of attention and sen-
sory inputs(Yusoff, Griining, & Browne, 2011). The network
converged to trained patterns based on the part-completion
results of the attentional modulation in the testing set.

The authors have simulated the Stroop effect with simu-
lated neurons using in Nest with PyNN.! Neurons represent-
ing ink colour, word, and outputs are modelled with leaky
integrate-and-fire neurons. There are CA groups represent-
ing ink colour and word, and both are divided into two sub-
groups representing red or blue conditions. Excitatory con-
nections within a CA spread activation leading to further ac-
tivation. Inhibitory connections across conditions slow this
spread. For instance, neurons in the CA for blue ink inhibit
neurons in red word and vice versa. Synapses from the ink
CAs excite their associated output neurons yielding the re-
sulting time.

The response times, see table 1, were different across dif-
ferent conditions in colour-naming, which was interpreted as
an interference of voluntary control (MacLeod, 2014).

Semantic Net Model

A plastic neural model of the question answering task
(Collins & Quillian, 1969) was developed. The neural model
was a variant of the adaptive exponential integrate-and-fire
model (Brette & Gerstner, 2005). The learning mechanism

IThe code for both models is available on
http://www.cwa.mdx.ac.uk/NEAL/code/questionl CCM.tar.gz.

Table 1: Response time in experiments and simulation

Conditions Experiments (ms) Simulation(ms)
Ink incongruent 795 660
Ink congruent 605 436
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Figure 1: Gross Topology of the Question Answering As-
sociative Memory. Boxes represent sets of neurons. Thick
boxes and arrows are plastic. The oval represents the ques-
tion with spike sources instead of neurons.

was a compensatory Hebbian mechanism, see equations 1 and
2. The training regime was quite precise and the synapses
were changed from plastic to static during the simulation, so
that they no longer changed after training.

A pre-compensatory learning rule was developed in Nest
as a synapse model. A pre-compensatory rule targets the total
synaptic strength leaving a neuron, Wp in equations 1 and 2.
Since the target and current strength need to be stored on the
neuron, a new neural model was also developed in Nest. This
modified the adaptive exponential integrate-and-fire model
by including this constant and variable. The compensatory
synapse changed the variable during synaptic weight change.

Figure 1 represents the final neural system. The system
consists of three sets of neurons that have learned the seman-
tic net. There is an animal inheritance hierarchy in the animal
neurons. Associations are three way between animal, opera-
tion and property. For instance, if the canary is yellow asso-
ciation is stored, the synaptic weight between animal canary
and operation is has increased weights, as do the synapses be-
tween canary and property yellow, and between is and yellow.



Training took place in two phases. The first phase learned
the animal hierarchy and the second learned the associations.

Initially a well connected net of 200 neurons, the animal
neurons, was trained to store 20 concepts and 19 direct hi-
erarchical relations in a three level hierarchy (Animal (Am-
phibian) (Fish Shark Salmon Bass Pike) (Bird Canary Ostrich
Robin Goose Pigeon) (Mammal Dog Cat Rat Bear Monkey
Human)). A single concept was represented by 10 neurons
with the first five being used for the hierarchy, and the second
five used for associations. This was a simple model of a CA.

Neurons were stimulated externally in epochs. Each epoch
went through a CA phase, a hierarchy phase and a one neuron
firing phase lasting a total of 5000 ms of simulated time. The
CA phase stimulated (to firing) each of the 10 neurons in a
CA, and then inhibited the entire net after 40 ms. All 20 CAs
were stimulated in turn, one after the other 5S0ms apart. This
was followed by the hierarchy phase with each of the 19 di-
rect hierarchical relations presented by stimulating (to firing)
the first five neurons of each of the pairs; the entire net was
inhibited after 40ms and the next pair was presented. This
was followed by a period where each neuron was fired one at
a time 11 ms apart. This allowed each synapse to apply the
Hebbian decrease rule equation 2. Without this, the synapses
between the neurons in the first half of a CA and the synapses
between neurons in the second half only go up as they al-
ways fire together. This total epoch length was 20x50ms for
the CAs, plus 19x50ms for the hierarchical relations, plus
200x11 for the one neuron firing phase, which was rounded
to 5000. Hierarchical training took 30 epochs for 150000ms
or 150 seconds. In the early epochs neurons fired once dur-
ing CA and hierarchy presentation, but as the synaptic weight
increased, they fired for several times. Inhibition 40ms after
presentation allowed the next item to be presented.

The system was run in 1 ms time steps, and the compen-
satory mechanism considered the neurons co-firing if they
fired in the same cycle or with the post-synaptic neuron fir-
ing within 10ms of the pre-synaptic neuron. In this manner, a
simple CA for each animal concept is learned, and the hierar-
chical relations are learned.

The animal-animal synapses are saved, synapses with
small values are pruned for efficiency, and they are loaded
back in as static synapses for the second phase of training.
In this phase, there were the 20 animal CAs in 200 neurons,
50 operation neurons, and 50 property neurons. The oper-
ation neurons were well connected internally, so that each
neuron synapsed with every other neuron, and the property
neurons were well connected internally. The second five neu-
rons in each animal CA were well connected with both the
operation and property neurons; so each had 100 additional
synapses leaving them. Similarly each of the operation and
property neurons had connections to those five animal neu-
rons per CA, so each had 100 synapses to the animal neurons.
The operation and property neurons connected to each other
more sparsely with each connecting to 10 neurons (evenly
distributed) in the opposite net.

These three nets were trained in two phases; the first
learned the five CAs in the property and operation neurons.
The second phase learned the five three way associations. Af-
ter this the weights were saved.

These saved synaptic weights were loaded into the test sys-
tem with the low weights pruned for efficiency. During test-
ing, all synapses are static. The question is presented by ex-
ternal simulation. There are two types of question: animal
relation property or animal isA animal. Both questions start
the (neural) timer. The output neurons are two CAs, one for
true and one for false. If the timer completes without the
true CA coming on, the timer turns on the false CA, and that
is the output. In this case, on means that the CA is firing
persistently. The true and false output CAs have mutually
inhibitory synapses.

For both types of question, the correct provided answer is
stimulated; it fires persistently. Neurons in a CA can fire with-
out causing the circuit to fire persistently; once a CA is firing
persistently, it ignited. If the question is an animal relation
property one, the animal and operation are stimulated. If there
is a property associated, via learning, it becomes active. This
then turns on the system answer. The equal net is a set of CAs
that are only ignited if both the provided and system answers
are firing. If there is an equal answer, it turns on the true out-
put CA. The associations spread directly from the base level
animal (canary), but can not spread until the super-level cat-
egory (bird or animal) is activated. Thus it takes longer to
retrieve these associations.

When the animal isA animal question, the second type, is
asked, the animal, provided answer and timer are all stimu-
lated. Operation is not stimulated, but the prime hierarchy
CA is. This sends extra activation to all of the animals, which
supports the spread of activation up the hierarchy. As before,
the association is retrieved (or not) by the memory, in this
case the animal, turning on the system answer CA.

Following Collins and Quillian (Collins & Quillian, 1969),
the property associations are labelled P followed by the level,
and the superset relation S followed by the level. The results
are shown in table 2. Here SO refers to the sentence a pigeon
is a pigeon, and P3 refers to the sentence a canary has skin.
The false sentences are labelled with False and are a canary
has gills and a pigeon is a fish. The Collins column is the
time reported in the paper (Collins & Quillian, 1969).

The associations are retrieved in the correct order by inher-
itance, but are clearly off time wise. It could easily be argued
that the start times are due to input and output processes not
accounted for by the model. So, 954ms, for instance, could be
added to each of the systems times. Still, the timings are off
significantly, with the system’s times varying over less than
200ms and the subjects’ over almost S00ms.

Discussion

The static Stroop model described above shows that it is rea-
sonably easy to develop a spiking model of a particular asso-
ciative memory. It is not entirely clear how well this mech-



Table 2: Associative Question Retrieval Time in ms.

Question Type Collins Answer(ms) System (ms)
PO 1300 51

P1 1380 61

P2 1460 62

P False 1450 235

SO 1000 46

S1 1170 59

S2 1240 130

S False 1400 235

anism scales. However, the number of neurons should scale
linearly to the number of concepts. Similarly, if the associa-
tions are stored in synapses, and there are a constant number
of associations for each concept, they should be storable in a
topology like the sparse topologies of the brain.

While neural models have the advantage of parallelism,
the real advantage to using neural systems is that they learn.
The question answering model described above makes use
of learning. While the Hebbian compensatory learning rule
has a degree of biological plausibility, the presentation mech-
anism and shift from plastic to static neurons is clearly not
plausible. One could argue that particular neuro-transmitters
turn off plasticity, but the authors feel that is really stretching
the metaphor. Instead, we view this model as a step toward
more complete ones, and a very early step at that. It is using
10 neurons to represent a concept. The 10 neuron CA would
persist indefinitely if not explicitly stopped. Once the neu-
rons have stopped, they do not fire again unless stimulated
from the environment, which is clearly biologically unrealis-
tic. The words are stimulated directly from the environment;
there is no attempt to read, and there is no attempt to actually
ground these words in the environment. While it is clearly in-
complete, the system does exhibit some symbolic properties
of a semantic net. It also exhibits the right direction of timing
for spread of activation of a reasonable cognitive model. It
should be relatively simple to improve this so that it more ac-
curately generates these times. This could be done by chang-
ing synaptic connectivity, or perhaps moving from a 5-5 CA
in the hierarchical structure to a 10-5 CA. The neural param-
eters could be changed to support slower ignition.

However, improving the model by parameter fitting seems
like an unpromising way forward for a significantly better
neural associative memory. Instead the model could be im-
proved by simple additions. For instance, the learned portion
of the question answering model has no inhibitory neurons.
Inhibitory neurons can also be used to reduce overall activa-
tion, but also support competition between concepts. The CA
for fish is mutually incompatible with the CA for bird, so the
two may have mutually inhibitory synapses.

The question answering model has also used synapses for
associations. While synapses are clearly involved in associ-
ations, larger associated cell assemblies may share neurons.

That is, neurons are involved in both CAs. When a CA ig-
nites, neurons in it that are involved in other associated CAs
are particularly efficient at priming those CAs and may even
lead to their ignition. The authors have explore hierarchical
CAs (Huyck, 2007) with shared neurons.

Another problem with the model, and indeed most neu-
ral models of learning, is that the neurons that learn are di-
rectly stimulated from the environment. Clearly, this is not
the case in the brain with at most the sensory neurons being
directly stimulated from the environment. Somehow learn-
ing must move from the sensory neurons into other areas.
Again, the authors have made some progress on this (Huyck
& Mitchell, 2014) using a Fatiguing Leaky Integrate and Fire
neural model that spontaneously fires when it has not fired
recently. Integrating spread into new areas into an associa-
tive memory, in addition to increasing biological plausibility,
would also address input bandwidth problems of, for exam-
ple, large neuromorphic machines.

The plastic question answering system only used one learn-
ing rule, though it did turn off learning. A better system might
take advantage of several learning rules. In particular, the
system could benefit from long and short term synaptic mod-
ification. The current rule changes the synaptic weight after
the next firing, and that weight remains changed (though it
of course may be modified again). This is not biologically
plausible, as long-term synaptic modification is neither per-
manent (though it can last for months) nor instantaneous. The
authors have explored short term dynamics, and hope to con-
tinue in the associative memory context. The long-term firing
and synaptic dynamics need to be explored so the associative
memory both stores old memories, and learns new memories.

Finally, the presentation mechanism in both models was to
merely turn on stored neurons that represent symbols. This
really is just a different way of using symbols. If the sys-
tem could learn concepts from interaction with the environ-
ment, there would be scope for appreciably more complex
concepts; this is the symbol grounding problem, and some
progress on learning concepts can readily incorporate mech-
anisms for closely associating symbols with those concepts.

Conclusion

This paper has presented two neurocognitive models of asso-
ciative memory. The first uses static synapses and duplicates
the timing behaviour of performance on a Stroop task. The
second uses a Hebbian compensatory synaptic modification
rule to learn a semantic net. Performance on a question an-
swering task is similar to behaviour of human subjects. Both
models are implemented in leaky integrate and fire neurons.
These two models are simple, but it is hoped that they are
just two early steps in the development of a more sophisti-
cated neural associative memory mechanism. These models
can be extended by the use of inhibitory neurons, support-
ing competition between CAs; associations including shared
neurons, supporting a range of degrees of association; the use
of neural models that support spread of CAs beyond neurons



that are directly activated by the environment, allowing the
neural system to learn to use neurons that are not directly
stimulated by the environment; and the combined use of mul-
tiple synaptic modification rules, providing improved flexi-
bility with learning and more biological accuracy.

There will be two main strands in task development: sym-
bolic bootstrapping and symbol grounding. Symbolic boot-
strapping can use existing or newly developed symbolic se-
mantic nets. These encodings can be learned by a neural sys-
tem, and new associations can be learned by, for instance,
interpreting text. Large semantic nets can be learned in large
neuromorphic systems with millions of neurons, which can
support exploration of CA and association dynamics.

Symbol grounding will be used for agents (virtual and
robotic) that perform tasks. Initial bootstrapped semantic nets
may provide memory, but new concepts and associations will
be learned from the environment. This will address one of the
key problems of Al

The goal is to generate a substantially better neural associa-
tive memory. This memory will be evaluated on, among other
things, the Stroop task, and the question answering task.
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