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Abstract

The development of a cognitive architecture based on neurons
is currently viable. An initial architecture is proposed, and is
based around a slow serial system, and a fast parallel system,
with additional subsystems for behaviours such as sensing,
action and language. Current technology allows us to emulate
millions of neurons in real time supporting the development
and use of relatively sophisticated systems based on the ar-
chitecture. While knowledge of biological neural processing
and learning rules, and cognitive behaviour is extensive, it is
far from complete. This architecture provides a slowly vary-
ing neural structure that forms the framework for cognition
and learning. It will provide support for exploring biological
neural behaviour in functioning animals, and support for the
development of artificial systems based on neurons.

Introduction
The mind emerges from the behaviour of the brain, which
in turn consists of neurons. This was known when the first
cognitive architecture was proposed (Newell 1990), and re-
mains uncontroversial. Due to the simplicity of developing
systems of rules, most architectures are based around them.
This paper proposes a cognitive architecture based on neu-
rons, a neural cognitive architecture.

It is difficult to program things in simulated neurons but,
like rule based systems, neurons are Turing complete (Byrne
and Huyck 2010). Consequently, it is possible to specify, de-
sign and implement a cognitive architecture with neurons as
the foundation. This can then be refined so it will converge
to the actual neural cognitive architecture.

It is, of course, a long way from the certainty that minds
emerge from neurons to developing working cognitive mod-
els, agents, and other high and low level behaviours in simu-
lated and emulated neurons1. Consequently, the initial archi-
tecture should be relatively simple and be developed around
two other, slightly more controversial systems (Kahneman
2011): a fast, parallel, implicit, subconscious system, and a
slow, serial, explicit, conscious system. In this paper, these
will be referred to as the slow system and the fast system,
and they will need to be implemented in neurons.
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1Emulated neurons run on neuromorphic hardware, and simu-
lated neurons run on standard hardware.

Development of a neuro-cognitive standard model will
not be simple. It takes advantage of human functioning neu-
ral and cognitive systems as a guide, and other behaving an-
imals, all of which use neurons for their minds.

Can We Do It Now
Since neurons are Turing complete, it is possible to build
a cognitive architecture in neurons. While it is possible to
reimplement, for instance, ACT-R (Anderson and Lebiere
1998) in neurons, this reimplementation might not take full
advantage of neural processing. None the less, it will be use-
ful to build basic components of the initial architecture in
less than biologically plausible ways. Once things are run-
ning in neurons, new more biologically plausible systems
can be developed.

We Can Develop an Architecture in Neurons
This is a viable technology now. The community knows how
to make rule based systems in neurons. Though incomplete,
there is a great deal of knowledge about neurons. We know
about neural and cognitive learning, and can emulate at least,
mouse size brains, in real time now.

One of the benefits of neural processing is that it can be
highly parallel. Unfortunately, most modern computers are
largely serial. However, neuromorphic hardware is becom-
ing increasingly available. For instance, the SpiNNaker sys-
tem (Furber et al. 2013) emulates a wide range of neural
models in 1ms time steps in real time. One current system
consists of 500,000 processors, and can emulate 500 million
neurons in real time. This is not enough to emulate a full
human brain, but is much larger than the number of neu-
rons in a mouse brain. Models can be developed to run in
Nest (Gewaltig and Diesmann 2007) on standard computers
though the models with large numbers of neurons will run
at less the real time; this allows development of systems on
standard serial hardware.

Neurons communicate via spikes. This provides a degree
of modularity to facilitate development. In many cases, sub-
systems can be combined and communicate via spikes. In
other cases, subsystems will be combined and share neurons.

Other Neural Architectures
There are already artificial cognitive architectures based on
simulated neurons, or on simulated neuron-like units. One



Figure 1: Brodmann Areas, lateral surface of the brain (cour-
tesy of Mark Dubin)

of the best of these is the LEABRA model (O’Reilly 1996).
It uses rate coded neurons instead of spike coded neurons,
but the two types of systems can be combined. Rate coded
neurons do lose information, have problems accounting for
synchrony, and have issues with learning.

A second example is the global workspace theory (Shana-
han 2006). This uses specialised neural-like units as the ba-
sis of its computation. While an interesting exploration of
complex behaviours, such as internal simulation, it suffers
from its non-biological units.

Another popular neural architecture is the Spaun model
(Eliasmith et al. 2012) shows how flexible computation with
neurons can be. This benefits from a vector based approach
supporting the translation of a range of behaviours into a
range of spike based neural models. It suffers from bind-
ing via convolution, which does not seem to be biologically
plausible, and its dependency on vector representations.

These, and others, are interesting neural systems, and
show that it is possible to build a neural cognitive architec-
ture now. However, it is not at all clear which one to build.
The brain is self modifying on several time scales, but it is
not at all clear how to build a model of even simple point
neurons with static synapses. Consequently, we will need to
develop a series of prototypes. We do not know everything.
We do not know the correct neural models, learning rules,
topology, or even brain areas of particular functions.

So, an initial architecture will be based around several
subsystems that function in parallel. Like rule based archi-
tectures, the subsystems may be customisable. The initial
system and its instances will provide direction for the devel-
opment of future versions.

An Initial Roadmap
This section proposes a relatively simple first version of the
architecture. This will consist of customisable neural sub-

systems (descriptions of these subsystems), fully instanti-
ated subsystems (actual neural topologies possibly gener-
ated from the descriptions), and fully instantiated full sys-
tems (combinations of topologies from the subsystems).

The Slow and Fast Systems
The first subsystem is the slow system. It should be relatively
simple to build a relatively unconstrained rule based system
in neurons. The key problem is variable binding, and there
are several solutions (e.g. (Shastri and Aijanagadde 1993;
van der Velde and de Kamps 2006; Huyck 2009b)). It should
be possible to directly translate a particular rule base auto-
matically to neurons. When a particular rule base is con-
verted to neurons, this is a fully instantiated system. Note,
that a developer can program the full rule based system di-
rectly into neurons, and skip the translation step. (One way
to program neurons is to specify the topology using a lan-
guage like PyNN (Davison et al. 2008).)

While the slow system can be approximated by a rule
based system, it is appreciably less clear how the fast sys-
tem works. It is proposed that it is a form of the spreading
activation networks popular in the 80s, e.g. the interactive
activation model (Rumelhart and McClelland 1982).

Note that this assumes that a reasonably large amount of
the computation the brain does is computation via spread-
ing activation. Bottom up computation, from the senses, is
driven by the environment, and is similar to deep nets and
other common machine learning connectionist nets. Spread-
ing activation between different sets of neurons is the basis
of cognition in the fast system. At the symbolic end of this
computation, the spreading activation is determined by the
semantics of the symbol, and leads to active symbols (Ka-
plan, Weaver, and French 1990).

While there has been work in translating general con-
tinuously valued neuron models, like interactive activa-
tion models, to spiking neurons (Abbott, DePasquale, and
Memmesheimer 2016). the author is not aware of a solid
theory of how this works in spiking networks. The develop-
ment of a solid theory of implementing spreading activation
nets in spiking neurons is an important challenge for neural
computation and cognitive architectures.

The initial fast system will have two largely distinct com-
ponents: a planning subsystem and an associative memory to
represent concepts. Active facts from the associative mem-
ory can be used in the planning subsystem to represent the
environment, or an internally simulated environment.

One variant of a spreading activation system has been
used for planning (Maes 1989) and versions have been built
in spiking neurons. In this first component, plans are en-
coded in the network topology, and are run by spreading
activation in response to goals and the environment.

A second component is an associative memory, a type of a
semantic net. Concepts and instances of those concepts can
be stored in a spreading activation net. Their associations
can be stored providing spread of activation behaviour. A
variant of this has been used for prepositional phrase attach-
ment resolution, but an extended version is needed.

The fast and slow systems will be combined for the first
full system. Facts that support rules will be synaptically



linked to facts from the fast system. So, the systems will
run together. A conflict resolution mechanism will deter-
mine which action is done when the two systems are in con-
flict. It is not clear how the brain manages attention (Ober-
auer and Lin 2017). Inhibitory synapses may focus activa-
tion, and synchronous firing may be involved. None the less,
some sort of mechanism that is similar to attention will be
used to resolve the conflict. One of the key issues of this ar-
chitecture is attention, its relationship to working memory,
and its relationship to the fast and slow systems.

Note that the typical cognitive architecture components of
short and long term memory emerge from the neural archi-
tecture. Long and short term memory are neural structures
(see the Cell Assemblies section). So the initial architecture
will involve three general mechanisms, attention, short term
and long term memory, emerging from neural behaviour.

Domain Specific Subsystems
Domain specific subsystems will need to be developed.
These will need to be integrated with the fast and slow sys-
tem to form complete initial systems.

Two obvious types of subsystem are sensory subsystems
and motor subsystems. It is not difficult to make simple vi-
sion systems with spiking neurons. It is however an increas-
ingly difficult task, neurally and non-neurally, to make in-
creasingly sophisticated vision systems.

Other sensory systems include the standard hearing, smell
and taste. However, subsystems for balance, internal body
sensing (e.g. joint position, and rate of change) will also
eventually be needed. In particular, touch is complex, and
will need to be integrated with motor action.

Complete systems may need none of these sensory or mo-
tion subsystems. For instance, a complete system for con-
versation about mental arithmetic may only get symbolic in-
put and give symbolic output. None the less, other complete
systems will need these sensory systems, for instance a com-
plete simulated driving system would need vision.

Note that to this point in the paper, little has been said
about learning. The Learning section will further elaborate,
but it is clear that, perhaps, the main reason to use neural
systems is that they learn. Even Turing assumed that the
first general AI would not be a programmed adult, but a pro-
grammed infant that learned. While learning is far from un-
derstood, current spiking neural systems are capable of ex-
tensive amounts of learning. Moreover, embodied systems
that learn an extensive amount about their environments may
be industrially viable.

For instance, a spatial cognitive mapping subsystem (Jef-
fery and Burgess 2006) could be developed. This would
make use of grid and place cells. Existing simulated neu-
ral systems are able to learn a spatial map of environments,
so this would be one form of exploration of learning. This
might be extended or varied to make non-spatial cognitive
mapping subsystems. Another sample subsystem is natural
language understanding. An existing spiking neural subsys-
tem (Huyck 2009a) is already a solid neuro-cognitive model
for natural language parsing.

Other subsystems could be developed independently and
integrated as time allows. For instance, natural language
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Figure 2: Box Diagram of the Gross Topology of the Archi-
tecture. PNS abbreviates Peripheral Nervous System.

generation, arithmetic, episodic memory, and domain spe-
cific non spatial cognitive mapping all seem plausible.

Architectural Diagrams
Figure 1 is a representation of the cortex with a standard
division. Brodmann areas correspond to physiological fea-
tures that are constant across most human brains. Work, for
example fMRI studies, has been done that suggests some of
the cognitive tasks in which each of the areas is involved.
It is not entirely clear how these areas correspond to cogni-
tive functionality, so this picture is too specific. Do note that
this is just an image of the cortex, while the brain consists
of many subcortical levels. It is clear that these subcortical
levels are intimately involved in cognition.

A better diagram might be generated from the Human
Connectome Project (Essen et al. 2013). The goal of this
project is to determine the basic coarse topology of the brain.
(The coarse topology refers to the neurons and how they
synapse; the fine topology refers to the weights of these
synapses.) Another goal is to determine the functional con-
nectivity, showing the effect of these connections. While
progress is being made on both of these tasks, unfortunately,
the result is far from complete.

Consequently, Figure 2 is a descriptive gross topology di-
agram showing brain areas, and their hypothesized correla-
tion to the function of the subsystems described above. The
arcs refer to the proposed primary activity. Though synapses
are unidirectional, if there is a synapse from one area of the
brain to another, there are reciprocal synapses (except from
the retina). So, the primary activity refers to the hypothe-
sized primary communication of information.



Figure 2 has several major cortical areas. Each box refers
to an area of the brain on the first line, and its major function
in the architecture in the second line. The prefrontal cortex is
the proposed basis for the slow system. Many have proposed
that the basis of rule based behaviour is in Basal Ganglia (a
portion of the Other Subcortical Areas box). Firstly, it seems
unlikely that a slow first system resides entirely in subcorti-
cal areas; secondly, subcortical areas connect to all cortical
areas, so it is possible that the Basal Ganglia is still involved.
Finally, the box diagram refers to the gross topology, so sys-
tems will cross boxes. Parietal cortex is responsible for as-
sociative memory, and in the initial architecture will be the
associative memory component of the fast system. Temporal
cortex is responsible for the planning system, occipital cor-
tex is responsible for vision getting input from the retina via
the Thalamus. Motor cortex is responsible for motor action,
and the Thalamus preprocesses sensory input. Other subcor-
tical areas, beyond the Thalamus, are available for collabo-
ration with all subsystems; early animals do all processing
subcortically. Senses and the rest of the peripheral nervous
system (PNS) support interaction with the environment.

The overall flow of information is a loop from the sensory
systems, through the thalamus to occipital and parietal cor-
tices. Using temporal cortex for support, the prefrontal cor-
tex manages the overall system and passes information to the
motor cortex. This passes back through subcortical areas to
motor control. This is not the only loop in the system, with
the whole system being highly concurrent and recurrent. It is
hoped that as the architecture evolves, function will be more
closely linked to actual brain topology. Moreover, it is hoped
that these draft figures will be replaced by increasingly bi-
ologically accurate topologies, at a range of sizes, linked to
biological and behavioural data.

Obvious Benefits and Challenges
The previous section provided an early version of the func-
tioning neural architecture. It referred to some of the obvious
benefits and challenges of this architecture. The architecture
will benefit from work on cell assemblies, embodiment, and
existing cognitive architectures. Two of the main challenges
are learning and behaviour over a range of time scales.

Cell Assemblies
It has long been hypothesised, that neural cell assemblies
are the neural basis of concepts (Hebb 1949), and substan-
tial evidence supports this (e.g. (Harris 2005)). One of the
benefits of this mechanism is that the neurons provide both
long and short term memories. The long term memory is the
formation of the cell assembly. The short term memory is
the firing of many of the neurons in the assembly.

While symbol processing systems are powerful, the real
strength of animal cognition is the second system. The rapid
parallel processing provides the animal with incredible pro-
cessing. One of the key benefits of the second system is that
it provides meaning for the symbols. It grounds them. This
is the symbol grounding problem (Harnad 1990).

Cell assemblies provide an intermediate structure consist-
ing of many neurons. Neurons may be in more than one cell

assembly, and assemblies can cross cortical and sub-cortical
areas. Depending on the context, particular portions of the
assembly may be active or inactive.

Embodiment
A second benefit of the architecture is embodied cognition
(Brooks 1991). While complete systems do not need to have
complex sensory or motor systems, these systems are read-
ily integrated into the architecture. Vision, touch and other
sensory systems can be integrated.

One particular strength is that touch and internal sensory
systems can eventually be integrated with the motor systems
using learning. The system can, at least theoretically be self
modifying. This will allow the robot to improve its perfor-
mance, and to compensate for changing motor systems. As
motors change (as robot developers know they do), the neu-
ral control system will modify itself to continue to function.

Also, a great deal is already known about neural sensory
and motor behaviour. In particular, it is relatively easy to
investigated animal neural behaviour and to use the under-
standing that has be gained to build neural systems.

Alignment with Existing Architectures
The neural architecture will benefit from work in existing
architectures. Existing neural subsystems can be readily in-
tegrated within the architecture, communicating with other
subsystems via spikes. Below are a few examples of benefits
from rule based architectures.

There is a large body of work on the neural implemen-
tation of cognitive function. Some of this (e.g. (Jeffery and
Burgess 2006)) has been implemented in neurons and this
work can readily be integrated with this neural architec-
ture. Other work (e.g. (Koechlin, Ody, and Kouneiher 1997))
merely shows behaviour in the brain, and links this to psy-
chological performance. This can also be implemented in
the architecture, but a neural model needs to be developed.

One of the great benefits of ACT-R, is that it has been
used to implement many cognitive models. These cognitive
models could be re-implemented as neuro-cognitive mod-
els. For example, automobile driving behaviour (Salvucci
2006) could be modelled with neurons, reproducing the per-
formance data generated by the original model.

Another issue that has been explored by the ACT-R com-
munity is active memory duration. How long does a memory
item remain active, how does it decay, and how does it be-
have if it is reactivated? Duplicating this behaviour in neural
memories is an important step.

One of the key concerns with various ACT systems is
buffers and buffer sizes. At least initially, this could be tied to
neurons in cell assemblies that fire at an elevated rate. Man-
aging amount of neural firing is one of the key problems of
neural systems; when too many neurons fire, it is called sim-
ulated epilepsy. There are a range of techniques to address
this. One is to have four excitatory neurons for every in-
hibitory neuron, but to give the excitatory neuron four times
as much synaptic strength. Another mechanism is to have
both local and global inhibitory systems. Local inhibition
manages activation in a particular area and helps the system



select a particular cell assembly. Global inhibitory mecha-
nisms take input from large portions of the network, and
if there is too much activation, inhibitory neurons fire and
reduce the overall activation. Another mechanism is short-
term modification of neurons (to prevent them from becom-
ing too active), and short term synaptic modification.

One of the key benefits of Soar (Laird, Newell, and
Rosenbloom 1987) is its decomposition of problems into
problem spaces. This is readily amenable to decomposition
into subsystems. So, there might be a particular neural sub-
system for the navigation sub-space, and a different subsys-
tem for analogies.

A second advantage of Soar is chunking. There has been
some work in learning rules with neurons, but it is not en-
tirely clear how to do that. Duplicating the Soar mechanism
neurally may be a good way to make progress in learning.

Epic (Kieras, Wood, and Meyer 1997) has many solid re-
sults in timing of visual task performance. A good visual
subsystem, or a good full system with an advanced visual
subsystem would duplicate that timing data. Moreover, this
data could be directly compared to the firing behaviour of
neurons. (Admittedly, this might be ethically difficult to dis-
cover in humans, but not in, for instance, rats.)

Learning
There are many types of learning at both the neural and cog-
nitive levels. At the neural level there are different types of
synaptic modification including long and short term potenti-
ation and depression, and synaptic growth and death. Simi-
larly, new neurons grow and die throughout life.

From a psychological standpoint, there are also a range
of types of learning including semantic learning, episodic
learning, different types of sensory learning, motor learning
and many others. The memories also vary in the times they
are active, and how long they persist.

Learning is one of the key potential benefits of neural
systems and one of the key shortcomings of current imple-
mentations. Spike Timing Dependent Plasticity (Bi and Poo
1998) is currently in favour as a long term plasticity rule, but
even its instantiation is a subject of debate. Ideally the archi-
tecture would generate a neural topology that would modify
itself at the coarse and fine grained levels, and at various time
scales. This evolving topology would be a direct analogy to a
living animal whose topology would change differently de-
pending on the environment. Indeed, the changing topology
could be directly compared to an animal’s.

Unfortunately, the scientific community does not have a
clear idea of how to do this. This proposed architecture,
however, provides support for exploring these problems. For
instance, an episodic memory subsystem could be integrated
into a full system. This would inform the development of
other memory subsystems, but could also be compared to a
second (or third) episodic memory subsystem.

Behaviour of the System Over Many Time Scales
The brain behaves over a range of time scales. Simple neural
firing and synaptic communication happens on the ms scale.
The neurons and synapses themselves change over short
time scales (seconds to minutes) and synapses are modified

(via long-term potentiation and depression) for time scales
that persist for months or longer. Sleep is involved in mem-
ory formation, but it is not entirely clear how that happens.
Some memories seem to persist for years. Also, later mem-
ories depend on earlier memories. Initially, only a few of
these dynamics will be considered, but eventually, they all
need to be considered.

An example of this problem is the stability plasticity
dilemma (Carpenter and Grossberg 1988). It must be pos-
sible to learn new knowledge, but still retain much of the old
knowledge. For instance, humans must be able to learn new
categories, while remembering old categories. Things may
be forgotten, but important things must be remembered.

Tying Models to Brains and Cognition
One of the key benefits of a neural cognitive architecture
over the more traditional variety is that they can be directly
compared to brains. While a traditional architecture may say
that rules are run in the Basal Ganglia, this architecture can
actually compare behaving neurons in the Basal Ganglia to
behaving neurons in the model.

Another problem in cognitive neuroscience, and cognitive
psychology is development. It is difficult to measure how an
animal changes over a period of time, particularly periods
like years. Consequently, models are developed that either
have a lot of knowledge already in them, or do exceedingly
simple tasks. Another benefit of this architecture, is that a
full system could persist for years. It is even possible that
the system could persist in a virtual environment for virtual
years, but in only days of real time.

For the best development of the neural cognitive architec-
ture, it is important that models developed within the archi-
tecture, as much as possible, note their biological and neural
inaccuracies. For instance, while point neural models (Brette
and Gerstner 2005) are models of neurons, they are clearly
approximations, and it is not clear what properties a model
should have. Similarly, the slow system (proposed in the Ini-
tial Roadmap section) may be implemented in neurons, but
it is not at all clear that the binding mechanism is correct,
and it is almost certain that the neurons will not correspond
directly with neurons in any animal.

Finally, this architecture does not require a single topol-
ogy or even a single type of topology. It is possible to build
a range of animal models. So, there may be a mouse brain, a
macaque brain and a human brain, and even a crow brain.

Conclusion
Eventually, the actual human and animal neural cognitive ar-
chitectures will be decoded, providing support for develop-
ing AI systems, and understanding both human and animal
cognition. Starting the process of understanding the neural
cognitive architecture now will speed this understanding.

An initial architecture can be designed around a slow sys-
tem, implemented via a rule based system; a fast system con-
sisting of associative memory and a planning system, imple-
mented via spreading activation; and other domain specific
subsystems. These can all be currently implemented in sim-
ulated and emulated neurons.



This initial architecture will be the continuation of a pro-
cess of discovery of how the brain works. Solutions to large
scale problems of neurodynamics, like the stability plastic-
ity dilemma and spreading activation will need to be re-
solved. Shortcomings in the architecture, and in systems im-
plemented will lead to improvements of this initial archi-
tecture. Neuroscientists, neuropsychologists and other sci-
entists can usefully contribute to the architecture, and its
connection to underlying neural behaviour.

While it may be possible to build general intelligent sys-
tems without using neurons, none currently exist. This ar-
chitecture will support the development of these systems.
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