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Abstract— One of the main tasks in Information Retrieval
is to match a user query to the documents that are relevant
for it. This matching is challenging because in many cases the
keywords the user chooses will be different from the words
the authors of the relevant documents have used. Throughout
the years, many approaches have been proposed to deal with
this problem. One of the most popular consists in expanding
the query with related terms with the goal of retrieving more
relevant documents. In this paper, we propose a new method in
which a Cell Assembly model is applied for query expansion.
Cell Assemblies are reverberating circuits of neurons that
can persist long beyond the initial stimulus has ceased. They
learn through Hebbian Learning rules and have been used to
simulate the formation and the usage of human concepts. We
adapted the Cell Assembly model to learn relationships between
the terms in a document collection. These relationships are
then used to augment the original queries. Our experiments
use standard Information Retrieval test collections and show
that some queries significantly improved their results with our
technique.

I. INTRODUCTION

Information Retrieval (IR) deals with representation, stor-
age, organization, and access to information items [1]. The
IR process starts with a user who has an information need.
The user typically translates this need into a query composed
of a set of keywords. These keywords are then submitted to
an IR System (IRS) (or a search engine) which retrieves the
items (textual documents, web pages, images, videos, etc.)
that are likely to satisfy the user’s information need.

An IR model defines representations for queries and doc-
uments and how to match them. A typical IRS pre-processes
the text of the documents (tokenization, stopword removal,
and stemming) prior to indexing them. This is done offline.
When a user query is posed, the IRS applies the same pre-
processing to the query text and then proceeds to match
the query to the documents. Matching is done by applying
a similarity function, which assigns a similarity score to a
document d in response to the query q. Such scores are used
to generate the ranked list of documents which is returned
to the user. This process is depicted in Figure 1.

One of the main challenges in matching a user’s query to
the relevant documents is that in many cases the keywords
chosen by the user as a query are different from the ones
chosen by the author writing the document. Two linguistic
phenomena contribute to poor results by the IRS: synonymy
and polysemy. Synonymy means the same concept can
be expressed by different words; e.g. car, automobile and
vehicle. Polysemy is the capacity of a word to have multiple
meanings; e.g. the word bank may refer to the financial
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Fig. 1. Typical architecture of an Information Retrieval System

institution, river banks, or memory slots (in a computer).
Throughout the years, many approaches have been proposed
to solve these problems. Query Expansion (QE) is one of
the most widely used methods for solving the synonymy
problem. The basic idea is to augment the original query
with synonyms and related terms (i.e. more specific or
more generic) in order to increase the number of relevant
documents retrieved.

The main contribution of this paper is to propose a new
method for QE based on a Cell Assembly (CA) model.
The CA model proposed by Hebb [7] states that groups of
active neurons in the brain are responsible for the storage of
knowledge in human beings. There is substantial agreement
that they form the basis of the human concepts and solve a
wide variety of other problems [24]. CAs have been used for
several applications [9], [13], [15].

We carried out experiments using a standard IR test col-
lection, the Los Angeles Times (LA Times) collection, which
contains 113K news articles from 1994. Our results showed
a slight overall improvement. However, for some queries, QE
done with our method brought large improvements.

The remainder of this paper is organized as follows:
Section II summarizes related work on the topics QE and
the use of Neural Networks for IR; Section III introduces
the CA model; Section IV presents our proposal of using
CAs for QE; in Section V, we report on the experiments
and analyze our results; Section VI presents a discussion;
finally, Section VII summarizes our work and presents the
main conclusions.

II. RELATED WORK

The literature related to our proposed method is divided
into two distinct groups: (i) approaches for QE in IR, and
(ii) Neural Networks applied to IR. The discussion in this
section is focused in these two groups.



A. Query Expansion

An IRS requires a precise and comprehensive query in
order to perform the search and ranking of documents so that
only relevant documents are presented to the user. However,
the specification of the query is limited by the user’s vocabu-
lary and knowledge of the search domain. Query Expansion
(QE) aims to retrieve not only documents containing the
query terms but also terms that are semantically similar to
them.

QE is used to expand the query submitted by the user
with terms that have a semantic relationship with those in
the original query. The purpose is to enable the retrieval
of documents, even if they do not have terms with the
same spelling as those that were presented in the original
query. What differentiates the types of query expansion is
the method by which these additional terms are chosen. The
central question is how to generate expanded queries. Two
approaches can be taken:

1) Local methods use information from the set of docu-
ments retrieved by the original query to choose ex-
pansion terms. These methods usually require user
intervention to mark a few documents they find rel-
evant. This process, known as Relevance Feedback,
typically achieves significant retrieval improvements.
Experiments by Salton & Buckley [25] on small data
collections report improvements from 47% to 160%.
However, since Relevance Feedback requires effort
from the user, it is not often used in practice [26].

2) Global methods expand the query without taking the
results retrieved by the original query into consid-
eration. This is usually achieved with the aid of a
thesaurus or WordNet [5]. A thesaurus is a controlled
dictionary in a given domain of knowledge and is
used for identifying synonymous expressions and lin-
guistic entities that are semantically similar. The basic
procedure is: for each term in a query, automatically
expand with synonyms and related terms from the
thesaurus. The main advantage of this method is not
requiring user intervention. The main limitation is that
building a thesaurus manually is very costly [18], [28].
WordNet [5] is organized in sets of synonyms with the
terms of same meaning allowing searches for semanti-
cally related nodes. Grootjen et al. [6] and Parapar et
al. [20] used WordNet as a source of additional terms
to complement the user’s query. Both studies report
that no significant improvement was obtained with the
expansion.

B. Neural Network Models for IR

In this section we present some studies that use Artificial
Neural Networks (ANNs) as an alternative IR model. The
main motivation for the use of ANNs in IR is that they
perform well at pattern matching tasks, and this ability can
potentially aid document retrieval.

One of the first attempts to use an ANN for IR was
done by Belew [2] who proposed a three-layer network with

authors, index terms and documents. His system employed
relevance feedback from the users to generate a consensual
representation of the meaning of keywords and documents
shared by the group of users. Kwok [16] also used a three-
layer network. The idea was to reformulate the probabilistic
model for IR. Queries, index terms and documents were
represented by neurons in different layers. Query processing
was done by externally activating the neurons that were
present in the query (first layer). These neurons would spread
activation to the index terms in the middle layer, which in
turn would spread their activation to the documents in the
third layer. The level of activation of each document neuron
was used to rank the documents in relation to the query. No
experiments were reported in the work. Similarly, Wilkin-
son & Hingston [27] used a three-layer ANN representing
queries, index terms, and documents. This study performed
standard IR experiments on small text collections. Ranking
using the proposed ANN achieved an improvement of 14%
in relation to the cosine measurement.

Boughanem et al. [3] applied a two-layer ANN for per-
forming pseudo-relevance feedback during Trec-7. This study
reports a loss of 5% in average precision compared to the
baseline run which did not include query reformulation using
an ANN.

In preliminary studies, Huyck & Orengo [11] have shown
that CAs can be used to perform categorization and IR,
indicating its potential for improving performance when used
in an IRS. However, this study was exploratory and a series
of questions about the use of CAs in IR remain unanswered.

More recently, Roberson & Dankel [23] used a Morpho-
logical NN (MNN), which differs from other neural networks
by the way processing occurs in the nodes. Multiplication
and addition are replaced by addition and maximum (or
minimum), respectively. As a result MNN computation is
nonlinear before thresholding. Retrieval experiments on the
TIME test collection reported results which were signifi-
cantly worse than the vector space model.

Desjardins et al. [4] proposed an auto-associative NN
to perform matching between queries and documents. In
this type of network, all nodes are inter-connected and the
synaptic weights are adjusted by a Hebbian rule. The authors
report on experiments in which 2,000 documents and seven
queries were selected from the TREC FT943 collection. The
results showed that the auto-associative NN outperformed the
vector space model at low recall levels.

Existing work on the use of ANNs for IR have either
not reported on experimental results [2], [16], or have used
very small test collections [4], [11], [23], [27], or failed to
produce improvements [3]. Thus, over twenty years after the
first studies were published, the applicability of ANNs for
IR is still an open question. In this paper, we aim to move a
step towards finding an answer by applying a different type
of ANN to IR and by carrying out experiments on a test
collection used in standard IR evaluations.



III. CELL ASSEMBLY MODEL

The model of CAs proposed by Hebb [7] suggests that
groups of neurons in the brain are responsible for storing
knowledge in human beings. CAs are groups of neurons that
have substantial internal synaptic strength. Through network
reverberation, the CA can remain active even after the
external stimulus has ceased [8]. By specifying the network
topology using a series of texts, we can learn relationships
between terms.

The CA Network model [8] is a neural model, where CAs
emerge via learning. The model has been used for IR [11],
learning hierarchical categories [12], and as a video game
agent [10], among other applications. Unlike most other
ANNs, this is a model of mammalian neural processing,
albeit a relatively coarse neural model.

The processing is broken into discrete time steps. On each
time step, any neuron that has an activation level greater
than a given threshold will fire, and the activation levels
for all of its post-synaptic neurons are updated. Neurons are
connected by a small number of synapses. In the simulations
below, neurons in the network are connected to 40 other
neurons [11]. Figure 2 shows the network as a rectangular
matrix. The neurons that are firing are shown in blue.

Fig. 2. Snapshot of the network’s activation. The cells in blue represent a
neuron firing.

The model was designed to have an operation similar
to that of natural neural systems. At any given run of the
network, this should lead to activation of the appropriate CA.

The CA Network Model uses fatiguing Leaky Integrate
and Fire (fLIF) neurons described briefly in section III-A
(and more completely in [12]). The neurons are connected
by synapses that learn according to Hebbian rules described
briefly in section III-B (and more completely in [12]).
Neurons are loosely connected so that they do not have
connections to most other neurons.

A. Neurons

The CA Network simulator is based on fLIF neurons.
Neurons receive activation from other neurons via synaptic

connections. A neuron fires only if it has sufficient activation
to exceed the activation threshold. When a neuron fires, it
sends activation proportional to the synaptic weight through
its synapses to other neurons. Thus, they have five key neural
properties, the first three are fairly common in ANN models,
but the latter two are less common [8]:

1) Connection Strength: neurons have connections to
other neurons, connections may have positive or nega-
tive strength and the continuous activation is simulated
by time steps.

2) Activation: a neuron has an activation level that is
largely based on the firing behavior of neurons that
connect to it.

3) Activation Threshold: a neuron fires if it has enough
activation to surpass the activation threshold.

4) Decay: if a neuron does not fire, it retains its activity,
but that activity decays. New input can lead to a net
gain of activation. Decay is a constant that applies to
active and inactive nodes.

5) Fatigue: the more time that the neuron is active the
higher the threshold becomes. This neuron fatigues and
this will make it less likely to fire.

The activation (property 2) that neuron has at a time step
uses the weight of the synapses (property 1), and is described
by Equation 1 [21]. This uses decay (property 4) directly.
If it has enough energy, a neuron will fire and spread its
activity (property 3).
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wji, 1 > d (1)

The current activation h for a neuron i at a time t is the
activation from the last time step divided by a decay factor
d plus the new activation coming in. This new activation is
the sum of the inputs of all neurons j ∈ V , weighted by the
value of the synapse from neuron j to neuron i; V being the
set of all neurons that are connected to i that fired in time
step t−1. However, if the neuron fired in the prior time step,
no activation carries over from t− 1.

A neuron should not be able to continually fire repeatedly.
Thus the model also uses neural fatigue (property 5). This
is modeled by raising the activation threshold each time a
neuron fires. When a neuron does not fire, its activation
threshold decreases at each time step until it reaches a given
base level [8].

B. Hebbian Learning

The CA model uses a Hebbian Learning rule. The general
Hebbian learning rule states that if two neurons fire at the
same time step, the strength of their synapses should be
increased. The two neurons are called pre-synaptic and post-
synaptic, and energy flows from the pre-synaptic neuron to
the post-synaptic neuron when the pre-synaptic neuron fires.

In order to prevent saturation of the synapse, the model
also uses an anti-Hebbian rule that decreases the weight of
the synapse each time the pre-synaptic neuron fires and the
post-synaptic neuron does not fire.



For this paper, a compensatory learning rule is used.
This rule limits the total synaptic strength of a neuron.
As a result, neurons with low correlations will have their
influence increased and neurons with high correlations will
have their influence reduced. This rule is similar to IDF
(inverse document frequency) weighting widely used in IR
(see [12] for more detail).

IV. CELL ASSEMBLIES FOR QUERY EXPANSION

In order to adapt the CA model to perform QE, it was nec-
essary to disregard some of the constraints that are important
when modeling the mammalian brain. For example, neurons
are likely to be connected to nearby neurons in the brain and
not to distant ones; this constraint has been ignored in these
simulations. The most important difference is that each term
is represented by a single neuron which is not biologically
plausible since terms are represented by many neurons across
many brain areas.

In the CA Network model, each term is represented
by a neuron and, the documents are represented by the
set of neurons aswsociated with the words contained in
the document. By representing a term using one neuron,
the size of the network is markedly reduced enabling the
encoding of several thousand terms with a network of several
thousand neurons. The documents are indexed and faced
with the task of comparing the query with these sets of
terms. Each term that occurs in more than one document
was assigned a neuron. Each neuron is connected to other
neurons representing the terms that it co-occurs with at least
once across the document collection. Between these possible
connections, the connections are selected randomly.

A. Training Phase

This is the first step of the process, in which documents
from the collection are presented to the CA network. The
neurons corresponding to terms that are present in the
documents receive external activation.

As the documents are presented to the system, the weights
of the synapses between pre- and post-synaptic neurons are
adjusted. The result of this adjustment leads to weights that
should reflect the co-occurrence relationship of the terms
in the documents. The learning process occurs by synaptic
modification, using the compensatory learning rule [11].

At the end of the learning process, the semantic relation-
ships among terms are modeled. These semantic relations are
derived from characteristics of the distribution of terms in the
document collection. This method is based on the hypothesis
that term co-occurrence statistics provide useful information
about the semantic relationships between terms.

B. Querying Phase

The queries consist of a set of keywords that describe the
information needs of the user. During this phase, the queries
are presented to the CA network. The neurons that represent
the terms in the query receive external stimulation. As a
result, they fire and send activation to other neurons through
synaptic connections. External stimulation and activation

propagation continues for a few cycles and the state of
the network is saved. This process will have the effect of
expanding the original query with correlated terms. The
rationale is that by adding correlated terms, the IR system
will retrieve more relevant documents.

V. EXPERIMENTS

The aim of the experiments was to assess the feasibility of
employing CAs for QE. This section details the experimental
setup and the results obtained.

A. Experimental Setup

The test collection used was the Los Angeles Times, which
is composed of news articles published in 1994 and is part of
the CLEF test suite1. Table I shows details of the document
collection.

TABLE I
CHARACTERISTICS OF THE TEST COLLECTION

Number of documents 113,005
Number of queries 50

Number of unique stems 94,027
Number of relevant docs 821

The 50 query topics are those used in the CLEF IR
evaluation campaign. Topics 91 to 140 were used. Table II
shows an example of a query topic. Each topic has an id, a
title, a description, and a narrative. As it is normally done in
IR, our queries were composed of terms from the title and
the description.

TABLE II
EXAMPLE OF A QUERY TOPIC.

<top>
<num> C140 < /num>
<EN-title> Mobile phones < /EN-title>
<EN-desc> Prospects for the use of cellular phones. < /EN-desc>
<EN-narr> Relevant documents report on the prospects for the
use of cellular phones and the development of the mobile phone
industry. < /EN-narr>
< /top>

We used the Porter stemmer [22] to remove word suffixes,
and we also removed stopwords according to the list provided
by SMART2. The IR system we used was Zettair3, which
is a compact and fast search engine developed by RMIT
University (Australia). It performs a series of IR tasks such as
indexing and matching. Zettair implements several methods
for ranking documents in response to queries. We used Okapi
BM25 [14] as it showed the best results in preliminary
experiments. Given a query Q containing a set of keywords
q1, ...qn, the BM25 score of a document d is given by
Equation 2.

1http://www.clef-campaign.org/
2ftp://ftp.cs.cornell.edu/pub/smart/english.stop
3http://www.seg.rmit.edu.au/zettair/



BM25(d,Q) =

n∑
i=1

IDF (qi)
tf(qi, d) · (k1 + 1)

tf(qi, d) + k1(1− b+ b |D|avg )
(2)

where tf(qi, d) is the frequency of term qi in document
d, |d| is the length (in words) of document d, avgdl is
the average document length in the collection, k1 and b
are parameters that tune the importance of the presence of
each term in the query and the length of the documents,
and IDF (qi) = log N

n(qi)
where N is the total number

of documents in the collection, and n(qi) is the number
of documents containing qi. In our experiments, we used
k1 = 1.2 and b = 0.75.

Trec Eval4 was used to evaluate the results. It is the
standard tool used by the TREC campaign for evaluating
an ad hoc retrieval run, given the results file and a standard
set of relevance judgments. For each query, the top 1,000
documents were retrieved.

B. Quality Measures

IR evaluation is based on Precision and Recall. Precision
(Eq. 3) is the portion of the retrieved documents which is
actually relevant to the query. Recall (Eq. 4) is the fraction
of the relevant documents which is retrieved by the IRS.

Precision(P ) =
#Relevant

⋂
#Retrieved

#Retrieved
(3)

Recall(R) =
#Relevant

⋂
#Retrieved

#Relevant
(4)

However, Precision and Recall are set based measures,
therefore, they do not take into consideration the ordering
in which the relevant items were retrieved. For this reason,
the most widely used measure to assess the quality of
ranked retrieval results for a given query is the average
precision (AvP ). AvP emphasizes returning more relevant
documents earlier in the ranking. For a set of queries, we
calculate its Mean Average Precision (MAP) according to
Equation 5 [18].

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

P (Rjk) (5)

where |Q| is the number of queries, Rjk is the set of
ranked retrieval results from the top result until document
dk, and mj is the number of relevant documents for query
j.

A graphical way to compare the results by different
experimental runs is the Precision-Recall curve. To build
these curves, we compute the interpolated precision at 11
fixed recall points 0, 0.1, ..., 1.

4http://trec.nist.gov/trec eval/

C. Experimental Runs

For the baseline run, we simply submitted the original text
from the topics as queries. For the QE run, the following
procedure was taken:

1) Building the CA network: We built a network by
connecting each neuron to 40 other randomly selected
neurons which it co-occurs with in at least one docu-
ment. All initial weights were set to 0.1.

2) Training the CA network: Among the 821 relevant
documents, 398 were randomly selected to be used in
training. In order to have a fair evaluation of the benefit
brought by QE, these documents were removed from
the evaluation and were not indexed by Zettair. During
the training phase, each document was presented to the
CA network for 1 cycle. This was repeated 20 times.
At the end of this process the synaptic weights have
been set. The parameters used in the training were as
follows:
• Activation threshold 0.80
• Connectivity 0.90
• Decay 2.0
• Fatigue 0.2

3) Presenting the queries: The neurons corresponding to
the original query terms were externally stimulated. We
let the activation spread for five cycles and then saved
the status of the network. The terms corresponding
to the neurons that were active after five cycles of
spreading activation were added to the original query.

D. Results

To illustrate an example of expansion, let us take query
topic 140 (shown in full at Table II). For this query, the
baseline run was composed by the following nine stems:
cellular, develop, docum, industry, mobil, phone, prospect,
relev, and report. The QE run for this query had 119 stems
in total including many related terms such as: bellsouth,
motorola, technolog, telecommun, and telephon.

To evaluate the QE run in comparison to the baseline, we
used the quality measures described in Section V-B. Table III
shows a summary of our results in terms of MAP. The Recall-
Precision curves in Figure 3 show that the experimental
run in which the CAs were used to expand the queries
was superior to the baseline at low recall levels (≤ 0.3).
This means that the expansion enabled retrieving relevant
documents earlier in the ranking.

TABLE III
SUMMARY OF RESULTS

Baseline QE via CAs
Mean Average Precision 27.80% 28.46%

Relevant Retrieved 372 360
Avg. query terms 18.84 29.52

In terms of MAP, the improvements brought by the ex-
pansion are slight (2.36%). Thus, a topic-by-topic analysis
was performed. This analysis consisted in assessing how



Fig. 3. Recall-Precision Curves for LA Times

many topics improved or worsened with QE via CAs. The
results of the analysis show that 20 topics have improved,
17 topics worsened and 13 had no difference. As a general
tendency, the queries that had the largest improvements were
the ones with few relevant documents. Table IV shows the
top ten topics which were helped by use of CAs and the ten
topics that were most harmed. The last column shows the
proportional gain or loss from the QE run in relation to the
baseline. We observed that the gains outweighs the losses.

The topic with the highest gain was 129. For this topic,
the relevant documents in the Baseline run were at ranks
3, 22, 103, 109, and 121. In the QE run, these relevant
documents were at ranks 1, 20, 71, 87, and 116. This means
that query representation improved and thus the relevant
documents have been retrieved earlier. In all queries in which
the baseline had a perfect retrieval score (i.e., MAP = 1), QE
also obtained the same result.

The topic with the highest loss was 116. The QE run failed
to retrieve one of the relevant documents. Also, the ones
that were retrieved were at lower ranks in comparison to the
Baseline run.

E. Training Individual Topics

One hypothesis for QE improving some queries while
harming others is that we were trying to teach too many
different concepts at once to the CA network. Bear in mind
that our document collection has one year of news articles
dealing with a very broad range of subjects including politics,
sports, culture, science, and entertainment. If that were
true, teaching fewer concepts at a time would yield more
improvement. To test this hypothesis, we picked ten queries
(five among the ones with the biggest improvements and
five among the ones with the biggest losses) and applied the
process described in Section V-C (i.e., building the network,
training, and querying) to generate the QE run.

The results are shown in Figure 4 and Table V. The
Precision-Recall curves demonstrate that nearly all topics
which were improved in the group training had an even larger
improvement with the individual training. Topic 129 had a
remarkable improvement, going from 10% on the Baseline to
66% with individual training. Individual training also helped
topics 114 and 116 which had losses in the group training.

TABLE IV
TEN TOPICS WITH THE BIGGEST INCREASE IN MAP

Topics with Largest Gains
Topic Baseline QE Change % Change
129 0.1063 0.2463 +0.14 +132%
126 0.0593 0.1272 +0.07 +115%
133 0.1563 0.2837 +0.13 +82%
94 0.2829 0.4554 +0.17 +61%
91 0.2418 0.3038 +0.06 +26%

121 0.4809 0.5950 +0.11 +24%
140 0.1874 0.2262 +0.04 +21%
99 0.0663 0.0799 +0.01 +21%

135 0.0970 0.1100 +0.01 +13%
131 0.2906 0.3215 +0.03 +11%

Topics with Largest Losses
Topic Baseline QE Change % Change
116 0.3097 0.1615 -0.15 -92%
122 0.1224 0.0770 -0.05 -59%
124 0.2477 0.1691 -0.08 -46%
95 0.3317 0.2775 -0.05 -20%

103 0.4403 0.3855 -0.05 -14%
114 0.4072 0.3784 -0.03 -8%
123 0.3459 0.3243 -0.02 -7%
119 0.7712 0.7374 -0.03 -5%
120 0.3916 0.3771 -0.01 -4%
92 0.7013 0.6876 -0.01 -2%

These improvements support our hypothesis that teaching
fewer concepts brings more improvements. However, queries
95, 103, and 119 even with individual training score less
than the baseline. Therefore, we conclude that topics will
respond differently to QE methods. A deeper analysis of
those topics has shown that they contain terms that are
very frequent in the news collection. For example, in query
103, the rarest term appeared in 448 documents. The other
two topics follow the same tendency. In these cases, the
expansion will not be helpful since the added terms will
end up retrieving even more documents which can reduce
the rank of the truly relevant documents. In contrast, queries
with infrequent words have the largest improvements. For
example, topic 94 which more than doubled its MAP with
QE, had terms appearing in only 31 documents across the
entire collection.

TABLE V
AVERAGE PRECISION FOR QUERIES TRAINED INDIVIDUALLY

Topics with Gains
Baseline QE QE-Ind. Change % Change

91 0.2418 0.3038 0.2963 0.05 23%
94 0.2829 0.4554 0.6002 0.32 112%
129 0.1063 0.2463 0.6624 0.56 523%
133 0.1563 0.2837 0.4299 0.27 175%
140 0.1874 0.2262 0.2266 0.04 21%

MAP 0.1949 0.3032 0.4431 0.25 127%
Topics with Losses

Baseline QE QE-Ind. Change % Change
95 0.3317 0.2775 0.3184 -0.01 -4%
103 0.4403 0.3855 0.3020 -0.14 -31%
114 0.4072 0.3784 0.4435 0.04 9%
116 0.3097 0.1615 0.3294 0.02 6%
119 0.7712 0.7374 0.6006 -0.17 -22%

MAP 0.4520 0.3881 0.3988 -0.05 -12%



Fig. 4. Precision-Recall curves for the individually trained topics. The first column contains topics which were improved by QE while the second column
contains the topics that were harmed by QE.



VI. DISCUSSION

The conclusions drawn from our experiments corroborate
findings from other studies. In IR, different queries are
better solved by different approaches. Mandl & Womser-
Hacker [17] demonstrated this fact when evaluating several
CLEF runs. They observed a high standard deviation for
the performance of the topics and a high standard deviation
for the performance of each run. Their conclusion is that
no run performed well in all topics. In the same line,
Orengo & Huyck [19] have shown that the main source of
impact on the change in performance produced by Relevance
Feedback is the topics. However, the authors did not report
the characteristics of the topics which made them respond
differently. In this paper we identified that the frequency of
the query terms in the documents is one such characteristic.

We cannot do a direct comparison between our results and
results from other neural models applied to IR because they
all use different test collections. Still it is worth reporting
their findings. Boughanem et al. [3] mention a loss in MAP
on the TREC collections. Their baseline had 27% while
their approach scored 22.78%. Roberson & Dankel [23] also
reported losses in comparison to the vector-space model in
the TIME collection. Desjardins et al. [4] achieved higher
precision at low recall levels (<0.3). However, there were
only seven queries in their study and the collection contained
just 2K documents. Similarly, Huyck & Orengo [11] report
on improvements on the Cranfield test collection, which is
also very small. Considering results from these other studies,
our method performed well. The overall improvement was
modest, but some queries more than doubled their scores.

VII. CONCLUSIONS

This paper proposed a query expansion method based on
the Cell Assembly model. The rationale was to model the
relationships between terms using Hebbian learning and then
use these learnt relationships to augment original queries
with related terms.

Our method was evaluated using the standard informa-
tion retrieval methodology, using a collection with 113K
documents and 50 query topics. The results show that the
overall improvement was small (2.36%). However, some
queries had significant enhancements more than doubling
their performances. An in depth analysis of the results
concluded that characteristics of the query topics affect how
they respond to the expansion. Topics with very frequent
terms in the document collection tend to be harmed by the
expansion, while topics with rare terms tend to improve.

VIII. ACKNOWLEDGMENTS

This work was partially supported by CNPq (Brazil)
processes 550763/2009-0 and 305022/2008-3.

REFERENCES

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison Wesley, —1999—.

[2] R. K. Belew. Adaptive information retrieval: using a connectionist
representation to retrieve and learn about documents. SIGIR Forum,
23:11–20, —1989—.

[3] M. Boughanem, C. Julien, J. Mothe, and C. Soule-Dupuy. Mercure at
trec7. In TREC-7, —1998—.

[4] G. Desjardins, R. Proulx, and R. Godin. An auto-associative neural
network for information retrieval. In Neural Networks, 2006. IJCNN
’06. International Joint Conference on, pages 3492 –3498, 2006.

[5] C. Fellbaum. Wordnet - an eletronic lexical database. mit press,
—1998—.

[6] F. A. Grootjen and T. P. V. d. Weide. Conceptual query expansion.
Data Knowl. Eng., 56(2):174–193, —2006—.

[7] D. Hebb. The Organization of Behaviour: A neuropsycological theory.
Ed. Wiley, New York, —1949—.

[8] C. Huyck. Modelling cell assemblies, —1999—.
[9] C. Huyck. Overlapping cell assemblies from correlators. Neurocom-

puting, Volume 56:435–439, —2004—.
[10] C. Huyck and E. Byrne. CABot1: Technical report, —2009—.
[11] C. Huyck and V. Orengo. Information retrieval and categorisation

using a cell assembly network. Neural computing & applications,
14(4):282–289, —2005—.

[12] C. R. Huyck. Creating hierarchical categories using cell assemblies.
Connect. Sci, 19(1):1–24, —2007—. 1392501.

[13] J. E. Ivancich, C. R. Huyck, and S. Kaplan. Cell assemblies as building
blocks of larger cognitive structures. Behavioral and Brain Sciences,
pages pp. 292–293, —1999—. 10.1017/S0140525X99331824.

[14] K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of
information retrieval: development and comparative experiments. Inf.
Process. Manage., 36:779–808, November 2000.

[15] A. Knoblauch, R. Kupper, M. Gewaltig, U. Korner, and E. Korner. A
cell assembly based model for the cortical microcircuitry. Neurocom-
puting, 70:1838–1842, 2007.

[16] K. L. Kwok. A neural network for probabilistic information retrieval.
SIGIR Forum, 23(SI):21–30, —1989—. 75338.

[17] T. Mandl and C. Womser-Hacker. Linguistic and statistical analysis of
the clef topics. In C. Peters, M. Braschler, J. Gonzalo, and M. Kluck,
editors, CLEF, volume 2785 of Lecture Notes in Computer Science,
pages 505–511. Springer, 2002.

[18] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Informa-
tion Retrieval. Cambridge University Press, —2008—. 1394399.

[19] V. M. Orengo and C. R. Huyck. Relevance feedback and cross-
language information retrieval. Information Processing & Manage-
ment, 42(5):1203–1217, 2006.

[20] D. Parapar, A. Barreiro, and D. E. Losada. Query expansion using
wordnet with a logical model of information retrieval. In Proceedings
of IADIS, pages 487–494, —2005—.

[21] P. Passmore and C. Huyck. Models of cell assembly decay. In
Cybernetic Intelligent Systems, 2008. CIS 2008. 7th IEEE International
Conference on, pages 1 –6, sept. 2008.

[22] M. Porter. An algorithm for suffix stripping. Program, —1980—.
[23] C. Roberson and D. D. D. II. A morphological neural network

approach to information retrieval. In FLAIRS Conference, pages 184–
185, 2007.

[24] Y. Sakurai. The search for cell assemblies in the working brain.
Behavioural Brain Research, 91(1-2):1–13, —1998—.

[25] G. Salton and C. Buckley. Improving retrieval performance by
relevance feedback. Morgan Kaufmann Publishers Inc., —1997—.

[26] A. Spink. Term relevance feedback and query expansion: Relation to
design. In SIGIR, pages 81–90, 1994.

[27] R. Wilkinson and P. Hingston. Using the cosine measure in a neural
network for document retrieval. In SIGIR. ACM, —1991—.

[28] J. Zhang, B. Deng, and X. Li. Concept based query expansion using
wordnet. In Proceedings of the 2009 International e-Conference on
Advanced Science and Technology, AST ’09, pages 52–55, Washing-
ton, DC, USA, 2009. IEEE Computer Society.


