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Abstract. A typical human brain consists of roughly 100 billion
neurons, and one key aim of Biological Cybernetics is to simulate
neural systems. A good model of a neuron accurately represents the
behaviour of biological neurons, typically the spiking behaviour. For
cybernetics systems that function in real time with thousands, mil-
lions, or even billions of simulated neurons, it is also important that
the model is computationally efficient. Fatiguing Leaky Integrate and
Fire neurons are models that have four free parameters per neuron.
They have been used in cybernetic agents, but there have been few
links to actual biological behaviour. A model of a rat neocortical neu-
ron is developed with four specific parameter settings. This model is
tuned to a particular input regime. When compared to a biological
neuron it gets 90% of spikes roughly correct.

1 Introduction

One method for exploring Biological Cybernetics is to build sim-
ulated neural systems. At one extreme, this approach has led to
a project hoping to simulate the entire human brain [23]. Another
framework is to build increasingly sophisticated systems from simu-
lated neurons [11, 15]; this framework builds cognitive models and
agents that function in an environment.

One of the key questions for Biological Cybernetics is what neu-
ral model to use. There are a large number of neural models (see
section 5), and many think that non-neural connectionist models are
also a good basis (e.g. Multi Layer Perceptrons [25] or Self Organis-
ing Maps [20]).

One framework uses a simple point model of a neuron, the Fatigu-
ing Leaky Integrate and Fire (FLIF) neuron (see section 2). There has
been significant progress within this framework including simulated
games agents [13] with vision, planning, action and language, ma-
chine learning [12], and cognitive models of natural language pars-
ing [14] and task selection [3]. These have all used the same FLIF
neural model. An individual neuron has several internal parameters
including , firing threshold, leakage rates, and fatigue rates.

One key behaviour of neurons and neuron models is spiking. Neu-
rons receive inputs from other neurons, and emit spikes. These spikes
can be induced in biological neurons both in vivo and in vitro. For ex-
ample, a neuron can be directly stimulated by electrical current, its
internal electrical state can be measured, and spikes can be inferred
(see section 3). Consequently, one way of calibrating a neural model,
is to compare its spiking behaviour to biological data. In this paper,
biological data is used to derive parameter settings for the FLIF neu-
ral model, and gauge its accuracy as a model.

2 Fatiguing Leaky Integrate and Fire Neurons
The FLIF model is an extension of the standard leaky integrate and
fire (LIF) model, which is an extension of the Integrate and Fire
model. A similar model [6] has been shown to account for inter-spike
intervals under various input conditions better than the standard LIF
model.

One variant of the Integrate and Fire (IF) model is the McCulloch
Pitts neuron [24], which has a long standing history and is quite sim-
ple. Roughly, neurons are connected by uni-directional synapses. A
neuron integrates activity from the synapses connected to it, and if
the activity surpasses a threshold, the neuron fires, sending activity
to the neurons it connects to. There are two possibilities regarding re-
taining activity between cycles. The McCulloch Pitts neuron merely
throws it away; this prevents low amounts of input causing the neu-
ron to fire. In a second model [1], all of the activity is retained; this
allows small amounts of input over time to cause the neuron to fire.

In the LIF model, if a neuron does not fire, it retains a portion (but
not all) of its activity making it easier to fire later [22]. Typically,
both IF and LIF neurons lose all activity when they fire.

The LIF model is extended to FLIF by the addition of fatigue.
When a neuron fires, it fatigues and becomes more difficult to fire.

One of the major components of the model is the firing threshold,
θ. A neuron i fires if its activation Ai minus its fatigue Fi is above
the threshold.

Ai − Fi >= θ (1)

If the neuron fires, it loses all its activation. If sufficient activation
is provided from neurons sending spikes to it, it may fire in the next
time step.

If a neuron does not fire, some of its activation leaks away. This
leak, or decay, is represented by a constant D where D > 1. Ignoring
external input and assuming i did not fire at t−1, activation of neuron
i at time t is

At
i = At−1

i /D (2)

When neuron i fires, it sends activation (or inhibition) along its
synapses to other neurons according to the strength of each synapse,
so neuron j receives activation according to synaptic strength wij .
The neuron is an integrator, so it accumulates activity from the
synapses connected to it. So, given Pj , the prior activation of neu-
ron j, either 0 or equation 2, the activation at time t + 1 is

At+1
j = Pj +

X
i∈Vi

wij (3)

where Vi is the set of all neurons that fired at time t.
These equations describe a LIF model [22], and fatigue is used to

extend the model. Fatigue uses two constants; it is incremented by
Fc in a cycle when the neuron fires, and is decremented by Fr in a



cycle when the neuron does not fire. Fi >= 0, so that firing always
requires at least θ retained activation. This makes it more difficult for
neurons to fire the longer they are firing.

The model has a loose link with time in biological neurons. The
model does not incorporate conductance delays or refractory periods,
and these behaviours all happen in under 10 ms., so each given cycle
can be considered to be roughly 10 ms. Consequently, each neuron
emits at most one spike per 10 ms. of simulated time, and the timing
precision is at most 10 ms. This is a shortcoming of the model, but
enables efficient simulation of hundreds of thousands of neurons in
real time on a standard PC. It is consistent with the neural data (see
section 3), as the neuron being modelled never spikes more than once
in a 10 ms. interval.

3 Neural Data
The neural data was used for a neural modelling competition [4], and
the data was from Challenge A of that competition. More details can
be found there along with the data.

A neuron from the primary somatosensory neocortex of a rat was
extracted. So, the datum that was collected was in vitro.

A probe was placed into the neuron. Current was injected directly
to the neuron and cellular voltage was measured at .1 ms. intervals.

Input varied over 60 seconds, but only the first 39 seconds were
available with the remaining 21 seconds used as the test for the com-
petition. There was an initial input phase, followed by two seconds
of 300mV input, then two seconds with no input, then two second
of 600mV input, then two seconds with no input, then two seconds
of 900mV input, then two seconds of no input, followed by 42.5 sec-
onds of stochastic input, with 21.5 of that available as data. The same
input regime was applied 13 times to the neuron.

The cellular voltage measurements were converted to spikes. With
no input, the voltage hovered around -65mV. Under input this grad-
ually increased. When it neared -40mV it then rapidly increased to
positive values around 40mV. It then rapidly returned to a negative
value, and then more gradually to a value around -55mV while un-
der input. The spike was calculated from the first point the voltage
crossed from negative to positive. It then was reset when it crossed
back to negative. In the data, the shortest inter-spike interval was 13.5
ms.

4 Simulations and Parameter Settings
The task was to discover appropriate parameter settings for the FLIF
model for input, the threshold θ, leak D, fatigue Fr , and fatigue re-
covery Fc. The parameters interact in relatively simple ways, so ini-
tially the goal was to find one parameter set, where the set led to
model behaviour that was a relatively close fit to the biological data.

4.1 Clamped Input
The first question was how to scale the input. As the first input of
interest was 300mV at a rate of .1 ms., the input was averaged over
the full time of the step (10 ms. or 100 pieces of data), and converted
to units in volts. For example, input at time steps 50,000 to 50,100 (5
to 5.1 seconds) were all 300mV, and this is converted to .3 for input.

Next some analysis of the first series of inputs was used to set
initial parameters. This series of inputs was two seconds of 300mV.
Analysis of the biological data of one neuron showed that there were
12 spikes at an average of 174.5 ms. apart. For the FLIF model, that
was every 17 cycles. Using data derived from other studies [21], D

was set at 1.25. Using these values to see what threshold was passed
at 17 cycles, and this was θ = 1.46. These parameter settings led to
data that fit the 300mV input. However, the parameters also needed
to work for the other inputs.

Two other sets of input were of considered next; after rest periods
of two seconds, there were two seconds of inputs at 600mV, then
two seconds rest, and two seconds of 900mV. Some analysis of this
data showed that the neurons spiked on average every 60.38 ms. for
600mV and every 40.51 ms. for 900mV, or every six and four FLIF
cycles respectively. With θ = 1.46 and D = 1.25 the model led to
firing every three steps for 600mV and every two steps for 900mV.
Reducing D, retaining more activation per step, moved things in the
right direction for 600mV and 900mV.

Setting D = 1.1 led to values that worked. Using the process
described above for 300mV, θ was calculated at 2.6. This led to the
desired behaviour with spikes every 17 cycles for 300mv, every 6
cycles for 600mV, and every four cycles for 900mV.

These parameters determine a LIF model. Perhaps fatigue was
unnecessary. Some further analysis of the data showed that fatigue
would improve fit. Figure 1 shows the latencies, time between spikes,
of the neuron under the three input regimes. After initial rapid fir-
ing, all three spike latencies are relatively stable. However, there is
a gradual increase at 900mV, increasing on average of .329 ms. be-
tween each spike after the third spike; that is, the spikes are coming
more slowly, implying that at this elevated firing rate fatigue has an
effect. At the lower firing rates, the slope is virtual flat, so the rate
remains roughly constant.
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Figure 1. Latencies between spikes at different input values over two
seconds

To calculate the fatigue Fc and fatigue recovery Fr values, this
behaviour imposes some constraints. Rates at less than once per six
cycles should not accumulate fatigue, and rates at once per four cy-
cles should. So Fc > 3Fr , and Fc < 5Fr .

For the 900mV case, firing rates are initially just over every 35 ms.,
and they pass every .45 ms. around spike 35. Expanding the formulas
with θ = 2.6 and D = 1.1 shows a neuron having 3.138 units of



activation at any fourth cycle. It needs 2.6 to fire, so it has 0.538
surplus activity. For accumulated fatigue to cause it pause for another
cycle, it must be greater than .538. As this should not accumulate for
35 cycles, Fc − 3Fr ∼ .538÷ 35. So, Fc − 3Fr ∼ 0.015.

Fr was selected as 0.1, leaving Fc as 0.315. Running simulations
on this showed that indeed spike rates at this the 35th cycle were
every five cycles, but they returned to every four cycles there after.
Reducing Fr to 0.01 left Fc at 0.045. The model latencies increased
to five cycles after 35 spikes and continued to increase thereafter. The
model predicts that after 200 spikes the latency would increase to six
cycles, a testable hypothesis though not in the data.

This leaves all parameter values determined. Threshold is θ = 2.6,
leak is D = 1.1, fatigue is Fc = 0.045 and fatigue recovery is
Fr = 0.01.

4.2 Stochastic Input
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Figure 2. Interspike Latency of Biological Neurons

The first 17.5 seconds of input was clamped with either -300mV,
0mV, 300mV, 600mV or 900 mV, and the stimuli persisting for two
seconds, with intervals of no input in between. After this, the remain-
ing 21.5 seconds of input went through a rapidly varying stochastic
input. Figure 2 shows the response of the biological neuron to these
inputs in the form of inter-spike intervals. The first 11 spikes come
around 170 ms. apart, followed by two seconds with no input, and
thus no spikes. After spike 93 and the third two second delay, vary-
ing stochastic input began. Note that many periods during stochastic
input experience low input and thus high spike latency.

Using the same parameters, the model was run to account for this
behaviour. For the biological neuron, input varied every .1 ms.; as
the simulation steps accounted for 10 ms. of time, the inputs were
binned into groups of 100 and averaged over that time.

During the clamped period, the model produced 92 spikes, and the
biological data 94. The missing spikes were during the 900mV input.

During the stochastic period, the model produced 151 spikes and
the biological data produced 200. The model spikes and real spikes
were aligned, with the model spikes being placed adjacent to the
nearest real spike. Analysis of these aligned spikes showed three cat-
egories of problems.

The first problem was evident even under clamped input. The first
biological spikes after input resumed came earlier than the model
predicted. This is evident in figure 1 when the initial spikes are quite
rapid, but the first spikes are even more rapid; for example at 300mV,
the first spike occurs 36 ms. after input resumes. This is also evident
in the stochastic period when spikes are missed after relatively long
periods of low or negative input are followed by moderate or high
input.

The second problem was that periods of rapid biological spiking
led to missing modelled spikes. This implied that the threshold was
too high under the parameter settings.

The third problem was that spikes were missed over periods of low
input. This implied that there was too much leakage in the parameter
settings.

A further search of the parameter space ensued. Reducing the
threshold and decay separately or together led to improved behaviour
under stochastic input, but worse behaviour under clamped input. In
particular, reducing decay requires increasing threshold, which had
an adverse effect when there is high input. On the other hand, moder-
ate increases of decay (e.g. D ∼ 1.2) made it difficult to spike under
low input (e.g. 300mV). Reducing threshold to allow this, made it
spike too much under higher input.

Setting D = 1.12 and θ = 2.2 left a good compromise. There
were too many spikes at low clamped input (300mV had 14 model
and 11 real, and 600mV had 40 model and 32 real), but most of the
stochastic spikes (183 of 200) were present.

Fatigue had a minor effect on the results. Removing fatigue did in-
crease the false positives with 900mV input. The original parameters
correctly produced all 49 spikes, but added two incorrectly. Remov-
ing fatigue added another seven incorrect spikes. It also added an
extra eight spikes to the stochastic input. The 300mV and 600mV
clamped input remained unchanged. The effect of fatigue was neg-
ligible because, outside the clamped 900mV period, there was not a
sustained period of high input to cause fatigue to accumulate.

Of the 288 spikes emitted by the model, 26 alignments had two
model spikes aligned with a biological spike. The first of these was
taken for a timing comparison. Of the 260 directly aligned spikes, the
average variance between the model and biological time was 16.3 ms.

The simulation is open to the criticsm of testing on the training
set. While there are only four parameters, this is still a valid criti-
cism. However, when the model was compared to a second run of
the same input on the biological data, the model’s fit improved the
a small amount. In the second run, the biological data produced an
extra spike for each of the three clamped input regimes, and one less
spike for the stochastic input. Of the 288 spikes emitted, 261 aligned
with an average variance of 15.3 seconds.

5 Other Neural Models

The FLIF model presented and compared in this paper is a rela-
tively simple point model, where the model does not consider any
spatial components of the neuron. Compartmental models [9, 7] are
appreciably more complex, mapping the structure of the entire neu-
ron body. These models can be further refined to include, synaptic
delays, ion transfer, and so forth. The FLIF model was compared to
the real spike data. Compartmental models can compare, relatively



accurately, at the actual voltage level. While they are more accurate,
compartmental models are appreciably more expensive computation-
ally to simulate.

A primary motive of the FLIF model is computational efficiency,
so that thousands, millions and even billions of neurons can be simu-
lated in real time to support the cognitive aspects of behaving agents.
The trade off between biological accuracy and computational effi-
ciency is skewed more toward efficiency in the FLIF (and other point)
model and toward accuracy in compartmental models.

Simple IF models [24, 10] would not have faired well simulating
this data. If no activity were retained between steps, it would not
have been able to spike with small inputs, or it would have emitted
thousands of spikes if the threshold was set low enough to enable
spikes with small inputs. If it had retained all activity between inputs,
it would have spiked too frequently with small inputs.

The LIF models [2] would have faired much better. As noted in
section 4.2, fatigue only had a significant impact when there was a
sustained rate of high input (i.e. two seconds at 900mV).

Another issue that is relevant to both compartmental and firing
models is time. It would be relatively simple to modify the FLIF
model to have a finer time grain, e.g. .1 ms. per cycle, but that would
increase computational speed.

The Spike Response Model [8, 16] is another model combining
thresholding, refractory periods and randomness. As the spike data
accounted for seems, at best, weakly effected by refractory periods,
it is likely that this model would not perform particularly well on this
data set.

There are of course other higher level models of neurons. For
example, a model of cell assembly behaviour [17] models the be-
haviour of sets of neurons. Similarly, there is a theoretical map-
ping between adaptive resonance theory [5] and group of neuron be-
haviour. Clearly, these models could not account for the spike data.

A final property should be considered, spontaneous neural acti-
vation. In many cases, without input, neurons spike spontaneously
[18]. Even during two seconds of inactivity, the biological neurons
do not spike in this data. However, this may be part of the reason for
the rapid occurrence of the first spike after a period of inactivity. One
possibility to account for this, and improve the model is to modify the
model so that fatigue could reduce the firing threshold (Fi < 0). If
no input continued for many seconds, this could induce spontaneous
activation.

6 Conclusion

This paper has described a FLIF neural model, discussed some bi-
ological neural data, and derived parameters for the FLIF model
from that neural data. Thus, the FLIF model with parameters set to
θ = 2.2, D = 1.12, Fc = 0.045, and Fr = 0.01 is a relatively
faithful model of this particular rat neuron.

The paper has indicated that fatigue can play a useful component
of the model. This is the case when there is a significant amount of
input for a reasonably long duration. Fatigue may also be used in
learning to account for particular psychological phenomena [19].

It should be emphasised that this is a model of a particular neu-
ron. It is almost certain that, even when applicable, the FLIF model
of different neurons would require different parameter settings. This
paper has only considered one model neuron, though it was the first
the author actually tried to model.

None the less, the four free parameters of the model have been
set so that they account for 90% of the spikes relatively well. Conse-
quently, it seems that this model is of reasonable biological fidelity.
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