
This space is reserved for the Procedia header, do not use it

PlaNeural : Spiking Neural Networks that Plan

Ian Mitchell1, Christian Huyck1, and Carl Evans1

Middlesex University, London, UK

i.mitchell,c.huyck, c.evans@mdx.ac.uk

Abstract

PlaNeural is a spike-based neural network that has the ability to plan. The network is a spreading activa-

tion network implemented with Cell Assemblies; this combination has built a dynamic network of nodes

that is able to interact with an environment and respond appropriately. PlaNeural uses Cell assemblies to

make decisions and plan - there is no pre-determined code managing the decision process that leads to

planning. PlaNeural is the planning component of a virtual robot in a virtual environment. Two virtual

environments are programmed independently of PlaNeural and actions are completed in a closed-loop.

PlaNeural was programmed in PyNN, executed with Nest, Brian and on a Neuromorphic platform,

SpiNNaker. PlaNeural is tested on two environments and results show a successful performance and

in both cases PlaNeural takes appropriate actions to fulfill user selected goals based on environmental

changes.

Keywords: PyNN, Cell Assembly, Spiking Neural Networks, Planning

1 Introduction

Bostrom [1] states that intelligence requires three conditions: learning, logic and planning. Planning is

the ability to take pre-conditions and facts from an environment and satisfactorily deliver a goal. Many

agents are capable of interacting with an environment, what makes PlaNeural different? PlaNeural is

based on the third generation of neural network models, Spiking Neural Networks (SNN) [11] based on

integrate and fire neuron [2] and Cell Assemblies (CA) [6]. This means all decisions are completed via

spiking neurons.

1.1 Cell Assemblies and Neural Networks.

Cell Assemblies (CAs) [6] are groups of neurons that are interconnected and when neuron firing within

the group exceeds a threshold, the CA fires. CAs can be active but not firing, i.e. neurons firing within

the group are insufficient to exceed the threshold, when in this state the CA is said to be primed. There

is growing support and evidence that they are used in biological brains to represent concepts [10].

CAs are a distributed and decentralised model and when many CAs are networked they can produce

dynamical systems that solve complex problems from classification [9] to parsing language [7]. CAs

can be implemented in SNNs and thus classified as third generation neural networks, CAs can be used

1

Spiking Neural Networks that Plan Mitchell, Huyck and Evans

FACTS GOALS MODULES ACTIONS

ENVIRONMENT

PlaNeural

Figure 1: PlaNeural Schema: Each node is represented by a CA, in tests, a fully connected (no self-

connections) five neuron cell assembly using Integrate and Fire neurons. Facts are connected to Goals.

Goals in turn excite Modules and finally Modules excite the appropriate action. To ensure that there

is no prolonged activity Actions inhibit the appropriate Module and Goal. Actions will change the

Environment which will give feedback to the Facts and complete the closed loop.

to solve classic AI problems. CAs can be used to implement cognitive and other types of models, e.g.

applying them to FSM [4]. In §2 a Maes network-inspire model is discussed.

1.2 Maes networks

Maes [12] uses a network of competence modules to develop plans. Each competence module has suc-

cessor, predecessor and conflicter connections. Activation is spread throughout the network with con-

straints drawn from successor, predecessor and conflicter connections. Maes networks are distributed

and dynamical systems of inhibitor and excitatory connections and hence drawing inspiration from

them. Briefly, Maes networks are: i) not hierarchical; ii) not centralised; and iii) have no explicit rep-

resentation of the environment, but rather communicate with the environment and react to any changes

by choosing suitable actions. Transforming Maes-like networks to SNNs seemed a logical step and is

explained in §2.

2 PlaNeural

PlaNeural is a SNN that plans and satisfies goals. Goals are entered by the user and appropriate ac-

tions fire. The consequence of these actions can change the environment and provide new facts. The

environment is separate from PlaNeural which depends on stimulus from user-input for goals and envi-

ronmental facts. When combined these two inputs change the activation in the network and converge on

an overall action. On completion of the action the associate goal and module are inhibited.

2.1 Implementation

Programming was completed using PyNN [3], a simulator independent spiking neuron based program-

ming language. To ensure the results were robust two simulators were chosen: Nest (2.6) and SpiNNaker

[5], the latter being neuromorphic hardware 1.

1on loan from APT at the University of Manchester

2

Spiking Neural Networks that Plan Mitchell, Huyck and Evans

PUS PUSAN PUB PDS PDSAN PDB PBV SBV SPS

PUS PUSAN PUB PDS PDSAN PDB PBV SBV SPS

PUS PUSAN PUB PDS PDSAN PDB PBV SBV SPS

SIH SANIH BIH BA SA SANA BIV EH STOP

F
A

C
T

S
A

C
T

IO
N

S
M

O
D

U
L

E
S

G
O

A
L

S

Figure 2: PlaNeural Structure for Robot. Key is referred to Table 1

Key Description Key Description Key Description

BA Board Available PDSAN Put Down Sander BIV Board in Vice

SA Spray Available PDS Put Down Spray SANIH Sander in Hand

SANA Sander Available PBV Put Board in Vice BIH Board in Hand

PUS Pick up Spray SBV Sand Board in Vice SIH Spray in Hand

PUSAN Pick up Sander EH Empty Hand SPS Spray Paint Self

PUB Pick up Board STOP Stop PDB Put down Board

Table 1: Commands for Maes Robot

3

Spiking Neural Networks that Plan Mitchell, Huyck and Evans

Description Value Description Value

Refractory time 5.0ms Resting Potential -65.0mV

Synaptic Time Constant (in-

hibitory)

5.0ms Synaptic Time Constant (excita-

tory)

2.0ms

Threshold -51.0mV Reset potential -70.0mV

offset 0.0 distance 0.1cm

Table 2: Neuron Parameters for PlaNeural

2.2 Experiment 1: The Sander Task

Briefly, the virtual agent is a robot with two hands; some objects that can be grasped by the robot are:

sander, board and spray-paint. The goals can be divided into two groups: single-objective; and multi-

objective. The single objective goals are: pick up object, put down object, where object is board, sander

or spray-paint. The multi-objective goals are: sand board in vice; put board in vice; sand board in hand;

and spray-paint self. The last objective requires the robot to shut down and await for paint to dry, so it

cannot achieve any other goals once this has been achieved. The test of this is to sand the board and

spray paint self and thus use all single objectives in a correct sequence. This is the original Maes task

and more details can be found in [12].

Figure 2 details the network as a graph and four distinct groups of CAs, each represented by a circle

and a name. The connections are either inhibitory or excitatory. Both sets of weights are static. There

is a further type of connection not represented in Fig. 2 and that is internal connections within the

CA, these neurons are fully connected (disallowing self connections) and are also static. Otherwise

all connections between populations are fully connected. The standard set up for each neuron in the

network is shown in Table 2. The code can be found at undone.

Figure 3 is a rastergram of the spiking neurons after given goals are injected to the network. The

two goals are described in the list below.

0ms : Facts show that the agent has Empty Hand (EH) (see Table 1 for abbreviations) and the environ-

ment has Spray-paint, Board and Sander available (SA,BA,SANA).
200ms : The goal Sand-Board-in-Vice (SBV) fires. This cascades approx. 10ms later to PUB and

PUSAN sub-goals.
≈275ms : Actions indicate that both the Board and Sander have been picked-up, PUB and PUSAN fire.

Approx. 5-10ms later this is reflected in the facts by SANA, BA and EH no longer persisting. This

is also reflected in facts SANIH and BIH persisting.
≈300ms : Action PBV fires and as a result approx. 10ms later BIV fact persists. This is also reflected

by BIH no longer persisting and EH persisting.
≈340ms : Action SBV fires, which matches the original goal, and in turn inhibits PUB, PUSAN and

SBV in Goals
≈ 400-700ms : is a period of rest, no new goal are given to the network. Facts EH, BIV, SA and SANIH

persist during this period.
≈ 700ms : Goal SPS fires.
$approx$ 760ms : Action PUS fires and as a consequence Facts, EH and SA no longer persist, and

SIH persists
≈ 800ms : Action SPS (clipped in figure) fires and as a consequence inhibits the Goals SPS.

2.3 Experiment 2: Simple Cognitive Mapping

The agent navigates through a series of rooms with objects in them. The agent is to approach the object

(further work is to identify and build a spatial map) and then enter the next room. The agent is executed

4

Spiking Neural Networks that Plan Mitchell, Huyck and Evans

0 100 200 300 400 500 600 700 800 900
time (m/s)

PUS
PUSAN

PUB
PDS

PDSAN
PDB
PBV
SBV

Ac
tio

ns

0 100 200 300 400 500 600 700 800 900
time (m/s)

PUSPUSANPUBPDSPDSANPDBPBVSBVSPS

Go
al
s

0 100 200 300 400 500 600 700 800 900
time (m/s)

PUSPUSANPUBPDSPDSANPDBPBVSBVSPS

M
od
ul
es

0 100 200 300 400 500 600 700 800 900
time (m/s)

SIH
SANIH

BIH
BA
SA

SANA
BIV
EH

STOP

Fa
ct
s

Figure 3: Rastergram for goals: i) Sand board in vice at 200ms; and ii) Spray paint self at 700ms.

Neuron number is represented on the vertical access with each CA represented by five neurons.

on a neuromorphic platform, SpiNNaker. More details about the environment can be found in [8].

Table 3 explains the commands - there are essentially 4 actions: forward; right; left; and backward

(not used). There was an issue of going through doors, whilst in the corridor an object could be recog-

nised in another room, so whilst in the corridor an inhibit object (IO) is activated that prevents objects

being recognised until the agent gets through the door. The network was developed using the same code

as previous experiment and data-driven, i.e. only the data sets fed into the network changed. All graphs

are created based on the network data fed into the program.

Table 4 plots spiking neurons over a period of 2000ms after given goals are injected to the network

and are described in the list below.

0ms : small test, TR goal is activated followed by approx. 10ms later the action TR. Note that the fact

LEFT and PYR is on, but the goal TR (turn right) takes priority.
≈100-300ms : Goal EXP is activated along with facts LEFT and PYR. Subsequently, GP and TP sub-

goals are activated. The agent turns towards the object and centres the object in the vision field.
≈300-600ms : CENTRE fact is activated and the response of the agent is to move forward towards the

object.
≈600-800ms : IO is deactivated and GD is activated as a sub-goal. DOOR and RIGHT are activated

facts and the door is centred by turning right.
≈800-1000ms : DOOR and CENTRE are activated and the agent moves towards the DOOR.
≈1000-1500ms :UO goal is active and ENDOOR is activated fact. The agent keeps moving forward

until it is clear of the door and looks for the next object in the new room.
≈1500-1600ms :UO is deactivate and IO is activated. The object STAL is identified and move forward.
≈1600-2100ms :The DOOR and RIGHT, followed by CENTRE are activated facts. The actions TR

follow by a series of FW through the next door. Eventually the agent is halted by STOP fact

activated causing inhibition throughout the network and leaving the agent to rest.

5

Spiking Neural Networks that Plan Mitchell, Huyck and Evans

Key Description Key Description Key Description

TR Turn Right TL Turn Left FW Forward

BW Backward BUMP Bump FO Object Forward

LO Object Left RO Object Right STAL Object 1

PYR Object 2 DOOR Door RIGHT Object on Right

LEFT Object on Left CENTRE Object in Centre ENDOOR End of Door

STOP Stopp agent EXP Explore UO Unihibit Object

IO Inhibit Object TP Turn to Object 2 TS Turn to object 1

GP Go towards Object 2 GS Go towards Object 1 GD Go towards Door

Table 3: Commands for the mapping experiment.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
time (m/s)

TR

TL

FW

Ac
tio
ns

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
time (m/s)

TR
TL
FW
BW
TP
TS
TD
GP
GS
GD
IO
UO
EXP

Go
al
s

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
time (m/s)

TR
TL
FW
BW
RO
LO
FO
EXP

M
od
ul
es

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
time (m/s)

RIGHT
LEFT

CENTRE
PYR
STAL
DOOR
BUMP
STOP

ENDOOR

Fa
ct
s

Figure 4: Results for goals in Experiment 2. i) turn right at 0ms; and ii) explore at 100ms

3 Conclusion

Creating plans using CAs is the main contribution. Building a Maes-inspired network to cope with

planning has been a success based on the results of the two environments. Artificial Intelligence requires

planning. PlaNeural is a SNN for plannin where all decisions are made and based on neurons firing.

The actions from PlaNeural are fed into the environment and changes are made appropriately. These are

represented by changes in facts that feed into PlaNeural and hence a closed-loop.

The two main challenges that have been met:

1. Planning with SNN. The topology describes a network that demonstrates the ability to plan in

two environments under two different implementations, Nest and Spinnaker, using the concept of

Maes-inspired Networks combined with Cell Assemblies.

2. Topology: Systematically building a framework for future agents as seen in Figures 3 and 4. This

6

Spiking Neural Networks that Plan Mitchell, Huyck and Evans

systematic approach will improve areas of planning in the development of agents.

This paper has focussed on the development of a planning agent, PlaNeural . The development was

completed in PyNN using Nest and on a neuromorphic chip, SpiNNaker. The authors have provided

a systematic way to implement a method to plan using SNNs with the combination of Maes-inspired

networks and cell assemblies. PlaNeural ran successfully in two different environments and could form

the basis of any planning in an agent relying on SNN.

Acknowledgements: This work was supported by the Human Brain Project Grant 604102, Neuro-

morphic Embodied Agents that Learn.

References

[1] Nick Bostrom. Superintelligence: Paths, dangers, strategies. OUP Oxford, 2014.

[2] R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neu-

ronal activity. J. Neurophysiol., 94:3637–3642, 2005.

[3] A. Davison, D. Brüderle, J. Eppler, E. Muller, D. Pecevski, L. Perrinet, and P. Yqer. PyNN: a common

interface for neuronal network simulators. Frontiers in neuroinformatics, 2, 2008.

[4] Y. Fan and C. Huyck. Implementation of finite state automata using flif neurons. In IEEE Systems, Man and

Cybernetics Society, pages 74–78, 2008.

[5] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown. Overview of the spinnaker

system architecture. IEEE Transactions on Computers, 62(12):2454–2467, 2013.

[6] D. Hebb. The Organization of Behavior. John Wiley and Sons, 1949.

[7] C. Huyck. A psycholinguistic model of natural language parsing implemented in simulated neurons. Cognitive

Neurodynamics, 3(4):316–330, 2009.

[8] C. Huyck, R. Belavkin, F. Jamshed, K. Nadh, P. Passmore, E. Byrne, and D.Diaper. CABot3: A simulated

neural games agent. In 7th Intl Workshop on Neural-Symbolic Learning and Reasoning, NeSYS’11, pages

500–544, 2011.

[9] C. Huyck and I. Mitchell. Post and pre-compensatory Hebbian learning for categorisation. Computational

Neurodynamics, 8:4:299–311, 2014.

[10] C. Huyck and P. Passmore. A review of cell assemblies. Biological Cybernetics, 107:3:263–288, 2013.

[11] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural

networks, 10(9):1659–1671, 1997.

[12] P. Maes. How to do the right thing. Connection Science, 1:3:291–323, 1989.

7

	Introduction
	Cell Assemblies and Neural Networks.
	Maes networks

	PlaNeural
	Implementation
	Experiment 1: The Sander Task
	Experiment 2: Simple Cognitive Mapping

	Conclusion

