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Abstract

Neural Networks are very popular computational models that are
generally said to be inspired by human neural functioning. However,
neurons in most neural nets function quite differently from natural
systems.

This paper describes a novel architecture, the CANT (Connections,
Associations and Network Technology) model which is designed to
function like natural neural systems. It first elucidates the important
aspects of the model and how they relate to natural systems. The basic
idea is derived from D. O. Hebb’s idea of the Cell Assembly which is
the neural equivalent of a concept.

The paper goes on to describe three instances of the model. In
each case, stimulus is presented to the network by directly activating
neurons in the system. In any given run of the network, this should
lead to activation of the appropriate CA. When learning is involved,
early runs on the system will not lead to activation of a CA. Instead,
the early activation will lead to the system learning the CA.

CAs are initially determined by appropriate levels of activation in
the network. Later they are determined by statistical analysis of the
activation patterns. The first experiment shows that the CANT model
generates CAs given a wide variety of parameter settings. Learning is
essential in neural models; the second experiment shows how learning
can develop a CA where mere parameter setting can not. In natural
neural systems, multiple CAs must exist as natural systems must have
multiple concepts. The third experiment shows how a simple net can
contain two CAs.

The paper concludes with a discussion of future developments of
the model. These include duplicating psychological and neurobiological
data. This will require further analysis of CAs, learning algorithms and
development of higher order formalisms.



1 Introduction and Background

Neural Networks are very popular computational models that are generally
said to be inspired by human neural functioning. However, neurons or units
in most neural nets function quite differently from human neurons.

An average human neuron fires for a brief time, and then fatigues. If such
a neuron were to represent a concept, we could only think of that concept
for a brief time. Since we can think of a given concept for at least several
seconds, a single neuron cannot represent an entire concept. A concept
must be represented by a collection of neurons. How might such a concept
be represented?

D. O. Hebb proposed a solution to this problem [4], a reverberating
circuit of cells. Hebb called this reverberating circuit a Cell Assembly (CA).
Some physiological evidence exists; for instance, Abeles [1] has experimented
with electrical probes in the brains of monkeys. There are 10 probes in a
small (< 5 cm) area of the brain. The electrodes show repeating patterns
of activation when the monkey is sensing or performing a specific event.

While there has been a fair amount of work in psychology [8] and neuro-
biology to show the existence of CAs, there has been little computational
modelling of CAs [5] [6]. The computational modeling has either been from
a more abstract level than neurons [6], or has been of a very limited nature
[5].

This paper describes several instances a novel architecture, the CANT
(Connections, Associations and Network Technology) model. The next two
sections describe the general CANT model. One section is on the basic
neuron and one is on the net and CAs.

The neuron is the basis of the model. The neuron has axons (connec-
tions); a current activation; an activation threshold it must reach before
firing; it is connected, via axons, to other neurons in a distance-biased fash-
ion; the activation of a neuron decays; and firing neurons fatigue.

The section on the CANT net and the properties of its CAs is next.
CAs should follow a standard course of activation. They should emerge
from an initial net via training and a localized learning rule. This section
also describes the structure of the net used in the experiments described in
this paper.

The fourth section describes three experiments. The first experiment
shows the robustness of the model. The second integrates learning. The
third shows two CAs in a single net.

The fifth section further discusses the results of the experiments. It
elaborates the problems encountered during the experiments and how they
relate to general problems with CAs.

The concluding section discusses the long-term and short-term plans for



the model. It concludes with the overall goals of the model

2 Basic Neural Model

The basis of the model is the neuron. Very complex models of neurons exist
(eg. [3], [2]). However, these models tend to take quite some time to run
and since many neurons are needed, a simple model has been employed.
CANT attempts to make good trade offs between computational efficiency
and neurological validity, capturing the important computational aspects of
the neuron efficiently.

The CANT model has six neural properties:

Connection Strength

Activation

Activation Threshold

Variable Connectivity

Decay

. Fatigue

The first three are quite common in Neural Network models and the last
three are less common.
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2.1 Connection Strength

A CANT neuron has connections to other neurons, which are similar to
connections inside biological neural systems. Connections are unidirectional.
Like most neural net simulations, the connection strength may vary based
on a learning rule. The connection may have positive or negative strength.
Continuous activation is simulated by time steps.

The average biological neuron is activated by about 1000 other neurons,
and in turn activates about 1000 other neurons [7]. Each biological neuron
has several axons, which have feet to send activation to other neurons. The
CANT model simply has neurons and connections. In the experiments de-
scribed in this paper, there are fewer connections due to the small number
of neurons. In future experiments with larger networks, more neurons and
connections will be used.



2.2 Activation

When the neuron crosses a threshold, it sends activation down each of its
axons. The activation of a given neuron i at time t is:
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Equation 1.
The current activation is the activation from the last time step divided by
a decay factor d plus the new activation coming in. This new activation is
the sum of the active inputs s; of all neurons j € V;, V; being the set of
all neurons that are connected to i, weighted by the value of the connection
from neuron j to neuron 1.
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Figure 1.

There may also be external activation. Theoretically this comes from the
environment, but in these experiments it comes from neurons being directly
activated. Some experiments allow neurons to spontaneously activate when
they have been inactive for a long time.

2.3 Activation Threshold

A neuron is active if and only if it has enough activation to surpass the
activation threshold. Each neuron has the same activation threshold as all
other neurons. So if the activation threshold is 5 and a given neuron has
an activation of 4, it will not fire and thus will not propagate activation.
Activation of an inactive neuron does decay but an inactive neuron does not
fatigue.

2.4 Connectivity

Biological neural systems are connected in a distance-biased way. Each
neuron is not connected to every other neuron; in the human brain, with
500 billion neurons, this would require each neuron to have 500 billion con-
nections, and as we have seen the average neuron has approximately 1000



connections. If two neurons are closer together they are more likely to be
connected. The CANT model adheres to this distance-bias connectivity.

2.5 Decay

At each step, the activation from the last step decays. Of course, new
activation may lead to a net gain in activation. Decay is a constant and
applies to active and inactive nodes.

2.6 Fatigue

The neuron fatigues. When a biological neuron is active for a long time
it will fatigue and this will make it less likely to remain active. This is
modelled by a fatigue factor, which increases the activation threshold. The
threshold is increased by f.t,. f. is the fatigue constant and ¢, is the time
that the neuron has been active. The longer that the neuron is active the
larger the threshold becomes, and thus the less likely it is to remain active.

When a neuron becomes inactive, fatigue is reduced. Fatigue is t, —
t,R.. Fatigue is the time active minus the time recovering multiplied by the
recovery constant. The higher the constant, the faster a neuron recovers
from fatigue.

In the models described in this paper, a neuron tends to stay active for
about 10 cycles; this varies with decay and fatigue. Even with one decay
and fatigue setting this does of course vary. A neuron may remain active
for as little as one cycle, and if given enough activation, may remain active
indefinitely. In the experiments described in this paper, the longest a neuron
has remained active is 13 cycles.

3 The Net and Cell Assemblies

How might a CA look at the cellular level? A CA should consist of a rel-
atively large number of neurons; this could be hundreds or millions. The
neurons should have a large connectivity to each other; that is, each neuron
should have connections to other neurons in the assembly and the strengths
of those connections should be high. Each neuron does not need to be con-
nected to all the other neurons in the CA and may be connected to neurons
outside the CA. This large connectivity should lead to mutual activation.

When several neurons in the CA are activated, they should activate
other neurons in the CA. When the initial neurons fatigue and cease to
be active, the newly activated neurons keep the activation in the CA. The
initial neurons, after recovery, may later be reactivated. Thus the CA is
a reverberating circuit, and can remain active much longer than a single
neuron.



The time course of activation of a CA follows a simple curve. If enough
stimulus is present a large number of cells will be activated. That is, if
enough neurons are initially activated in the CA, they will cause a large
fraction (1/3) of the neurons in the CA to become activated. After this
initial burst of energy overall CA activation (number of active cells) will be
reduced, but will remain high for a period. This activation will gradually
decline. This gives the “snoopy” curve of activation [6] !.

If insufficient evidence is present, a number of cells will still be activated.
However, it will not be enough to activate the circuit, and overall activation
in the circuit will quickly decline.

Learning in the CANT model is unsupervised. While different learning
rules have been tested within the CANT model, all are basically Hebbian.
That is, the learning rules are based on the activation of two adjacent nodes.
If node A has a connection to node B and both are active, then the con-
nection strength is increased. Strengths may also be reduced and may even
become negative. This is either via a compensatory learning rule 2 or via
Long-Term Depression [5]. Again, these are learning rules based on activity
at two adjacent neurons. The learning rule for a particular model will be
described along with the description of the appropriate experiment.

As Wittgenstein [11] has made clear, there usually are not necessary and
sufficient conditions to say an entity is an example of a concept. Generally,
dogs have four legs, but three-legged dogs exist. To be a bit more simplistic,
a concept is a group of features that tend to travel around together. We
have the concept (and thus the word) dog because the features tend to travel
around together. We often find wagging tails, fur, wet noses, four legs and
other dog features together. Rarely, if ever, do all of the features coexist,
but they tend to be together. This type of concept relates to Rosch’s [9]
prototype theory.

An instance of a concept is present when enough of its features are
present. In the CANT model a CA is activated when enough features in
a given feature set are present. Neuronal activation is used as a rough
equivalent to a feature being present. A concept is made up of a set of
features (neurons in CANT terms). So if a sufficient number of those neurons
are activated, then the CA should become active. The network will recognize
that the concept is present in the environment.

As with most Neural Net models, the CANT model has the advantage
of redundancy. A large number of the neurons or axons in a given CA (or
a net) can be removed and the CA (or net) will function in almost exactly

!Kaplan cites peak activation in the range of 75% of neurons in a CA. It is not clear
how this number is derived. An important question is how much of a CA is activated?
Still the general shape of the curve remains uncontested.

2This rule sets a threshold of positive strength for all axons from a given neuron. Once
this threshold is reached, any gain must come at the expense of other neurons.



the same way.

The main goal of the CANT model is that it is a good model of neural
processes. At some point of development, the CANT model should start to
exhibit simple psychological behavior. Of course, this will initially be very
low-level behavior.

An example of such a behavior would be the presentation of ambiguous
input. (The Necker cube is an example of this input.) An ambiguous input
should be resolved as one of the possible concepts, but this should take
longer than when an unambiguous input is presented. Activation of one
CA competes with the activation of another until one wins. Since, each is
suppressing the other, a peak of activation (recognition) will be delayed.

Distance-biased connections should lead to some localization in a CA;
that is, the reverberating circuit should consist of neurons that are close
together. When a neuron is activated it is likely to activate neurons near
it, and via learning these connections will be strengthened. As the system
learns more and more, nearby neurons will be recruited into the CA, and it
is likely that these neurons will be nearby. The entire CA may be spread
out over large areas of the brain, but any parts of a CA in a given area are
likely to be close together.

A complete CANT system consists of a number of neurons laid out into a
network. This net can be of any configuration. In the experiments described
below the net is a two dimensional array of neurons (N by N neurons).
Distance is determined by adjacency; the 0,0 neuron is 1 step away from
the 0,1 neuron and from the 1,0 neuron. 0,0 is two steps away from the 0,2
neuron and from the 1,1 neuron. There is also wrap around so 0,0 is also
one step away from 0,N and N,0.

CAs should emerge from the net via learning. Given multiple presen-
tations of similar items, the net should develop a CA based on that item.
Depending on the history of that net (what it has learned), it may contain
multiple CAs.

A concept should be activated when there is external evidence that it is
present. A concept is represented by a CA, and in this case, external means
evidence outside of the CA. This evidence consists of activation. If the CA
were connected to sensory devices, specific neurons would be sent activation.
Similarly, if it were an internal CA, the stimulation would come from other
neurons closer to the sensory interface. In CANT external stimulation is
simulated by giving activation to a particular neuron or neurons.

Thus a particular input is presented to the system by activating certain
neurons. The net runs. If a CA is activated, then the net has recognized
the input as an instance of the concept that the CA represents.



4 Experiments

The basic CANT model is largely constant. It consists of a series of neu-
rons, connected in a distance-biased fashion. When a neuron is activated, it
spreads its activation through its connections. If a neuron gets enough acti-
vation, it fires and sends activation or inhibition to adjacent neurons. The
activation of a neuron decays, but a neuron may remain active for many
time steps. Though a neuron gets more activation, it will be more and more
difficult for it to remain active due to fatigue.

These experiments are designed to test whether the CANT model can
successfully generate CAs. The first experiment shows that the CANT
model generates CAs given a wide variety of parameter settings. Learn-
ing is essential in neural models; the second experiment shows how learning
can develop a CA where mere parameter setting can not. In natural neural
systems, multiple CAs must exist as natural systems must have multiple
concepts. The third experiment shows how a simple net can contain two
CAs.

In each case, stimulus is presented to the network by directly activating
neurons in the system. In any given run of the network, this should lead to
activation of the appropriate CA. When learning is involved, early runs on
the system will not lead to activation of a CA. Instead, the early activation
will lead to the system learning the CA.

Three experiments using CANT are described below. The first does not
take advantage of learning. The second does take advantage of learning, and
thus builds a better CA. The third has multiple CAs in a given network.

4.1 One Cell Assembly in a Network

When an input is presented to the system, if the CA is activated, the input
is categorised as an instance of the concept represented by that CA. In terms
of the net, the CA is activated when a sufficient number of neurons in the
CA are activated [6].

The general course of activation should follow the snoopy curve shown
in figure 2. [6].

When the external stimulus is presented a few neurons become active.
These in turn pass on activation to more neurons, and eventually a great
number of neurons become activated. Activation should continue even if the
stimulus is removed; after all, you can continue to think about a concept
even after you have ceased to look at the instance of the concept. However,
there should be less and less activation as time passes.

Two potential problems present themselves: activation explosion and
lack of activation. Activation explosion occurs when too many nodes become
active; at any given time many nodes are active. When a node fatigues,
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activation from other nodes reactivates it. The problem with this is that
the CA always remains active. Instead the CA should remain active for a
period of several seconds after the stimulus has gone.

Lack of activation is the other problem. A stimulus is presented and this
activates certain neurons. These neurons will remain active for a brief period
after the stimulus is gone, but will decay and fatigue and quickly become
inactive. The only way for the CA to persist is for the initial neurons to
activate other neurons. If there are insufficient connections and connection
strength, then no other neurons will become active.

The first question is how easy is it to create a CA? Can they be randomly
generated or do they need to be learned?

A related question is what are the values of the initial parameters. The
parameters are connectivity, connection strength, activation threshold, de-
cay, and fatigue.

The first experiment was to test nets with a great number of different
parameter settings and see which configuration led to the activation pattern
most similar to the snoopy curve.

For a network to match the snoopy curve it had to pass three separate
tests. Each test assured that the network never had too much activation,
and that it had sufficient activation at its maximum. The first test initially
activated 20 nodes, while running it could have no more than 1/3 of the
nodes active, and had to have at least 5% active. The second test activated
10 nodes, could have no more than 25% of the nodes active and had to have
at least 2% of the nodes active. In the final test two neurons were activated
and no more than 2% of the nodes could become active.



Initially this was tried with a 20x20 network of neurons. Despite test-
ing several thousand different parameter settings, no appropriate activation
pattern emerged.

Another experiment was done with a 30x30 network of neurons. In this
case 52 parameter settings led to the appropriate activation pattern.

Low Act. Med Act. High Act.
Conn. Low & Str. Low 4 3 0
Conn. Low & Str. Med. 1 11 2
Conn. Low & Str. Hi 0 4 4
Conn. Med. & Str. Low 6 5 2
Conn. Med. & Str. Med. 0 2 3
Conn. Med. & Str. Hi 0 0 0
Conn. Hi & Str. Low 0 4 1
Conn. Hi & Str. Med. 0 0 0
Conn. Hi & Str. Hi 0 0 0

Table 1: CA occurrence via parameter settings.

Table 1 shows the number of parameter settings that lead to CA forma-
tion. Connectivity and connection strength along the left, and the activation
threshold on top. For example, 4 parameter settings with low connectivity,
low strength, and low activation lead to CA formation. A high connectivity
means that a neuron was connected to more neurons than low connectivity.
High connection strength means that each connection has a higher w;; than
low strength; so if the neuron is activated, it will send more activation to the
neurons it is connected to. A high activation threshold means that a neu-
ron needs more activation before it can fire, as opposed to a low activation
threshold where the neuron will fire with a low amount of activation.

The table shows that high connectivity and strength were not very suc-
cessful. This might have been compensated by an extremely high threshold
or a large decay and fatigue factor.

The most successful groups were low connectivity and medium strength,
and medium connectivity and low strength. Both were successful with low,
medium and high decay constants.

All ranges of individual parameters led to an appropriate CA activation
curve. A low activation along with a low connection strength and low con-
nectivity could generate an appropriate curve. Similarly, a high activation
along with a medium connectivity and strength would yield an appropriate
curve.

High connectivity and strength tend to encourage activation. A high
activation threshold tends to discourage activation. As long as the two are
balanced a CA can form. This is shown by table 1. The only place low
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connectivity and strength fail is when there is a high activation threshold.
Similarly high connectivity only succeeds with medium and high activation
thresholds.

Decay rate and fatigue also tend to discourage activation though they
are not shown in the table. The full range of decay and fatigue values lead
to CAs. High fatigue values were more successful than low values but only
marginally so.

There are two important lessons to draw from this experiment:

1. bigger nets are more flexible, and
2. the CANT model is robust.

The difference between the larger and the smaller net shows that larger
nets are more flexible. No parameter settings were successful in generating a
CA in a net with 400 neurons, but 52 settings were successful in generating
a CA with 900 neurons. It is much easier to generate a snoopy curve of
activation in a larger net. This implies that you can do more things with
more neurons. To us this is obvious, but it is important that the model
exhibits this behavior.

The variety of parameter settings that generate CAs show that the model
is robust. High, medium and low values of all of the parameters led to
CAs. These needed appropriate values from the other parameters, but the
flexibility of the model is encouraging.

This is particularly encouraging as the parameters were set and no learn-
ing was used. One of the parameters, connection strength, would be largely
set by learning. A second parameter, connectivity, could be reduced by
learning 3.

This experiment shows that it is not easy to create a CA by randomly
generating a network. It is easier to do so in a larger net. CAs were formed
when the connectivity and strength of connections was balanced by a similar
activation threshold.

A related question is what are the values of the initial parameters. The
parameters are connectivity, connection strength, activation threshold, de-
cay, and fatigue.

After these successes, parameters were set and it was hoped that a CA
could be learned in a net with 400 neurons. This experiment is described
next.

3Setting the connection strength to 0 is equivalent to removing a connection, thus
reducing connectivity. As long as the connection strength remains at 0, it is as if there
were no connection. Of course, future changes from zero would result in a different system
than one that had no connection at all.
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4.2 Learning One Cell Assembly in a Network

In Neural Networks, the topology of the network is important. In models of
Hebbian Cell Assemblies, the topology is defined by the connections between
nodes and the weights of those connections. The above experiment showed
that several topologies could elicit the appropriate behavior in a larger net,
but it was difficult (random searched failed) to find a topology which elicited
an appropriate response in a smaller network.

Learning is a hallmark of both natural and artificial neural systems.
Could the system learn an appropriate topology?

In CANT, learning is assumed to be unsupervised. The system is pre-
sented with stimuli and it needs to categorise those stimuli. If similar stim-
uli are presented, a similar group of cells (a CA) gets activated. What is
learned is that categorization. In the CANT model, learning is implemented
by changing the weights of the connections.

The CANT model is based around Hebbian learning; that is a localized
model of learning. Within this model there are several alternatives. All
are based on adjacent activations. If node A is connected to node B, and
both are activated at a given time step then the strength of the connection
is increased. This is known as Long Term Potentiation and is shown in
Equation 2:

wij = wij + R

Equation 2.
The connection strength of the axon is increased by the learning rate R.
Various other methods are used to handle decreasing strengths of connec-
tions.

In this experiment, loss of strength is handled by a simple compensatory
learning mechanism. There is a maximum of the total connection strength
of axons coming from a neuron. If learning increases the strength of a
given axon, M;;, so that the total strength exceeds the maximum connection
strength of all axons M;,, all of the other axons have their strength reduced.

This reducing rule can lead to inhibitory links. Thus some active neurons
can reduce the activation of other neurons.

The initial parameters were set based on experiment one. The activation
threshold was set to a medium value. Decay was set to a medium value
though a small value was also attempted. Connection strength was set very
low as this would be modified by the learning rule. Connectivity was set
very high as to some extent this was modifiable downward by the learning
rule.

In this experiment, a net of 400 neurons was used. The net was connected
in a distance-biased fashion as shown in section 3. During training a random
set of 20 neurons was selected and activated for each run. Some neurons
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were labelled as primary neurons, and the rest as secondary neurons. The
primary neurons were more likely to be activated from the environment.
The experiment varied the number of primary neurons from 0 to 20. Each
activated neuron was activated at twice the threshold for the first time step.
After the first step, there was no more external activation.

Initially the connection weights were set to a low random number. On
the initial training run, no neurons aside form those externally activated
surpassed the activation threshold.

For each test with different numbers of primary neurons, after 400 runs,
a solid CA had been formed based on the criteria of experiment 1. This was
also the case with both medium and low decay rates. In each case, if 20
neurons were externally activated for one time cycle, more than 40 neurons
became active, and the activation persisted for over 30 cycles.

The best result was when there were a few primary neurons. In this case,
71 neurons became active, and the activation persisted for 62 cycles.

This system proved robust. If training was done with 10 neurons being
activated instead of 20 neurons, a similar result was found. If the net gener-
ated through 400 runs of 20 neurons of activation were tested with 10 units
of activation, it showed the snoopy curve but with a lower ceiling.

There were some problems with the system. As the network continued to
train the values of connection strengths tended to diverge. Each connection
would either have a low value or a high value. This was possible as the
learning rule allowed the connection strength of all of the neurons to have a
threshold, however there was no limit to the individual strengths.

This experiment shows that a simple learning algorithm can lead to a
CA-like topology. Experiment one showed that this topology was difficult to
generate on a net of 400 neurons. This experiment showed the appropriate
activation curves on different types of external inputs.

Clearly the model of experiment two is very incomplete. The main prob-
lem is that the network contains only one CA. A network needs to contain
more than one CA. It then becomes a recognizer of various objects. The
next experiment discusses such a system.

4.3 Multiple Concepts in a Network

The first two experiments were based on the overall behavior of a net. They
showed that neurons in a net could exhibit activation long after a stimulus
had ceased to be presented. Moreover, this activation followed the desired
Snoopy curve.

As stated earlier, the goal is to have one CA activated when one type
of pattern is presented and another activated when a second pattern is pre-
sented. Below we will show that the network of the third experiment exhibits
this behavior.
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This system is identical to the Experiment 2 system explained above
except it had 900 neurons instead of 400 neurons. The major difference in
the experiments is that two types of patterns were presented instead of 1.
Each pattern had 10 primary activation points and 10 secondary activation
points. The points of pattern A were between 0 and 100 while those for
pattern B were between 500 and 600. At each training run, 6 primary and 4
secondary neurons from either A or B were activated. The type of activation
(A or B) was randomly selected, as were the neurons in any given pattern.

Neurons may also spontaneously activate. If a neuron has not fired
in many (hundreds of) cycles, it may spontaneously activate. This mimics
auto-activation in the brain. An example of auto-activation is when a person
hallucinates while in a sensory isolation tank. This has interesting effects
on CA development discussed in the next section.

This system is similar to that described in [5]. Hetherington’s system
had 360 neurons and learned 4 patterns, but his patterns were 5 neurons
and all were always turned on.

Following Hetherington, it is hoped that CAs are unique, persist, and are
reliably activated. Statistical measurements of the entire network at certain
stages can show these properties. Uniqueness can be measured by comparing
activation patterns of different CAs; when an A pattern is presented to
the network it should lead to the activation of different neurons than if
a B pattern is activated *. Persistence can be measured by presenting a
stimulus to a network, and then comparing the activation patterns in early
cycles and in later cycles. If the two are correlated, then the CA persists. A
CA is reliably activated if different inputs of a similar pattern lead to similar
neurons being activated. For instance, one A pattern can be presented and
the state of the network can be measured after a given number of cycles.
When a second (but different) A pattern is presented, it should lead to the
activation of a similar set of neurons.

The statistical measurement used in this evaluation is Pearson’s product
moment correlation coefficient. The measurement that is used for the net-
work is whether a given neuron is active or not. The Pearson’s correlation
is used because it ignores the inactive neurons, and in all cases, most of the
neurons are inactive.

Table 2. shows different correlations based on the number of training
runs. These correlations show the development of CAs in the net.

The columns represent the number of training runs. A training run
consists of a presentation of the stimuli followed by 1000 cycles of activation

4While there is nothing theoretically to stop a neuron from participating in two CAs, in
the current experiment it should not participate. Each input pattern is entirely separate.
It’s like comparing As to Os; they have no overlapping features. A different pair of input
patterns, say Es and Fs, might contain overlapping neurons in the CA.
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propagation. The table shows the state of the initial net (0 Runs), the net
after 200 training runs, and after 400 runs. In each case the system was
presented with 4 A stimuli and 4 B stimuli, in different runs. The table
represents the average results.

0 Runs 200 Runs 400 Runs
Max. Neurons 10 30 31
A-A Corr. -.0074 .7585 .7442
B-B Corr. -.0067 .6456 8077
A Self Corr. -.0068 .1649 2110
B Self Corr. -.0057 2175 .2332
A-B Corr. -.0073 -.0068 -.0351

Table 2: Network Correlations

Maz. Neurons represents the maximum number of neurons that are
activated in any cycle of a run. Since the cell of the table represents eight
runs, this number represents the average maximum number.

A-A Corr. represents the correlation of active neurons between different
runs of type A. The measurement is taken at cycle 15. B-B Corr. represents
the correlation between B runs. Since four runs occurred, the correlation
is the average of the six comparisons. These measurements show reliable
activation. If different but similar patterns are activated, they should send
activation to the same neurons, especially in the initial phase of CA activa-
tion. The higher this number the more reliable the CA.

A Self Corr. shows the correlation between the activation states of one
net in a given run when there is an A stimulus. The correlation is between
the net after cycle 15 and after cycle 30. B Self Corr. is the version when
there is a B stimulus. Since there are four patterns of these types, this
number represents the average of four runs. This number is an indicator of
persistence 5. Similar neurons are active early in the run and later in the
run. To some extent, the higher the number, the more persistent the CA.

Finally, A-B Corr. represents the correlation between runs of different
types. Again, the state of the net was recorded after cycle 15, and again the
average correlation is shown. This number shows uniqueness. If two network
activation patterns derived from different types of inputs are compared, they
should not have similar neurons activated. The lower this number, the more
unique the CAs are.

51t really only shows similarity of activation at two different parts of a given run. Since
neurons fatigue, the same CA may be active but different neurons are active. A better
measurement might be to compare several states (eg. after cycle 15, 30, 45 and 100).
Another measurement might be to see the reverberating activity of a particular neuron.
Do the input neurons become active again after fatiguing? This would parallel [1]. See
the discussion section for further elaboration.
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In this experiment, the two CAs are in competition for neurons. Clearly,
the neurons that are part of the initial patterns (both primary and sec-
ondary) will be part of their respective CAs. Additional neurons will be
added to the CAs via learning. For instance, a neuron X that is being re-
cruited by CA A will have connections to it from neurons in CA A. These
connections will be strengthened by the learning rule. Connections from X to
neurons in CA A will also be strengthened. Connections from X to neurons
in CA B will have their strengths reduced and might become inhibitory.

Thus when CA A has evidence that supports it, it will become active,
and it will suppress CA B. As CA A recruits more neurons it will be able to
suppress CA B more readily, and will thus be able to recruit more neurons.
Similarly CA B will be trying to recruit neurons from CA A.

5 Discussion

There has been much discussion about CAs; what is their size? What exactly
do they do? However, there has not been much work in computationally
modelling CAs from a neural basis. The goal of this work is to explore CA
topologies and properties. If CAs are the basis of thought, as Hebb proposed
[4], it is very important to be able to model them.

This paper proposes the CANT model and tries to show that it is a good
starting point for modelling CAs. The three experiments have shown how
CAs are built using the CANT model.

The first experiment made three main points. It was shown that the
appropriate activation curve can be generated. It showed that different
parameter setting could generate the appropriate curve and this was used
to determine initial settings. Since a variety of parameter settings can be
used, this also shows that model is robust. Finally, the experiment showed
that it was easier to generate the appropriate curve with a larger network.

The second experiment introduced a simple learning rule and showed
that it could be used to generate CAs. This was done on a smaller net
because a net of this size had not previously been able to produce the ap-
propriate activation curve. Thus a CA could be created via learning which is
an important prerequisite of CAs. Moreover, learning developed a topology
which could not be found via random search.

The third experiment dealt with two competing CAs in a net. If CAs
occur in biological neural nets, then they must put many CAs into one
net because the net (the brain) needs to have many concepts. The third
experiment showed that multiple CAs could be put into a CANT net.

The statistics for uniqueness show that the CAs that have been con-
structed contain no overlapping neurons. That is, a neuron is a member of
at most one CA.
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Another problem is saturation. If the system is allowed to train for 1000
training runs, uniqueness is lost. The system becomes an A or B recognizer.
It is hoped that this is a property of the rather simple learning rule. A
more sophisticated learning rule, perhaps using post-not-pre Long Term
Depression, might eliminate the problem [10].

A CA is formed by recruiting neurons. That is the connections between
neurons are strengthened. As the interconnections increase, a reverberating
circuit, a CA, is formed. As the CA grows larger, it should be able to
fractionate into separate CAs that are more appropriate. For instance, at
some point, most children have the concept of four-legged animal. All four
legged animals get called “dog”. Later the (concept) CA fractionates into
dogs, cats and other animals. The problem with Experiment 3 is that the
CAs grow and grow until they recruit each other (around training run 1000)
The system become an A or B recognizer and uniqueness vanishes.

When a single activation pattern is repeatedly presented, a small tight
CA develops. This CA quickly activates all of its neurons, but then fatigues
and does not reverberate. The CA is loosened in two ways. First, a broader
pattern may be presented. This leads to more neurons being recruited into
the CA. Each neuron that is externally activated will recruit adjacent neu-
rons. When more neurons are part of the pattern (on some training runs),
more neurons will become part of the CA.

The second way to loosen a CA is random, spontaneous in this case,
activation. Introducing random activation to the net leads to extra neurons
being recruited into the CA. This will lead to lengthening the time of acti-
vation. This is valid from a real-world standpoint. No network is constantly
presented a stimulus. Occasionally it is at rest, and this is when sponta-
neous activation occurs. Both of these loosening techniques can lead to the
subassemblies Hebb describes [4].

A final problem with these experiments is the statistical analysis. The
Pearson’s product moment correlation coefficient is good for uniqueness and
reliable activation as it is used to compare which neurons are activated early
on in CA activation.

However, it is a poor mechanism for measuring persistence. A neuron
should fatigue after a few cycles and for the CA to persist other neurons
should be activated. The initial neuron may be reactivated later, but the
net should not have a high Pearson correlation (< .50) with itself at vastly
different cycle numbers.

Hetherington [5] reports persistence correlations of r=.95. Clearly this
is not measuring persistence of the CA but persistence of individual cells.
The measurement must be measuring the neurons remaining active, not new
neurons being activated.

While Pearson correlation values within a particular run can be useful,
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the numbers should be lower. Moreover, measurements such as reverberating
cell activity and overall net activation (similarity to the snoopy curve) should
also be useful.

6 Conclusion and Future Work

CANT is a model in development. There are both long-term and short-term
goals for the model.
The long-term goal of the model is to:
1. discover how CAs work.
2. discover what CAs can do.
3. duplicate psychological data with CAs.

All psychological processing can be done with a CANT model. This
means that learning, forgetting, rule like and goal oriented behavior, even
creativity should be possible with a CANT model. These things may not
be possible; if not why not?

How can a CA be learned after seeing only one instance of an object?
Can emotion and consciousness be integrated into the model?

These are the long-term goals of the CANT model. It is hoped that it
will be the bases of a real, hard, Artificial Intelligence.

The short-term goals are much less lofty, though difficult (and one might
say achievable) in themselves. All these goals can be reached within the
current properties of the CANT model (described in section 2).

The current CANT systems do not duplicate the appropriate activation
curves well. A better model needs to be developed. This may require a
change in size of the net or in the learning rule, or in both.

The model can be made useful for real world tasks by adding “super-
vised” learning. “Supervised” means that the answer is presented as part of
the input stimulus. A standard local Hebbian learning rule will still be used
to associate the input patterns with the answer. When an input pattern is
presented alone, the answer neuron (or neurons) will also be activated, and
the system will actually have decided on a classification. This in effect is an
effector neuron.

Experimentation with the model should include variations on the input
patterns. Can the system build separate CAs from overlapping input pat-
terns? (Can it be an E or an F recognizer?) What happens when three or
more pattern types are presented to a net? How does the locality of the
input pattern change the CA?

The evolution of a CA should also be studied. An initial net grows its
CAs from experience. The CA should then be able to recruit new neurons

18



Competition between CAs for neurons should be studied. The CA should
also be able to fractionate into new CAs.

The topology of the system can also be varied. Do configurations other
than a toroidal net behave differently? Can multi-layer nets (many connec-
tions within a layer and few connections between layers) be used to form
hierarchies? Can areas of specialization be useful as in human brain areas?

Of course, metrics to measure the behavior of CAs should also be gen-
erated. Pearson’s product moment correlation coefficient is good but it is
incomplete.

This paper describes the CANT model. It is hoped that CANT’s simple
premises will lead to the emergence of powerful behavior, and the model has
lofty goals.

This paper also explains the first systems built with the CANT model.
These systems are simple but show the ability of the CANT model to gen-
erate simple CAs that behave appropriately.

A large body of thought has emerged from the Cell Assembly concept.
CANT hopes to capitalize on this body of thought by implementing a sound
computational model of the CA.
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