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Abstract

The Hebbian learning rule is the best model that we have for learn-
ing in biological neural systems. This paper points out that any rea-
sonable variant of the Hebbian rule forces connections between neurons
to become correlators of the firing of those neurons. That is, if neurons
A and B fire together more frequently than neurons A and C, then the
connection between A and B is greater than the connection between
A and C. A new variant of the Hebbian rule is described and is shown
to exhibit linear correlation values.

This learning rule is then used as a basis for forming Hebbian Cell
Assemblies (CAs). It is shown how the learning rate and pattern pre-
sentation mechanism affects the variance of these weights. It is shown
how spreading activation increases the correlation values, and how fa-
tigue reduces the correlation values.

The compensatory learning rule is described. This variant of the
Hebbian learning rule is used to enable CAs to form based on a variety
of patterns. These simplified neurons, simplified axons, and idealised
learning mechanisms are used to allow the formation of overlapping
CAs. To the best of our knowledge, this is the first description of
overlapping CAs being formed from valid physical neural models.

This information forms the basis of a formal explanation of how
CAs are formed, and when they are formed. The paper concludes with
a discussion of these issues and of future work.

1 Introduction and Background

The Cell Assembly (CA) is a central concept in computational neuropsy-
chology and in cognitive science in general. The basic idea is that what we
consider concepts are stored in the brain by reverberating neural circuits
called CAs. CAs are made up of neurons that are connected by synapses
with large strengths. The CA is activated by some of its neurons being
fired. These neurons then cause other neurons in the CA to fire leading to
a cascade. These neurons then form a reverberating circuit that enables the
CA, and thus the concept, to remain active for longer than a single neuron
could remain active. This report is based on work described in [11], further
explanations of some aspects of CAs can be found in that report.



The CA is formed by strengthening existing connections. This is done
by a form of Hebbian learning which may be manifested in the brain via
long-term potentiation and depression.

There are a wide range of simulations of neurons (e.g. [3, 6, 2]). In this
report we focus on a simple neural model, the spiking leaky integrator. This
simple model may not be perfect [16], however it is clear that biological
neurons can integrate activation from incoming synapses, that activation
leaks away, and that they fire sending spikes to the synapses leading from
it [5]. Consequently, any behaviour that can be generated from this type of
model can be done in the brain.

Simulated networks of spiking leaky integrator neurons can learn CAs
[11]. CAs are good because they have interesting computational properties
and there is biological evidence that they exist [1, 7, 20]. Some computa-
tional properties include their ability to represent both short and long term
memories. Short term memories are represented by a firing CA. A long term
memory is represented by a change of synaptic weights that allows a stable
state to form. This stable state or circuit is a CA.

Biological plausibility and five decades of theoretical exploration of CAs
has lead to a relatively malleable theory. This theory started with [8], and
has had major contributions from [17, 1, 20, 4] among many others. This
report describes simulations based on the CANT model [12]; this model
attempts to adhere closely to CA theory, and thus attempts to be biologically
plausible.

In this report, we start with the simple assumption of firing neurons and
Hebbian learning. We show how our particular variant of Hebbian learning
leads to synapses being indicators of the likelihood the post-synaptic neuron
fires when the pre-synaptic neuron fires. This is done both mathematically
and via simulation evidence.

We then introduce the known neural properties of fatigue and spread of
activation. We describe simulations that show how these properties effect
the synaptic weights.

In the fourth section we discuss CA formation from these simple neu-
rons. The compensatory learning rule is described and it is shown how this
biologically plausible learning rule can be used to increase the range of pat-
terns that can be classified. We introduce inhibitory neurons to allow CAs
to compete. Prior work has shown how CAs can be formed with neurons
participating in only one CA. The present work shows how neurons can
participate in multiple CAs.

The fifth section is a discussion of the ramifications of these simulations.
The final section is a conclusion and a discussion of future work.



2 Connections as Neuron Correlators

The Hebbian learning rule can be described as follows: if a node is con-
nected to another node, and both are activated at a given time step then
the strength of the connection is increased. This is shown in Equation 1:

if (F(i)andF(j))then(w;j = wi; + R) Equation 1.

If nodes 7 and j fire, then the connection strength of the synapse is increased
by some value R.

The logical extension of the Hebbian learning rule is that the weights
correlate how often the post-synaptic neuron fires when the pre-synaptic
neuron fires. If neuron i is connected to neurons j, and &, then if j fires more
frequently than k along with 4, the synaptic weight w;; will be higher than
Wik -

2.1 Formal Correlation Values

The Hebbian learning rule can be used to correlate the firing of two neurons.
In biological systems, the connections or synapses lead to the activation of
other neurons. In simulations, this need not be the case. For the rest of
this section, the connections merely state how likely it is that the post-
connection neuron will fire if the pre-connection neuron fires. We will call
this the correlation L;;.

In our model, learning only occurs when the pre-connection neuron is
fired. If the post-connection neuron also fires, the connection’s weight is
increased. If on the other hand it does not fire, the connection’s weight
is reduced using a parallel rule known as the anti-Hebbian learning rule.
However, the amount that the weights change cannot be constants. If they
were constant, the weight will either stay at or around zero (if the post-
connection neuron fired less than half the time) or tend to infinity (if the
post-connection neuron fired more than half the time) [13].

If we would like w;; to have the value of L;; it has to be between 0 and
-1. So, the amount the weight decreases should keep the weight above 0. If
decreasing never goes below 0, half of this constraint is met.

The weight can be kept above 0 by changing the weight by a constant
multiplied by the weight as shown in Equation 2. The constant should be
between 0 and -1 and is called the learning rate R. The equation is thus:

Aw;j = wij * R FEquation 2.



As the weight approaches 0, the amount it changes is also reduced. It will
never go below 0.

The goal is to have the weight equal the correlation. If the weight is
greater than correlation, it should tend to decrease, and if it is smaller it
should tend to increase.

The weight will tend to increase if the amount reduced f(z)' times the
frequency of reduction L is less than the amount increased g(z) times the
frequency of increase I-L. The weight will tend to decrease if f(z) * L >
g(x)x(1—L). If the correlation is high, there should be many small increases
and few large decreases; if the correlation is low, there should be many small
decreases and a few large increases.

The amount that the weight should be increased should balance the
amount it is decreased. This balances when the increase is the amount of
decrease f(z) times the number of reductions for each increase. The number
of reductions per increase is (1/L;;) — 1 yielding Equation 3:

Aw;j = f(z) * ((1/Lsj) — 1) Equation 3.

This all assumes that we have the correlation L;;. However, we do have this
value in the weight w;;. Initially we do not know this value, but frequent
applications of the learning rules makes w;; tend toward L;;. If the w;;
is greater than L;;, it will be reduced because there will be fewer small
increases than expected. Similarly if w;; is less than L;;, it will be increased
because there will be fewer small decreases than expected.

This rule leads to a function where w;; ~ L;;. This rule could be modified
to produce a range of monotonic functions. However, for this report we will
continue using this linear learning rule.

For example, if a neuron starts with a weight of .3, and the learning rates
are the high values of .1 for increase, and -.1 for decrease, Table 1 describes
the results of a sample series of activations.

J fires (1/L;) —1 Aw;;  New Weight
fires 2.3 0.23 0.53
fires 0.89 0.09 0.62
no fire not app. 0.06 0.56
fires 0.79 0.08 0.64
no fire not app. 0.06 0.58

Table 1: Sample Connection Weights

Note that the real correlational value from the data is 0.60, and the last four
all are quite near to that.

'f(z) is the change Aw;; from Equation 2.



2.2 Actual Correlation Values

Using the CANT model, we have conducted several simulations. The topol-
ogy of the CANT network is a 20 by 20 network of neurons. These neurons
are connected in a distance biased fashion; i.e. a neuron is more likely to be
connected to a neuron that is close to it than one that is far from it. The
topology is toroidal meaning that the top row is adjacent to the bottom
row as well as the second row, and the left column is adjacent to the right
column as well as the second column. The toroidal topology is used to avoid
boundary conditions.

All of the simulations in this report are presenting two types of patterns.
The first type of pattern consists of the top eleven rows and the second
pattern consists of the bottom eleven rows. This means that both patterns
contain the middle two rows. An instance of a pattern is twenty of the
possible 220 neurons.

This type of pattern allows a range of correlations and it allows neurons
to participate in more than one CA. Indeed this overlapping pattern is more
complex to learn than is a mutually exclusive pattern (see section 4).

2.2.1 Correlation with .1 Learning Rate

In the first simulation, an instance of the top pattern is presented followed by
an instance of the bottom pattern. Each presentation is one cycle. The con-
nection weights are initially set to a random small weight. Table 2 describes
the average connection weight of various types of connections.

The solid line refers to connections from a neuron in the top nine rows to
a neuron in the top nine rows. The likelihood of the post-connection neuron
being activated when the pre-connection neuron being activated is 19/219
or 0.0867. As predicted the average tends toward this. The chart only shows
the top to top activation, but the bottom to bottom and middle to middle
do the same thing. The dotted and dashed line shows the average weight of
the connection from a neuron in the top to a neuron in the bottom. This
quickly tends to 0.01 which is the minimum value of a connection in the
current simulation. The actual correlation is zero because no top neuron
fires simultaneously with a bottom neuron. Again, only top to bottom is
shown, but bottom to top connections have a similar value. Finally, the
dotted line shows the average weight of connections from the middle to the
top; similar weights are obtained from the middle to the bottom. This
weight should tend toward 19/399 or 0.0476 and it does tend toward this
weight.



Average Connection Weights with .1 Learning Rate
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2.2.2 Correlation with .05 Learning Rate

The learning rate is important. There is stochastic variation within these
runs. Note a brief rise in table 2 of the dotted line at cycle 800. This variance
is also shown below in table 4. If the learning rate is low, the connection
weights should converge more slowly, but there should be less variance. The
above simulation used a learning rate of 0.1. The same simulation was rerun
with a learning rate of 0.05. The average connection weights are described
in table 3.

As predicted, the top to top connections tend toward 0.0867, the middle
to top connections toward 0.0476 and the top to bottom connections toward
0.01. Again, the connections not described tend toward their appropriate
values. Note however that the curve is much shallower with a learning rate
of 0.05 than with 0.1. For instance, the top to bottom connections converge
by 500 cycles with a higher learning rate, but have still not converged at
1000 cycles with the lower learning rate.

Table 4 describes the variance of connections from the top row to the top
row. As can be seen, the variance is always higher for the higher learning
rate. This is due to more of a change in weights with each application of the
learning rule. Clearly there is a trade off between time to learn the weight
and variance of the weight.
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Average Connection Weights ‘Normal’ Patterns with .05 Learning Rate
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2.2.3 Correlation with ‘Normal’ Patterns

The first two simulations used a pattern that changed every cycle. Prior
simulations with CANT [11, 12] have generally presented a single pattern
for twenty cycles, then allowed the network to run with no external input
for 30 or even 70 cycles. The general idea of this type of presentation is
that a particular object is presented for a reasonable amount of time; each
cycle represents 10 msec and thus 20 cycles are 200 msecs. Consequently,
the system is learning to categorise objects from real objects.

Extra time with no input is allowed to see completion effects, allow
competition between CAs, and to enable more CA solidification. However,
running without input does not make sense in the simulations in this section
because spread of activation is not yet introduced. Consequently, no neurons
will be activated from internal stimulation.

Still the way the pattern is presented is important. Presenting one pat-
tern for 20 cycles as opposed to 20 patterns for one cycle each will effect the
variance of connection weights.

In this simulation, a pattern was presented for 20 cycles instead of one.
The results are described in tables 5 and 6.

Table 5 shows the convergence of connection weights. Note, that there
has been a change of scale from earlier tables and table 5 now represents
2000 cycles. There is still convergence, but it has taken more than twice as
long. Additionally, the curves bounce up and down.

Table 6 shows the variance. When patterns alternate each cycle (the .10
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LR and .05 LR lines), the variance goes down to near point 0.04. However,
with the ‘normal’ patterns variance rises to near 0.12. That is, a weight that
is typically 0.086 varies on average by 0.12.

This variance is due to repeated changes in the weight of connections.
The weight is relatively sensitive to recent behaviour due to the learning
rule incorporating the existing strength (see section 2.1). Consequently, the
weight shoots up when it is being strengthened, and gets to be very high.

Clearly, the superior mechanism for presentation is a new pattern at each
cycle. However, a reduced learning rate would compensate for this variance,
and larger nets may be less sensitive to this variance. Finally, spreading
activation may lead to less wild fluctuations.

3 From Connections to Synapses

In the prior section, the weights between neurons were mere correlators.
However biological neurons show that this model is not appropriate. Firstly,
neurons fatigue. Secondly, connections spread activation based on their
weight. For CA theory, both of these properties are extremely important.
This section shows the effect of introducing these properties into the model.

3.1 Fatigue

Fatigue is a property of biological neurons [14]. If a neuron is repeatedly
fired it will tire, and will be unable to fire or will fire at a lower rate. This
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is separate from a post-firing depression where neurons cannot fire twice
within 10 ms. Fatigue is longer and prevents neurons from continually firing
for much longer than a second.

For CAs, fatigue is important because it enables CAs to stop on their
own accord. Hopfield nets reach a stable point where the same neurons will
stay active infinitely. CAs are quite similar to Hopfield nets, but fatigue
means that neurons will become less and less likely to fire. Without fatigue,
an active CA would either keep the same neurons firing or would cycle
through a pattern of neural activation. This same neural pattern occurs
with Hopfield nets.

A CA has an activation curve where it is presented information. This
can be done by directly stimulating neurons (as in our simulations) or by
having neurons elsewhere in the network send activation to some neurons in
the CA. If there is enough evidence (activation), the CA will ignite via intra-
CA stimulation. After ignition, a large percentage of the neurons in the CA
are active. This percentage is gradually reduced largely due to fatigue, until
the recurrent activity is no longer supported and the CA becomes inactive.

Figure 1 is a description of this activation curve derived from [14]. Before
presentation of the stimulus there may be background activity; some neurons
are firing. Presentation of the stimulus causes extra neurons to fire. In the
case of figure 1, a cascade of activation occurs, and a large proportion of
the neurons in the CA begin to fire. This is CA ignition. After ignition
the CA remains active even if external stimulus is removed. This activation
continues, but eventually decays due to neural fatigue. At this point the
CAs activation may be at or below the base rate.

10



Variance within top-> top Connections with Fatigue
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The introduction of fatigue reduces the likelihood of correlation. When
twenty neurons are presented repeatedly, some of them will be fatigued
and will be unable to fire. Consequently, one would expect the connection
weights to be less than the earlier correlations.

A simple simulation is to run the system with fatigue on and off. The
simulation from section 2.2.3 was modified. First the patterns were pre-
sented with neural fatigue off, then the simulation was rerun with fatigue
on.

Table 7 shows the results of this simulation on connections from neurons
in the top pattern to other neurons in the top. As expected connection
weights are smaller when neurons fatigue.

3.2 Spreading Activation

If connections are used to spread activation, these connections are no longer
correlators. Firstly, they are now much more like synapses in biological
systems and they will be called synapses in the rest of this report. Sec-
ondly, since these excitatory synapses now increase the likelihood of the
post-synaptic neuron firing, they influence the correlation measurement.

In this simulation we presented the patterns to the network. The pat-
terns were from 2.2 and changed every cycle. The patterns were presented
for 20 cycles, and the system was allowed to run for a further 30 cycles. In
one condition the network spread activation, and in the other no activation
was spread.

11
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The average weights of synapses were higher in all cases in the spreading
activation condition. This is because more neurons were firing in the spread-
ing activation case. In table 8 we present only the synapse from neurons in
the top part other neurons in the top, but again the data holds for the other
conditions.

What is the use of this spreading activation? From a psychological per-
spective, CAs must have benefits for the system that uses them. These
benefits are well documented and include completion effects, maintaining
a concept in working memory and passing information on to other CAs.
Completion effects enable a full CA to be activated even though part of it is
present in the environment; one may see the front half of a dog, but assume
that the dog’s tail is there. This ‘assumption’ is a completion effect.

CAs maintain concepts in working memory by remaining active. Spread
of activation allows neurons in the CA to remain active after the external
stimuli has ceased. A CA can remain active for much longer than a single
neuron because neurons fatigue.

CAs can also be used to activate other CAs. This can be used for memory
of sequences [19] or possibly for semantic nets.

At a computational level, the primary function of CAs is categorisation.
A stimulus pattern is presented, activation spreads from these externally
stimulated neurons to other neurons. If there is enough activation the CAs
is ignited, and the stimulus is categorised as that CA.

A CA is formed by Hebbian learning increasing the intra-CA synaptic
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strengths. This enables the CA to be a reverberating circuit. This has now
changed the connections from correlation measures to pattern attractors.
The stronger the connection, the more likely the neurons are to be in the
same CA.

Reverberation leads to higher separation. Spreading activation above
leads to a very small difference in synaptic weight (.02), but reverberation
will amplify this difference. So, spreading activation causes a difference in
synaptic weights, which enables CA formation. This in turn causes a further
change in synaptic weights.

For a CA to form, the patterns must be strong enough to enable the
synaptic strengths to grow enough to enable them to activate other neurons
in the CA. As CAs are essential, there must be mechanisms to categorise
sparse patterns, and mechanisms to break overlapping patterns into separate
CAs.

The simulation described above in table 8 does not lead to CA formation
as no reverberatory circuit is set up. The parameters of the simulation could
be modified to allow CA formation on this particular pattern, but the CA
learning mechanism needs to be more robust. CAs need to form when a
network is presented with a wide range of input patterns.

The learning rule can be modified to encourage or discourage CA for-
mation and thus categorise sparse patterns. For instance, the compensatory
learning rule can be used to encourage CA formation; the compensatory
learning rule is a post-hebbian learning rule [21]. See section 4.2 below.

4 CAs with Neurons Participating in Multiple CAs

A fundamental tenet of CA theory is that neurons can participate in more
than one CA [20]. The fundamental reason behind this is that it enables
there to be more CAs, but it also allows more co-operation between CAs. If
each neuron participated in only one CA, there are 100,000 neurons per CA,
and 500 billion neurons, then there can only be 5 million CAs. If neurons can
participate in multiple CAs, it is possible to have more CAs than neurons
[22].

4.1 Non-overlapping CAs Are Easily Created

There have been many simulations of CAs that have created non-overlapping
CAs [15, 9, 12]. Non-overlapping CAs are equivalent to orthonogal inputs
in other connectionist work. These networks use simplified neurons that are
reasonable models of neurons. However, each of them has neurons partici-
pating in only one CA. That is, the CAs were non-overlapping.

For non-overlapping CAs to be learned, all that is needed is that the
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strength of connections between the inter-CA neurons is increased, and the
strength of connections between neurons in different CAs is reduced or kept
small. Inhibitory neurons complicate the description, but make CA forma-
tion even easier by allowing CAs to suppress each other?.

Simple Hebbian learning rules can be used to learn non-overlapping CAs.
There are advantages to using post-Hebbian learning rules [21]. These ad-
vantages include reducing the time to learn a CA, and changing the prop-
erties of the eventual CA. These properties such as CA ignition time and
duration of CA activation are important, but are not the focus of this report.

It is more difficult to have neurons included in multiple CAs. The prob-
lem here is that CAs will ignite and the neurons that are included in other
CAs will activate the other CAs. If multiple CAs are active simultaneously,
the Hebbian learning rule will cause the CAs to recruit each other and merge
into one CA.

4.2 The Compensatory Learning Rule

The compensatory learning rule is a variant of the Hebbian learning rule.
It is still a localist rule based only on properties of the pre and post-
synaptic neurons. The compensatory learning rule considers strength of
all the synapses leaving the neuron. If the overall strength is low, the new
strength is increased a large amount. This increases the likelihood that the
neuron will fire later. Variants of the rule also consider the total strength of
the post-synaptic neuron and a combination of both neurons. In this report,
the simulations only use the pre-synaptic neuron.

The compensatory learning rule regulates the synaptic strength of all
axons coming from a neuron. If there is low correlation on all synapses, the
compensatory learning rule will raise the synaptic strengths relative to a
non-compensatory learning rule. This will enable CAs to form where there
are sparse patterns.

If there is high correlation on all synapses, the compensatory learning
rule will cause the average synaptic strengths to decrease. This will reduce
the likelihood of simulated epilepsy. It will be harder for all of the neurons
to participate in one CA.

If some synapses have high correlation and some low, they will all be
moderated. In combination with reverberating activity, this leads to unusual
attractor dynamics. See the discussion section 5.

*Without inhibition, CAs can recruit each other too easily becoming one giant CA.
This is simulated epilepsy.
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4.3 Overlapping CAs Can Be Created

One of the central tenets of CA theory is that neurons can participate in
more than one CA [20]. This enables more CAs to exist.

The participation of neurons in more than one CA allows many more
CAs because the number of CAs is not linearly limited by the number of
neurons. Wickelgren [22] has shown that in a given net there can be more
CAs than neurons. A CA is roughly a stable atractor state.

If a neuron participates in more than one CA, it is still spreading acti-
vation to all of the CAs when it is firing. Only one of the CAs may actually
be ignited at a given time, but other CAs will be primed.

The compensatory learning rule allows CAs to from based on a wider
range of patterns. Patterns with low intra-neuron correlation are weak pat-
terns. When there are weak patterns, the compensatory learning rules makes
the strengths of synapses stronger. In effect, the learning rule heats up the
system, and encourages CA formation.

Once there is enough strength in a neuron, the compensatory learning
rule discourages synaptic strengthening. Thus the compensatory learning
rule also encourages neurons to participate in only one or a few CAs.

Similarly, if a neuron participates in many highly correlated patterns,
only the strongest will have high synaptic strengths. The compensatory
learning rule will reduce the synaptic strengths of weaker patterns because
it is devoting the neurons synaptic strength to the strongest patterns.

4.4 Overlapping CA Simulation

Clearly it is important that neurons participate in multiple CAs. Unfortu-
nately, there has been little simulation of CAs when neurons participate in
multiple CAs. Wickelgren [22] simulates this but does not use biologically
plausible neurons.

A simulation was done to store overlapping CAs. The two patterns
used in the simulation from section 2.2 were used again. The network had
400 neurons, and the patterns consisted of 220 neurons; consequently each
shared 40 neurons. Again each training pattern had 20 of these 220 neurons
randomly selected as external stimulus. The patterns were presented for 20
cycles then allowed to run for a further 30 cycles.

The first version of the simulation included no inhibitory neurons. Table
9 describes the results. Initially, synaptic weights within a pattern increase
and cross pattern weights remain small. However, after about 2000 cycles,
the cross pattern weights increase rapidly. This implies that one super-CA
is formed. As we would like two CAs to form, this is a poor result. This
might be repairable by adjusting learning rates, but we would like a more
robust system.
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Average Connection Weights with Compensatory Learning

035

03

025

02

Top to Top
e o A — - — Top to Bottom
N Middle to Top

Weight

015

0.1

0.05

R RN R E A e B N

Cycle

Table 9.

A final set of simulations was done but this time inhibitory neurons were
included. Three versions of the simulation were run. In the first, patterns
alternated every cycle. After 2000 cycles, two distinct but overlapping CAs
formed.

In the second version of the simulation, ‘normal’ patterns were used.
Patterns were presented for 20 cycles then the system was allowed to run
without external input for 30 cycles. After 4000 cycles (80 presentations),
one CA had formed. This is to some degree a negative result as both patterns
were seen as the same.

In the second version of the simulation, the learning rate was set to .1,
but in the third version it was set to .05. In this situation, after 8000 cycles
2 CAs formed in 7 of the 10 tests, and a single CA formed in 3.

Table 10 reflects the weights of one of the runs where two CAs form.
Excitatory synaptic weights within a pattern are high, while those between
patterns (top to bottom) are small. The weights from the middle are large,
but smaller than those from the top to the top; this is because extra weights
have to be used for the other pattern.

An additional measurement is Pearson’s product moment correlation
coefficient. The measurement that is used for the network is whether a
given neuron is active or not. The Pearson’s correlation is used because
it ignores the inactive neurons, and in all cases, most of the neurons are
inactive.
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Average Connection Weights with Compensatory Learning and Inhibitory Neurons
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Table 10.
Inter-Pattern Correlation 0.5079
Cross-Pattern Correlation -0.1952
Cross-Net Correlation 0.3053
Cross-Net and Pattern Correlation -.1849

Table 11: Network Correlations

Table 11 shows the correlations between different runs of the network.
After the network has been trained the Pearson’s measurement can be used
to indicate the presence of a CA. The Inter-Pattern correlation is a com-
parison between presentations of different patterns of the same type. For
example, at cycle 8000 and 8100, the top pattern is presented. The neu-
rons that fire at 10 cycles after the beginning of presentation are compared.
As the value is 0.5079, on average over half of the neurons that fire in one
presentation fire in the other. This shows that a CA is reliably activated.

The cross-pattern correlation value is a comparison between different
types of patterns (top patterns vs. bottom patterns). The negative corre-
lation shows that different neurons fire for the different types of patterns.
This shows that the two CAs are unique. These values are based on two
networks where two CAs have formed. A comparison of a network where
only one CA has formed would have a positive cross-pattern correlation.

The Cross-Net correlation compares the similar patterns on different
networks. Again in this case we are comparing two networks where two
CAs have formed. This number is lower than the inter-network comparison,
but still shows similar activity.
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The final correlation compares different patterns from different nets. It
shows they are unique.

The Pearson’s measurements show that the two CAs really do form.
These can be combined with the average synaptic weight to give a good
picture of how the CAs develop.

The result of these simulations show that:

e Overlapping CAs can be formed.

e Inhibitory neurons are important in preventing the CAs recruiting each
other.

e Oscillating patterns also help to prevent CAs recruiting each other by
reducing the variance in synaptic weights.

e A low learning rate also reduces the synaptic variance and also helps
prevent CAs recruiting each other.

5 Discussion

Earlier we stated that CAs are stable attractor states of the network. The
stable state concept is similar to that of Hopfield nets [10]; indeed CANT
nets and Hopfield nets are similar in many ways including the recurrent
nature of connections.

If fatigue in a CANT net is ignored, a stable state can be reached by a
set of neurons continuing to fire, or a cyclic pattern of neurons firing (e.g.
neurons 1 to 10 fire in cycle 1, neurons 1 to 11 fire in cycle 2, then neurons 1
to 10 fire in cycle 3). The stable state can be thought of as a CA. There can
be many stable states and neurons may participate in several states. This
also occurs in Hopfield nets.

Fatigue modifies this because it causes the stability to eventually break
down. As a firing CA represents a short term memory, fatigue is useful to
cause short term memories to fade.

In addition to being stable states, CAs are also attractors. The comple-
tion effects are due to these attractor dynamics. Some evidence for a CA
is presented when a few neurons fire. This is not a stable state because the
activation will either die out or will lead to CA ignition. As many different
initial neural patterns will lead to the same CA igniting, all these initial
states are attracted to the same CA.

Inhibitory neurons are important because they encourage CAs to com-
pete and in the long run to separate. If the stimulus is ambiguous, the CAs
will compete. Both CAs will have evidence for them and will begin to be
activated. Both CAs will contain inhibitory neurons and these neurons will
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inhibit neurons in the opposing CA. When one wins, the stimulus is cate-
gorised as the successful CA. This is described by figure 2. Both CAs start
to ignite but inhibition from one suppresses the other.

Without inhibition, CAs would have to be quite separate sharing few or
no neurons. Overlapping neurons would cause other CAs to ignite. Inhibi-
tion can prevent the ignition even though there is a large amount of firing
neurons in a CA.

The compensatory learning rule enables a wider range of patterns to be
the basis of a CA and thus to be categorised. If neurons are not involved in
a CA but are externally stimulated by a sparse pattern, the compensatory
learning rule will encourage the CA to form by making the synaptic weights
grow more rapidly and larger.

If, on the other hand, a neuron participates in many CAs it is encouraged
to choose one. When one CA is active, the synapse to the inactive CA will
be reduced markedly. In essence, the CAs are battling for control of the
neuron. This enables CAs to fractionate into different CAs.

The compensatory learning rule thus encourages recruitment of neurons
into CAs and fractionation of CAs into multiple CAs. This can lead to a
highly dynamic system where new concepts grow and are created.

This is the first study of simulations of neurons participating in more
than one CA that we are aware of. Overlapping neurons are critical to
enable a large number of CAs [20, 22].

Moreover, when neurons participate in more than one CA connections
between CAs are increased. These increased inter-CA connections enable
priming, associative memory, hierarchy and cognitive maps. For example,
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when neurons participate in only one CA, one CA can prime a second CA
by direct synaptic connections. In contrast, when the CAs share neurons,
the second CA is primed merely by activating the first. Determining neu-
ral membership in a CA is more complex, but this is only a problem of
measurement, not a problem for the functioning neural network.

6 Conclusion and Future Work

This report has shown how the Hebbian learning rule leads to connections
that are correlators. It has also provided a learning rule that enables the
connections to act as nearly linear correlators showing the probability that
the post-connection neuron fires when the pre-connection neuron fires.

It has then shown how the addition of biologically inspired constraints
has effected these connection weights. Neural fatigue reduces the weights
and spreading activation increases the weights. With the addition of these
biological constraints, the connections can be renamed synapses.

These neurons and synapses can now be formed into networks that can
learn CAs. A CA is a pattern categoriser. The pattern is categorised when
the CA ignites.

Inhibitory neurons are added to the model. They reduce the ability of
CAs to recruit each other and allow CAs to compete.

A compensatory learning rule is used to improve CA creation dynamics.
It has the effect of increasing weights when a neuron has little synaptic
strength and decreasing strength when it has a large amount. This has the
additional benefit of preventing the entire network becoming active.

This network is used to learn CAs where neurons participate in multiple
CAs. To the best of our knowledge, this is the first simulation of realistic
neurons participating in multiple CAs.

CAs are not completely explained by this work. At a basic level, the
CAs described in this work do not behave in the way that is expected from
neurophysiological data. Firstly, the size and connectivity of the nets is too
small. Secondly, CAs do not persist long enough after external stimulation
stops. These CA basics need to be improved.

An obvious extension of this work is to see what types of overlapping
patterns can be learned by CAs. Moreover, what types of learning rules and
presentation mechanisms can encourage learning of these CAs.

Overall CA recruitment and fractionation need further study. CAs
should be able to expand into areas that receive no external stimulation.
Work on this has begun using the CANT model and spontaneous activa-
tion [13]. Additionally, CAs may break into separate CAs; this is known
as fractionation. This needs to be studied. It is plausible that repeated
presentation of overlapping patterns, where on CA has formed, may lead to
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fractionation into two CAs.

So far we have described CAs as categorisors. We hope that these CAs
will work together to form more than categorisors. CAs should work together
to form an Associative Memory. This memory may also form hierarchies and
even cognitive maps.

CAs may also allow rule formation and application. For this to work,
the variable binding problem needs to be solved [18]. This will probably
require an extension of the CANT model that handles more refined timing
data. This is a medium term goal of this research.

In general, we feel that CAs can form the basis of both a full cognitive
model and a real artificial intelligence. This work is far from complete, but
we are making progress on known problems, and specifying the remaining
hurdles to be jumped before these lofty goals can be met.

Acknowledgements

This work was supported by EPSRC grant GR/R13975/01.

References

[1] Abeles, M., H. Bergman, E. Margalit, and E. Vaadia. (1993) Spatiotem-
poral Firing Patterns in the Frontal Cortex of Behaving Monkeys. Jour-
nal of Neurophysiology 70(4):1629-38

[2] Borman G. Brosens F. and DeSchutter E. (1998) Modeling Molecu-
lar Diffusion. Chapter 8. in Computational Methods in Molecular and
Cellular Biology J.M Bower and H. Bolouri eds. MIT Press.

[3] Bower, J. and D. Beeman (1995) The Book of GENESIS. Springer-
Verlag, Berlin. ISBN 3540940197

[4] Bratenberg, V. 1989. Some Arguments for a Theory of Cell Assemblies
in the Cerebral Cortex. In Neural Connections, Mental Computation
Nadel, Cooper, Culicover and Harnish eds. MIT Press.

[5] Churchland, P.S. and T.J. Sejnowski (1992) The Computational Brain.
MIT Press.

[6] De Schutter E. Dhyrfjeld-Johnsen J. and Maex R. (1998) A realsis-
tic cerebellar network simulation of mossy fiber induced Purkinje cell
activity. Society for Neuroscience

[7] Fuster, J. (1995) Memory in the Cerebral Cortex: An Emperical Ap-
proach to Neural Networks in the Human and Non-Human Primate.
MIT Press

21



(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Hebb, D.O. (1949) The Organization of Behavior. John Wiley and Sons,
New York.

Hetherington, P. A., and M. Shapiro. (1993) Simulating Hebb cell as-
semblies: the necessity for partitioned dendritic trees and a post-net-pre
LTD rule. Network: Computation in Neural Systems 4:135-153

Hopfield, J. (1982) Neural Networks and Physical Systems with Emer-
gent Collective Computational Abilities. In Proceedings of the National
Academy of Sciences, USA 79 pp- 2554-8

Huyck, Christian R. 1999. Modelling Cell Assemblies. Middlesex Uni-
versity Technical Report ISSN 1462-0871

Huyck, C. 2000. Modelling Cell Assemblies. Proceedings of the Inter-
national Conference on Artificial Intelligence ISBN: 1-892512-59-9 pp.
891-7

Huyck, C. and R. Bowles (submitted). Competition in Cell Assemblies
to Resolve Ambiguity the Journal of Cognitive Systems

Kaplan, S., M. Sontag, and E. Chown. (1991) Tracing recurrent activity
in cognitive elements(TRACE): A model of temporal dynamics in a cell
assembly. Connection Science 3:179-206

Lansner, A. and E. Fransen. (1992) Modelling Hebbian cell assemblies
comprised of cortical neurons. In Network 3:105-119

McKenna,T., J. Davis and S. Zorenetzer (eds) Single Neuron Compu-
tation (1992) Academic Press, San Diego CA. ISBN: 0-12-484815-X

Milner, P. M. (1957) The Cell Assembly: Mark II. Psychological Review
Vol 64, No 4.

Palm, G. (2000) Robust identification of visual shapes enhanced by
synchronisation of cortical activity. In EmerNet: Third International
Workshop on Current Computational Architectures Integrating Neural
Networks and Neuroscience. Wermter, S. ed.

Rochester, N., J. H. Holland, L. H. Haibt, and W. L. Duda (1956) Tests
on a Cell Assembly Theory of the Action of the Brain Using a Large
Digital Computer. In IRE Transaction on Information Theory 1T-2,
pp- 80-93

Sakurai, Yoshio. 1998. The search for cell assemblies in the working
brain. In Behavioural Brain Research 91 pp. 1-13.

22



[21] Shouval, H. Z. and M. P. Perrone. (1995) Post-Hebbian Learning Rules
In The Handbook of Brain Theory and Neural Networks. Arbib, M. ed.
MIT Press pp. 745-8

[22] Wickelgren, W. A. (1999) Webs, Cell Assemblies, and Chunking in
Neural Nets. Canadian Journal of Ezperimental Psychology 53:1 pp.
118-131

23



