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Abstract— The best way to develop a truly intelligent system
is to use the known properties of the only intelligent system that
we know: humans. We have a great deal of understanding of
neural function, a reasonable idea of overall brain topology, and
a broad understanding of the emergent properties of this system.
We are concentrating on developing simple neural models that
can scale up to develop a cognitive architecture. Once this is
done, we can concentrate on specialised modules akin to brain
areas. Such a system can overcome the symbol-grounding and
domain specificity problems that bedevil current AI systems.

Index Terms— Neural net, Cognitive simulation, Machine
Learning, Biorobotics

I. INTRODUCTION

ROBOTS and other computer systems that are intelligent
have been the stuff of science fiction and horror stories

for centuries. In the last 50 years it has been predicted many
times that it will become reality in the near future. Indeed
many of the predictions of 50 years ago have already been
proved wrong because they predicted that we would have
Artificial Intelligence (AI) by now. Why has the development
of AI proved so difficult, and how should we go about
developing AIs?

There are two main reasons why we have yet to develop
an AI. First and foremost, it is a very difficult problem. As
a human it is somewhat comforting that we really are so
complex, and that our intelligence is so difficult to duplicate.
Human performance on tasks humans consider simple, like
vision, language, and walking, can not currently be duplicated
by machines. Very complex tasks, like chess, are surprisingly
easier for computers to do, but also are difficult. Combining
all or even a range of these behaviors is perhaps most difficult.
Second, we have not taken the right approach to solving the
problem. The short term focus on industrial application of
most AI research is productive but usually does not contribute
much help toward the goal of an AI. Also the focus on
developing systems to solve particular problems as opposed
to a range of problems is usually not much help.

Logically there are a host of possible solutions to developing
an AI. Indeed any Turing complete system is a possible
solution. However the task is so difficult that we have not
been able to solve it despite a vast effort so we need some
help to solve the problem efficiently. Fortunately, humans are
intelligent, so if we can model humans well enough, we can
solve the problem.

One key task is to find out what components are essential
to the model of a human. I contend that neurons are essential

because they can solve the symbol grounding problem, par-
allelism problems, and we have sound ideas about how they
behave. Moreover I contend that human performance on all
levels should be an important consideration for the model.

This paper will first discuss the current focus of AI. It will
then move on to our understanding of human thinking. In
particular it will look at neural models, cognitive architectures
and psychology, all fields that are important to a brain based
model of an AI. The fourth section is about brain models,
and the fifth describes how to develop a brain model that is
intelligent.

II. THE CURRENT FOCUS OF AI

Currently, most of the research in AI is on developing practi-
cal applications. Computer systems are becoming increasingly
successful at applications such as data mining, text mining and
vision. We have even come to a state where, arguably, the best
chess player in the world is a computer system [7].

The many successes of such systems has brought us into
a new era where AI is applicable to real world problems.
Unfortunately, this progress is based on a narrow focusing
of research. Systems are unable to solve general problems.
Instead powerful techniques are applied to very restricted prob-
lems. Techniques such as Hidden Markov Models, statistical
analysis, and even feed forward neural networks are very
successful at solving particular small problems.

In no way am I critical of these solutions to real if restricted
problems. Indeed they are great achievements for the field.
However, they are not likely to lead to the development of
an AI because they are restricted to the solution of small
problems. For a system to be truly intelligent, it has to be
able to bring together a range of information in a complex
and non-deterministic fashion.

One fair test for such a system is the famous Turing problem
[24]. Briefly, a person has a conversation with a computer and
another person. If the person can not accurately say which
is the human and which is the computer, then the computer
is deemed to be intelligent. We have not built a computer
system that comes close to solving this problem. There is an
annual competition called the Loebner prize [17]; there is a
large reward for the first system that actually solves the Turing
problem. Using the current methods, it will be a long time
before this problem is solved.

The problem is that the conversation is open ended. It could
be about football, house plants, or your family. A human
might not have knowledge about all of these fields, but the
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conversation would lead to an area in which both participants
did have knowledge. Current AI systems are restricted to small
domains.

A. The Failure of Symbolic AI

Until the 1990s, the predominate form of AI was symbolic
AI. Systems like logic were based on symbols as primitives.
All reasoning was done using these symbols. So a system
might know that the symbol *cat* was a type of *mammal*,
and that a *cat* would usually have a *tail*, but it did not
really have a sense of what the symbol *cat* meant.

The thought was that we could somehow specify all the
necessary relationships. So you could define a *cat* by all
of the things that it is related to. An example of this is the
Cyc [16] system. This system had thousands of symbols and
millions of relationships, yet still failed to reach human level
intelligence.

A nice metaphor for this is the Chinese Room problem [22].
The idea is that you have a document in one language that you
do not understand, say Cantonese, and you need to translate
into another that you do not understand, say Mandarin. Now
you are provided with a dictionary that allows you to translate
word for word from one to the other. You go through and
translate a document from Cantonese to Mandarin. Do you
understand the document? Of course you do not. Similarly,
the program does not really understand the document it is
translating.1

One of the founders of AI, Allen Newell, proposed that
humans were symbol systems [18]. That is, we function by
manipulating symbols. Indeed, we are capable of extensive use
of symbols; for instance natural language is based on symbols.
So any system that is intelligent would need to use symbols.
However, this does not mean, that humans function solely by
symbolic reasoning.

Much of our mental processing is based below the symbol
level. Vision, motion, and probably even categorisation are
done before we decide what symbol to use. Symbolic AI is
important, but something else is needed. The symbols must be
grounded.

To really understand something, you need to be able to base
it in reality. While humans probably have something that could
be described as symbols, humans’ symbols are based in reality.
They are grounded. Humans learn the symbols, and while
they are learning symbols they learn billions of relationships
between these things, they learn many processes for handling
these symbols, and they learn ways to derive new relationships
if they need to. This is one of the basic building blocks of
human intelligence.

The result of this lack of symbol grounding, is that systems
can be developed for specific domains, but for a new domain, a
whole set of new knowledge has to be encoded. Programmers

1We do not have a computational system that can translate from one
language to another very well, and the machine translation work since the
60s has shown that it is a lot more complex than this. Though relatively
successful in aiding experts in translation, automatic translation programs can
in no sense duplicate the ability of a reasonably competent human translator.
There is not a logical implication here, but it is probably the case that you
really need to understand a document before you can translate it well.

can use automated learning techniques and machine aided
learning to develop an ontology for a restricted domain. This
huge knowledge base works on that specific problem but will
not translate to another domain.

Domain specificity includes working well on simple tasks.
Complex tasks can be solved for specific domains. For exam-
ple, in natural language processing, part of speech tagging is
a relatively simple problem. Systems (e.g. [4]) can run over
text and correctly assign their part of speech (e.g. Noun, Verb,
Determiner) very precisely. This works for text about virtually
any subject. However, the knowledge used for this tagging
is not available to another related task, say natural language
parsing.

A solution for this specific task problem is to use a black-
board [6]. Each module takes information from the blackboard,
processes and puts new information back on the blackboard.
This way each task has all of the information available.
However, the separation of tasks and information does not
seem to work very well.

More complex tasks, like parsing2, work well if the system
is trained on the specific domain (or subject). Parsing needs to
know semantics to resolve parsing ambiguities. Semantics for
a relatively small domain can be encoded, so parsing works for
a specific domain. However, for a larger domain, or the open
domain the system will not currently work at human levels.

One might expect that programmers could encode the
knowledge for many domains, and then use these specific
domains instead of one general domain. One method would
be to encode many basic domains and then a special system
that chose which domain was currently being used. Firstly, it
is hard to encode many domains, and secondly we have been
unsuccessful in building a system that selects the specialised
domain. The idea of Cyc [16] was that you could encode
a few domains, and then use these domains to build up the
knowledge of new domains. Unfortunately, it did not work.

Finally, symbolic AI suffers from a seriality problem. We
largely develop our AI models on serial machines. This is quite
reasonable as serial machines continue to grow faster and are
becoming less and less expensive3. However, parallelism is
really at the heart of these problems. Different processes have
to share data in really complex ways. While we are working
on developing parallel models, we still do not have a good
understand of distributed information storage, about parallel
processing, and even less about how the processing and storage
are combined.

B. The Failure of Connectionist Systems

There has been a renewed interest in connectionist sys-
tems since Rumelhart and McClelland published their book
[21]. Here I refer to connectionist systems as opposed to
neural networks. Connectionist systems have many processors
functioning in parallel and are inspired by human neural
processing; neural networks are a subset of connectionist

2Natural language parsing is the task of taking sentences and determining
their syntactic and semantic makeup.

3We simulated our parallel processing models on a serial machine.
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systems that are not merely inspired by neural processing, but
attempt to duplicate neural processing.

Connectionist systems have been very successful both aca-
demically and industrially. The most commonly used systems
are feed forward networks that learn in a supervised manner
using a back propagation of error learning algorithm. These
systems can learn complex functions that can closely approx-
imate the data that was used for training. In successful cases,
this function generalizes to data not used for training. Theo-
retically, this mechanism can be used to learn any function.

The basic problem of feed forward neural networks is that
a new net is needed to learn each function. Each net solves
an isolated small problem, and any new problem needs a new
network and a new training regime.

A second problem, from the simulation of intelligence
perspective, is that the feed forward network needs the answers
before it can learn the function. Humans, on the other hand,
learn all kinds of things without being told the answer; humans
use unsupervised learning.

Fortunately, there are a host of connectionist systems that
use unsupervised learning. For example, there are Self Organ-
ising Maps (SOMs) [14], Hopfield networks [9] and Adaptive
Resonance Theory networks [5].

These network models also have the problem of solving one
small problem. That is each instance of a network is given a
problem and it learns the solution. So, a SOM might be able to
categorise documents, but the information stored in that map
will not be usable by a system that categorises documents in
a different domain. It is not clear how they would scale up
to a range of problems. What is needed is one network that
solves a host of problems.

III. OUR UNDERSTANDING OF HUMAN THINKING

Newell’s symbol hypothesis is just of one of the many
ways that we are studying human thinking. There are many
other approaches to the study of human thinking. Three other
approaches are modelling neurons, cognitive architectures,
and psychology. There have been constant advancements in
these fields, and these can provide direction when developing
systems to solve the Turing problem.

A. Neural Models

There is a great deal of study of how neurons actually
behave (e.g. [1]). It is relatively easy to study neurons in
isolation as they can be kept alive. There are a wide variety of
neurons, and we are far from a complete understanding, but
we have the basic idea of how a neuron functions. However,
these neural models (e.g. [3]) are not used to solve real world
problems.

A colleague has recently stated that “there are not many neu-
ral models that could be used as the basis of a computational
model of the brain”. To the contrary, others have proposed
that ART nets [5] and even feed forward nets are biologically
plausible. If their claim is that the brain could or even does
implement these systems, I do not think there is much point
for argument here. If, however, their claim is that the brain
is based on these architectures, they should start developing

a large brain architecture based on their systems. To their
credit, the ART group are exploring how the overall laminar
architecture would effect their model [20]. However, they are
not using their model as a basis of a cognitive architecture.

INFERNET [23] is more along the lines of the model we are
interested in. It deals with a range of short term memory and
variable binding issues. However, it still is not used to solve
real world problems. Consequently, like cognitive architectures
it specializes in particular problems, and avoids some real
world problems.

B. Cognitive Architectures

There are attempts to make symbolic models of human
cognition. These cognitive architectures are used to describe
how people think. If these were entirely successful, they would
be AIs. The first of these was Soar [15] but there are others
(e.g. [13]). These are symbol systems and suffer from the
problems of symbol systems. It is relatively easy to build
systems that function in particular domains but attempts to
build domain general systems have currently failed.

The most popular cognitive architecture is ACT [2]. This
has been under development for two decades, and there are
hundreds of researchers using the model. The current version
does have a subsymbolic component, which is really a move in
the right direction. However, the subsymbolic system has to be
hand encoded to implement the symbols. So, a system will not
really take advantage of the subsymbolic basis. Consequently,
it will also suffer from the domain specificity problem. So,
ACT accounts for a large number of psychological phenomena,
but will not be able to implement a full AI.

C. Psychology

Psychology is a relatively developed field [12]. In the course
of development, it has discovered a wide range of behaviors
about humans. This ranges from short term memory span
to blind spots. It uses repetitive tasks and studies of brain
lesions. We have ideas about the structure of categories, and
developmental stages. Psychology is incredibly broad, and has
a wide range of theories and knowledge about human cognitive
activity. Of course, psychology is by no means solved, and the
knowledge of human cognitive activity is incomplete.

Clearly this knowledge is useful to develop a brain based
computational model. We can tell how neurons fire, but
we need to know the eventual outcome of this neural be-
havior. This outcome is what psychology studies. We need
to constantly re-evaluate our models in comparison to the
psychological data.

Other fields like linguistics, and evolutionary biology are
also useful. Language may be the most complex thing that
humans do. Evidence that part of this is in built [19] shows
things about the extent of nature versus learning. Of course
this all confounds with neural development.

There is a great deal of information out there to guide us
in developing a model of human intelligence. There is not
much information out there for developing any other type of
intelligence.
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IV. REAL BRAIN MODELS

We have a fair number of models of the brain. An example
of such a model would be Newell’s symbol system hypothesis
[18]. That is, humans are symbol systems, and thus Soar
becomes a model of the brain. A cognitive architecture like
ACT [2] is a second model, and a third model would be a
wiring pattern for the connections between the areas of the
brain.

These are all reasonable models, but they are each looking
at the brain from different directions. For instance, Newell
divides cognition into levels by time [18]. The biological
band is fastest and its primitive operations take place between
�������

and
�������

seconds; the primitives in the cognitive band
function from

�	����

seconds to

�	��

seconds, the rational band

from
�	� �

to
�	� �

seconds and the social band above that.
Models can be built at any level, and indeed can function
across levels. Newell’s symbolic work functions in the cog-
nitive band. However, for a higher level model to execute a
task, it needs to implement the lower level. If a model gets the
implementation wrong it will have fundamental defects. This
is the problem with symbolic models; they miss key details of
parallelization and symbol grounding.

There are many other models of the brain, but we could
create a model from simulated neurons. It would take an enor-
mous effort but we could develop a hardware mechanism for
simulating neurons and synapses. We could use our knowledge
of neurobiology to lay out the wiring pattern. We could do
something about the sensory and motor devices. We would
then have a working robot.

There would be a host of advantages to such a model.
It could use neural firing data to show when a particular
activity would happen. We might be able to avoid ethical
considerations for psychological experiments. Best of all, it
would be able to function as an AI.

However, it probably would not work. We do not really
understand how things work together. It is clear that the system
would have to learn special relations between its particular
input and output devices and its neural hardware. So, learning
would be essential to such a system. It would have to learn
how to use its particular devices. It would then have to learn
about its environment.

Even a system with learning would probably still not work
because we would make some mistakes on simple parts of
the system. For instance the neural model might be wrong,
or connectivity might have been incorrectly analysed. We can
currently study neurons in isolation. We can use MRI to study
activity in areas, but we do not have a good theory on how
we go from neurons to areas, and we do not have a good
mechanism to test our theories in humans. We need to build
computational models.

Consequently, a brain model that learns is a good basis for
an AI. However, we need to build up to it so that we can see
which components are essential to the model.

V. FROM BRAIN MODELS TO AI

We are a long way from solving the Turing problem, but we
do know of a mechanism that solves the problem: humans. We

have a great deal of knowledge about how humans work and
we can use this knowledge to develop a computational system
that solves the Turing problem. A sensible way forward is to
improve our neural models, and improve our understanding of
the function of brain areas. If we develop computational neural
models that solve multiple real problems simultaneously, we
can make real progress toward an AI.

A. Work on the Neural Model

We need models that are on one hand computationally
efficient, and on the other are biologically plausible. If they
are not computationally efficient, we will not be able to use
a large number of simulated neurons to solve real problems.
If they are not biologically plausible, we can easily run into
unforeseen problems when we use these neurons to develop
more complex systems.

The key is to get the right degree of complexity. Biological
neurons are extremely complex and some simulations last days
just for a second of one neuron. Obviously these simulations
are not computationally efficient. At the other extreme, SOMs
are not biologically plausible, and would lead to problems
if they were used as a basis for a neural architecture. For
example, their well connectedness would lead to problems of
too much wiring if many neurons were used.

My group currently works in this area (e.g. [10], [11]. We
are using fatiguing spiking leaky integrators as the basis of
Cell Assemblies [8]. These models use biologically plausible
learning and the emergent neural assemblies are the biologi-
cally plausible basis of symbols among other things.

We are trying to move forward on several fronts. First,
parallel implementation; as our neural model is relatively
simple, it would be nice to implement in parallel hardware.
This should be a relatively simple problem to solve and should
enable us to simulate a large number of neurons very rapidly.
Second, how can we represent concepts using these types of
systems. Currently this is where we are focusing our attention,
and this work is open to one type of criticism I am using in
this paper; each system solves only one or a small class of
problems. Third, how can we solve problems that are necessary
to build real systems; the largest of these problems is the
variable binding problem. Fourth, how does this relate to the
brain; this includes topology, synaptic change, and types of
neuron questions.

We are particularly interested in Cell Assemblies because
they form a bridge between the neural and brain area levels,
and because they can be used to solve real world problems.

We are happy with our approach, but would like to see
other models trying to solve real world problems yet remain
biologically plausible. The temptation is to give up on one
of these constraints to solve the other. While this is easier, it
makes real advancement on the AI problem much less likely.

B. Work on Brain Areas

We know many things about the structure of the brain. The
bihemispheric structure is one thing, but we also know a great
deal about the way one area is connected to other areas, and
about the structure of any given area. MRI scans are really
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useful in showing when a given area is particularly active thus
showing the gross functionality of an area.

These area studies give us hope for partitioning the problem.
We can work on one area, understand it, and then move on to
the next. However, it can not be forgotten that these areas do
not function in isolation. They interact in sophisticated ways.
This also needs to be studied.

1) The Architecture of an Area: There is ongoing research
into the laminar architecture of the cortex. The brain can be
unrolled into one large sheet about a meter square. In most
places, the cortex consists of six layers of neurons and these
neurons connect in a relatively uniform way so that layer
3 connects layer 6, while layer six projects to a layer in a
different part of the brain. The connectivity is relatively well
understood, but what function does this connectivity have?

Moreover, we speak of brain areas as if they are separate. As
noted above, there is no separation. One area really is highly
connected to the next area. How do the areas develop in the
neonate, and what computational function does this have?

2) Input Areas: Neurons can be seen as doing two things.
The first is to transform inputs into outputs, like a feed forward
network. The second is to store information.

Doing both things enables them to do both better. In the
brain, there are projections from one area to another, but there
are also connections back. So the Lateral Geniculate Nucleus
has projections to the first visual area, but there are also
projections from V1 back to the LGN. There is a great deal of
work on what the LGN to V1 connections do, but little work
on the opposite direction. A probable answer is that the these
back connections act to clean up the signal. The initial signal
from the V1 is dirty, the V1 makes an initial decision which
improves the signal and sends back information to improve the
signal. There has been a lot of work in these sensory systems,
but we are not doing a very good job of looking at the full
biological compatibility.

We also need to use these models of sensory input to get
information into higher level systems. We are not doing a very
good job of integrating these into the higher order systems.

3) Cognitive Areas: There are journals, such as Hippocam-
pus and Brain Cortex, that are entirely devoted to the study
of one area of the brain. Clearly these areas are important,
and we need to have models of these areas included in the
complete architecture.

However, it would be better to study these areas along
with other areas. We do not really know what goes into the
Hippocampus. So trying to figure out what it does is a really
difficult task. A complete neural architecture that included
these areas would be a great test bed for different models
of these areas.

4) Output Areas and Other Areas: We are really good at
building robots. Unfortunately, these robots have real difficulty
doing things we consider simple like walking. It is usually
easier to build a robot that runs on wheels, or on treads.
Walking is not a simple task, but it would be really useful
to develop models that related to motor areas of the human
brain.

It would be wise to develop systems with motor control
that had feed back from the environment. The system would

have to learn how to move its arms, but it could use feedback
from its sensors for this. Clearly the early motion learning that
children do is based on complex muscle interactions. It would
be useful to have a simple version to learn with.

Humans also do things that are more than just interacting
with the environment or higher level cognitive functions. We
use emotion, and it seems there are specialised areas for
emotion. Developing modules for these systems would make
the systems more human-like.

C. Keeping It Together

The simplest way to solve a problem is to break it up
into subproblems, and then to solve them. Unfortunately,
understanding the brain is not entirely amenable to this type
of solution. MRI shows that a given brain area is particularly
active during certain types of processing, but other areas are
still active. The whole brain is needed to solve each problem.

This does not mean that each neuron or each area con-
tributes an equal amount to the solution of a problem. Clearly
the vision areas of the brain are more important to recognising
a scene. However, other areas will influence this processing.

We must keep site of this problem. Our models need
to incorporate connections to other areas. Thus we will be
working on solving the whole problem while solving a sub-
part. So, we solve the problem by breaking it into parts,
solving the parts, and then recombining the subparts. This
recombination is a difficult task and needs to be considered
from the start, as both the splitting and recombination are not
entirely accurate.

A good way to keep this in mind is by developing systems
that solve multiple problems at the same time. Particular areas
may or may not interact, but each area should interact with
some other area. Moreover, we need to consider how the areas
can be split apart. For example, a standard Hopfield network is
well connected, and thus can not be split apart. By splitting it
into subsections you can solve different problems. However,
how do those solutions effect each other? These multi-task
problems are the type of problem that needs to be solved to
start to understand the sharing of knowledge.

Clearly this problem is too big for one researcher. Many
researchers will need to combine our efforts.

Ideally we should be able to develop neural models that
allow instantiations of the model to be combined. This would
enable us to combine different partial solutions. So, one group
of researchers develops visual areas, another cognitive, and a
third motion. The three are combined, and a complete system
is developed. As noted earlier, combining the three will be
difficult. However, new models should be able to be added on
top to deal with for instance planning. Moreover, a new visual
system might be developed that is better than the original,
and that should be able to be plugged in. The more we do
this type of development, the more we will understand about
the knowledge that is shared between modules, and how to
connect them.

Though these models can be combined, learning is an
essential feature. It will not merely work to train the visual,
cognitive, and motor networks individually. For them to work
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together properly, they must be trained together. This will
enable each module to use the appropriate information from
the other.

D. Work on Real Problems

Psychological modelling is really interesting, however it is a
very narrow problem. Given data, I can duplicate that data with
a feed forward neural network. That is, the network can learn
the desired input-output behavior. So, I can develop a feed
forward network that will predict the correct eye movement
of a person even though the underlying model has little to do
with the way the brain does it. It is a valid model, but it does
not tell us much.

A computational model to solve a categorisation problem is
better. It is at least useful in the real world.

A computational model that combines these two simple
systems in a biologically plausible way to solve a real problem
would be a good start. It could be a simulated frog that
categorised visual input as either a crane or fly.

1) Start Small but Unified: The problem is where to start.
Since it is very difficult to build even a simple system that
is biologically plausible and solves real problems, we need to
have a relatively system to start with, but one that is complex
enough to combine information from different domains.

Perhaps the correct place to start is with a simple robot. This
would have to deal with vision, motion, object recognition and
simple motivations. Of course this is not an entirely simple
task, and some might argue that it distracts us from our work
on neural modelling with effort on motors and gears.

Other types of virtual world systems might be useful. Indeed
the video game domain provides us with an excellent example.
Still, a video game car is a different thing from a real car and
we might suffer from an impoverished environment.

2) Build Up: We could then build up from this simple sys-
tem. Several things could be incrementally added on. A speech
system could be added to allow the system to communicate.
Effectors could be added to allow the robot to move things.
Higher order facilities could be added to allow the system to
predict what would happen in the environment. We could even
replace simple wheels with legs and arms of some sort.

After a relatively sophisticated system was built, it could
then be refined toward a biological system. One of the key
points is that we do not merely want to build a robot; that
could easily lead us to a dead end. What we want is a robot
that behaves like a human.

VI. CONCLUSION

By using the brain as a guide, we can explore the essential
problems necessary to build a system that solves the Turing
problem. This would be a situated agent to solve the symbol
grounding problem. Distribution of knowledge and processing
would be solved, by basing the system on neurons, enabling
the system to be domain general.

Undoubtedly this will be a long and difficult task and we
will have many questions along the way. We can use humans
as a guide to answer these questions. This will avoid dead ends

and will help focus on the solution. Moreover using humans
as a guide can help us work at several levels at the same time.

We can develop an AI by first improving our basic neural
model. While we do this we can exploit existing neural
models to solve problems at a higher level. Existing symbolic
cognitive architectures and indeed a host of AI and psychol-
ogy systems are useful, but a retrenchment based on neural
processing is now appropriate.

We can develop these systems starting with a relatively
sophisticated neural robot, than scaling up. If we use human
neural processing as a basis, the systems should be expandable.
This expandability is a key trait of humans. We can gauge
the degree of success of these systems by looking at the
sophistication and range of tasks that they perform.

A brain centered approach to developing an AI will have
many intermediate benefits. The brain has inspired many
intellectual developments, and this approach is likely to spin
off more. Partial solutions to the Turing test will be industrially
viable products. Examples might include situated agents in
virtual environments, better language processing, better user
interfaces, and better games. These industrially viable tech-
nologies will in turn lead to more attention to a brain centered
approach.

The best way to build an AI would be to develop systems
that were based on the brain. These systems would resolve the
symbol grounding problem and would be domain general.
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