
Abstract
This paper presents a large-scale model of the ar-
chitecture of the mammalian brain, the core circuit
of which carries out inner rehearsal of interaction
with the environment to realise a form of cogni-
tively mediated action selection. As it alternates
between broadcast to and competition between its
component neural assemblies, the core circuit ex-
hibits an episodic dynamics suggestive of cortical
processing in discrete frames. The implemented ar-
chitecture is used to control a simulated robot, and
a classic experimental paradigm in which rats per-
formed apparently goal-directed action selection is
emulated.

1 Introduction
In the 1940s, Tolman and Gleitman used a classic experi-
mental setup to demonstrate apparently goal-directed be-
haviour in rats (Tolman & Gletiman, 1949). The rats were
allowed to explore a T-maze containing a dark room on the
left and a light room on the right (Fig. 1, left). Both rooms
contained food. The rats were then placed in a separate en-
closure resembling the dark room, and subjected to electric
shocks through the feet. When reintroduced to the base of
the T-maze, the rats always navigated directly to the light
room, even though the actions of turning left and right had
been equally reinforced.

The rat’s ability to “think ahead” in this situation is hard
to explain using reinforcement alone, and seems to require
the inference of an indirect cause-and-effect relationship.
However, Hesslow (2002) argues that the only extension to
the paradigm of classical conditioning required to explain
this sort of behaviour is a mechanism for inner rehearsal.
Indeed, both Cotterill (1998) and Hesslow (2002) propose
internally simulated interaction with the environment as the
very basis of animal and human cognition.

In pursuit of this suggestion, the present paper describes a
large-scale, high-level neural model that realises goal-
directed action selection for a simulated robot in an analo-
gous experimental setup (Fig. 1, right). The model imple-
ments an architecture whose core circuit carries out inner
rehearsal to anticipate the effects of currently executable
actions, which are held on veto while these anticipated ef-
fects are evaluated by an affective system. This can bring
about an increase or decrease in an action’s salience, which
in turn can result in the strengthening or weakening of its
veto. When an action’s salience exceeds a given threshold,
its veto is released and the action is carried out.

The design of the core circuit facilitates the integration of
the activities of multiple, parallel neural assemblies using a
combination of competition and broadcast, and thereby re-
alises a global workspace architecture (Baars, 1988; 2002).
The dynamics of the core circuit exhibits a pattern of alter-
nation between stability and rapid change, and is reminis-
cent of certain recent EEG findings suggestive of the idea
that the cortex processes information in discrete frames
(Freeman, 2003; 2004).

2   The Architecture of the Model
Fig. 2 shows a top-level schematic of the model’s architec-
ture. It can be thought of in terms of two interacting sub-
systems. The first-order system is purely reactive, and de-
termines an immediate motor response to the present situa-
tion without the intervention of cognition. But these unme-
diated motor responses are subject to a veto imposed by BG
(the basal ganglia analogue). Through BG, which carries out
salience-based action selection, the higher-order loop
modulates the behaviour of the first-order system. It does
this by adjusting the salience of currently executable ac-
tions. Sometimes this adjustment will result in a new action
becoming the most salient, and sometimes it will boost an
action’s salience above the threshold required to release its
veto, bringing about that action’s execution.

The higher-order system determines these salience ad-
justments by carrying out off-line rehearsals of trajectories
through (abstractions of) the robot’s sensorimotor space. In
this way – through the exercise of its “imagination” – the
robot is able to anticipate and plan for potential rewards and
threats without exhibiting overt behaviour. The first- and
higher-order systems have the same basic components and
structure. Both are sensorimotor loops. The key difference is
that the first-order loop is closed through interaction with
the world itself while the higher-order loop is closed inter-
nally. This internal closure is facilitated by AC, which
simulates — or generates an abstraction of — the sensory
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stimulus expected to follow from a given motor output, and
fulfils a similar role to that of a forward model in the work
of various authors (Demiris & Hayes, 2002; Hoffman &
Möller, 2004; Grush, 2004; Ziemke, et al., 2005). The corti-
cal components of the higher-order system (SC, AC, and
MC) correspond neurologically to regions of association
cortex, including the prefrontal cortex which is implicated in
planning and working memory (Fuster, 1997).

2.1   Affect and Action Selection
Analogues of various sub-cortical and limbic structures ap-
pear in both the first- and higher-order systems, namely the
basal ganglia, the amygdala, and the thalamus. In both sys-
tems, the basal ganglia are implicated in action selection.
Although, for ease of presentation, the schematic in Fig. 2
suggests that the final stage of motor output before the brain
stem is the basal ganglia, the truth is more complicated in
both the mammalian brain and the robot architecture under
discussion.

In the mammalian brain, the pertinent class of basal gan-
glia circuits originate in cortex, then traverse a number of
nuclei of the basal ganglia, and finally pass through the
thalamus on their way back to the cortical site from which
they originated. The projections up to cortex are thought to
effect action selection by suppressing all motor output ex-
cept for that having the highest salience, which thereby
makes it directly to the brain stem and causes muscular
movement (Redgrave, et al., 1999). The basolateral nuclei
of the amygdala are believed to modulate the affect-based
salience information used by the basal ganglia through the
association of cortically mediated stimuli with threat or re-
ward (Baxter & Murray, 2002).

The robot architecture includes analogues of the basal
ganglia and amygdala that function in a similar way. These
operate in both the first- and higher-order systems. In the
first-order system, the amygdala analogue associates pat-
terns of cortical activation with either reward or punishment,
and thereby modulates the salience attached to each cur-
rently executable action (Balkenius & Morén, 2001). The
basal ganglia analogue adjudicates the competition between
each executable action and, using a winner-takes-all strat-
egy, selects the most salient for possible execution (Prescott,

et al., 1999). While the salience of the selected action falls
below a given threshold it is held on veto, but as soon as its
salience exceeds that threshold it is executed.

The roles of the basal ganglia and amygdala analogues in
the higher-order system are similar, but not identical, to
their roles in the first-order system (Cotterill, 2001). These
structures are again responsible for action selection. How-
ever, action selection in the higher-order system does not
determine overt behaviour but rather selects one path
through the robot’s sensorimotor space for inner rehearsal in
preference to all others. Moreover, as well as gating the out-
put of motor association cortex (M C), the basal ganglia
must gate the output of sensory association cortex (AC)
accordingly, and thus determine the next hypothetical sen-
sory state to be processed by the higher-order loop.

This distinction between first-order and higher-order
functions within the basal ganglia is reflected in the relevant
neuroanatomy. Distinct parallel circuits operate at each level
(Nolte, 2002, p. 271). In the first-order circuit, sensorimotor
cortex projects to the putamen (a basal ganglia input nu-
cleus), and then to the globus pallidus (a basal ganglia out-
put nucleus), which projects to the ventral lateral and ventral
anterior nuclei of the thalamus, which in turn project back to
sensorimotor cortex. In the higher-order circuit, association
cortex projects to the caudate nucleus (a basal ganglia input
structure), and then to the substantia nigra (a basal ganglia
output nucleus), which projects to the mediodorsal nucleus
of the thalamus, which in turn projects back to association
cortex.

2.2   Global Workspace Theory
An important feature of the architecture, though not one that
is explored fully in the present paper, is that it conforms to
global workspace theory (Baars, 1988), which advances a
model of information flow in which multiple, parallel, spe-
cialist processes compete and co-operate for access to a
global workspace. Gaining access to the global workspace
allows a winning coalition of processes to broadcast infor-
mation back out to the entire set of specialists. Although the
global workspace exhibits a serial procession of broadcast
states, each successive state itself is the integrated product
of parallel processing.

Fig. 2: A top-level schematic of the architecture. MC = motor cortex, SC = sensory
cortex, AC = association cortex, BG = basal ganglia, Am = amygdala, Th = thalamus.
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According to global workspace theory, the mammalian
brain instantiates this model of information flow, which
permits a distinction to be drawn between conscious and
unconscious information processing. Information that is
broadcast via the global workspace is consciously processed
while information processing that is confined to the spe-
cialists is unconscious. A considerable body of empirical
evidence in favour of this distinction has accumulated in
recent years (Baars, 2002). Although the topic of conscious-
ness is orthogonal to the present paper, the combination of
broadcast and competition that is the hallmark of the global
workspace architecture is central to the action selection
mechanism under investigation. During the process of inter-
nally exploring a space of possible sensorimotor trajectories,
broadcast enables multiple branch points to be considered –
in effect engaging many forward models simultaneously –
while competition determines which of the candidate
branches is actually explored next.

Moreover, the particular blend of serial and parallel com-
putation favoured by global workspace theory suggests a
way to address the frame problem – in the philosopher’s
sense of that term (Fodor, 2000) – which in turn suggests
that conscious information processing may be cognitively
efficacious in a way that unconscious information process-
ing is not (Shanahan & Baars, 2005). In particular, in the
context of so-called informationally unencapsulated cogni-
tive processes, it allows relevant information to be sifted
from the irrelevant without incurring an impossible compu-
tational burden. More generally, broadcast interleaved with
competition facilitates the integration of the activities of
large numbers of specialist processes working separately. So
the global workspace model can be thought of as one way to
manage the massively parallel computational resources that
surely underpin human and animal cognitive prowess.

The architecture of this paper conforms to the global
workspace model of information flow by incorporating
complementary mechanisms for the broadcast of informa-
tion to multiple cortical areas and for selection between
competing patterns of activation within those areas (Fig. 3).
In Fig. 3, the locus of broadcast is denoted GW (for global
workspace). Information fans out from GW to multiple cor-

tical sites (within which it may be subject to further local
distribution). Conversely, information funnels back into
GW, after competition within cortically localised regions,
thanks to a process of selection between cortical sites real-
ised by the basal ganglia.

A number of candidate structures exist in the brain that
might fulfill the role of GW. For example, the first-order /
higher-order distinction is preserved in the thalamus, which
contains not only first-order relays that direct signals from
the brain stem up to cortex (located, for example, in the lat-
eral geniculate nucleus), but also higher-order relays that
route cortical traffic back up to cortex (located, for example,
in the pulvinar) (Sherman & Guillery, 2001). So the thala-
mus is one plausible candidate for a broadcast mechanism in
the mammalian brain. But the same function could be reli-
ased by long-range corticocortical fibres, as proposed by
Dehaene, et al. (2003), or indeed by some combination of
thalamocortical and corticocortical communication.

Thankfully, there is no need to take a stand on this issue
to supply an explanatory framework at an architectural
level. What matters more in the present context is that the
fan-and-funnel model of broadcast / distribution and com-
petition / selection can be straightforwardly combined with
the top-level schematic of Fig. 2, as is apparent from the
diagrams. Indeed, the role of the BG  component of the

Fig 3: The fan-and-funnel model
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higher-order loop introduced in Fig. 2 is precisely to effect
the sort of selection between the outputs of multiple com-
peting cortical areas shown in Fig. 3.

3   An Implementation
The brain-inspired architecture of the previous section has
been implemented using NRM, a tool for building large-
scale neural network models using G-RAMs (generalising
random access memories) (Figs. 4 and 5). These are
weightless neurons employing single-shot training whose
update function can be rapidly computed (Aleksander,
1990), and which can be easily organised into attractor net-
works with similar properties to Hopfield nets (Lockwood
& Aleksander, 2003).

The basic operation of a single G-RAM is illustrated in
Fig. 4. The input vector is used to index a lookup table. In
the example shown, the input vector of 1011 matches ex-
actly with the fourth line of the table, which yields the out-
put 6. When there is no exact match, the output is given by
the line of the lookup table with the smallest Hamming dis-
tance from the input vector, so long as this exceeds a prede-
fined threshold. In this example, if the input vector had been
1010, then none of the lines in the lookup table would yield
an exact match. But the fourth line would again be the best

match, with a Hamming distance of 1, so the output would
again be 6. If no line of the lookup table yields a sufficiently
close match to the input vector the neuron outputs 0, which
represents quiescence.

The core of the implementation, which comprises almost
40,000 neurons and over 3,000,000 connections, is a set of
cascaded attractor networks corresponding to each of the
components identified in the architectural blueprint of the
previous section. The NRM model is interfaced to Webots, a
commercial robot simulation environment. The simulated
robot is a Khepera with a 64 ¥ 64 pixel camera, and the
simulated world contains cylindrical objects of various col-
ours. The Khepera is programmed with a small suite of low-
level actions including “rotate until an object is in the centre
of the visual field” and “approach an object in the centre of
the visual field”. These two actions alone are sufficient to
permit simple exploration and navigation in the robot’s sim-
ple environment.

The overall system can be divided into four separate
modules – the visual system (Fig. 6), the affective system
(Fig. 7), the action selection system (Fig. 8), and the broad-
cast / inner rehearsal system (Fig. 9). Each box in these fig-
ures denotes a layer of neurons and each path denotes a
bundle of connections. If a path connects a layer A to an n ¥
n layer B then it comprises n2 separate pathways – one for
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each of the neurons in B – each of which itself consist of m
input connections originating in a randomly assigned subset
of the neurons in A (Fig. 5). For the majority of visual maps
m is set to 32.

The two buffers in the visual system comprise 64 ¥ 64
topographically organised neurons (Fig. 6). These are both
attractor networks, a property indicated by the presence of a
local feedback path. The transient buffer is activated by the
presence of a new visual stimulus. The hallmark of a new
stimulus is that it can jog the long-term visual buffer out of
one attractor and into another. The GW component of the
inner rehearsal system is loaded from the transient visual
buffer, whose contents rapidly fade allowing the dynamics
of inner rehearsal to be temporarily dominated by intrinsic
activity rather than sensory input.

The contents of the long-term visual buffer are fed to
three competing motor-cortical areas, MC1 to MC3 (Fig. 8),
each of which responds either with inactivity or with a rec-
ommended motor response to the current stimulus. Each
recommended response has an associated salience (Fig. 7).
This is used by the action selection system to determine the
currently most salient action, which is loaded into the “se-
lected action buffer” (Fig. 8). But the currently selected ac-
tion is subject to a veto. Only if its salience is sufficiently
high does it get loaded into the “motor command” buffer,
whose contents is forwarded to the robot’s motor controllers
for immediate execution.

So far the mechanism described is little different from a
standard behaviour-based robot control architecture. What
sets it apart from a purely reactive system is its capacity for
inner rehearsal. This is realised by the core circuit depicted
in Fig. 9, which is similar in both structure and function to
the recurrent neural network of Tani (1996). When a new
visual stimulus arrives, it overwrites the present contents of
GW, and is thereby broadcast to the three cortical associa-
tion areas AC1a to AC3a. The contents of these areas
stimulates the association areas AC1b to AC3b to take on
patterns of activation corresponding to the expected out-

comes of the actions recommended by their motor-cortical
counterparts. These patterns are fed back to GW / BG,
leading to further associations corresponding to the out-
comes of later hypothetical actions. By following chains of
associations in this way, the system can explore the poten-
tial consequences of its actions prior to their performance,
enabling it to anticipate and plan ahead.

But for this capacity to be useful, the system needs to be
able to evaluate hypothetical futures as it discovers them. So
as a result of inner rehearsal, the salience of the currently
selected action becomes modulated according to the affec-
tive value of the situations to which it might lead (Fig. 7). If
the currently selected action potentially leads to a desirable
situation, a small population of “reward” neurons becomes
active, causing an increase in the salience of that action.
This in turn may be sufficient to trigger the release of its
veto, bringing about its execution. Conversely, if the cur-
rently selected action potentially leads to an undesirable
situation, a small population of “punish” neurons becomes
active. The resulting decrease in the salience of that action
may cause a new action to become the most salient. In this
case, the transient visual buffer is reloaded, its contents is
passed on to GW, and the process of inner rehearsal is re-
started. This is, in effect, a form of backtracking, allowing
the system to perform a limited search of the space of possi-
ble courses of action.

To ensure that the system never gets stuck in a “thinking
rut”, endlessly pondering the possible consequences of its
actions instead of actually doing something, a small popula-
tion of neurons acts as an indicator of the urgency with
which the robot should act (Fig. 8). At the onset of a new
stimulus, this neural population becomes quiescent, reflect-
ing a lack of urgency, holding the currently selected action
on veto and giving the inner rehearsal system time to work.
But its level of activity grows with time, reflecting an in-
creasing sense of urgency, and the need to act soon. The
veto on the execution of the currently most favoured action
is thereby gradually weakened, and eventually this action

Fig. 9: Circuitry for broadcast and inner rehearsal (GW / BG / AC). GW = global workspace.
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will be executed regardless of ongoing rehearsal. In this
way, a balance is struck between reactivity and cognitively
mediated, deliberative behaviour.

4   Results and Discussion
The implemented system currently runs on a 2.5 GHz
Pentium 4 machine. Both Webots and NRM are run on the
same machine, and the two systems communicate through
an internal TCP socket. Under these somewhat unfavourable
circumstances, each update cycle for the whole set of neu-
rons takes approximately 750ms. A large proportion of this
time is taken up by internal communication and graphics
processing.

In each of the following experiments, the system runs a
predefined training script prior to exhibiting the behaviour
reported. Running this script sets up associations between
patterns of visual input (VC / IT) and, for a subset of the
three motor-neuronal assemblies (M C 1  to MC3), corre-
sponding recommended actions (Fig. 8) and their saliences
(Fig. 7). This is analogous to reinforcement learning, ac-
quiring a number of preferred immediate responses to an
ongoing situation. In addition, the training script sets up
associations between the current contents of GW and the
punishment / reward neurons of Fig. 7. These permit the
inner rehearsal mechanism, via the amygdala (Am), to exer-
cise its influence on action selection. Producing similar re-
sults with a less supervised form of learning is an obvious
theme for future research.

Fig. 10 illustrates an interesting property of the circuit of
Fig. 9. The graph plots the percentage of neurons in the four
maps GW and AC1a to AC3a that changed state from one
time step to the next (where a time step corresponds to one
complete cycle of updates to all the neurons in the system)
during a typical run in which no external sensory input was
presented to the robot. (A similar pattern is typically pro-
duced soon after the initial presentation of an external
stimulus.) In order to study long chains of associations, a set
of images of abstract coloured shapes (lozenges, stars, and

so on) was used as a training set, rather than images ob-
tained from the Webots simulator. But the same effect is
apparent with images obtained directly from the simulated
robot’s camera. Specifically, the graph shows that the sys-
tem of inner rehearsal exhibits a procession of stable states
punctuated by episodes of instability, a pattern which is
reminiscent of the recently reported phenomenon of aperi-
odic alternation between pan-cortical coherent and decoher-
ent EEG activity (Freeman & Rogers, 2003; Freeman,
2004). According to Freeman, these results suggest that the
cortex processes information in a series of movie-like
frames corresponding to “recurring episodes of exchange
and sharing of perceptual information among multiple sen-
sory cortices” (Freeman, 2004, p. 2077).

In a similar vein, the periods of stability depicted in the
graph occur when the contents of GW is being successfully
broadcast to the three cortical regions, while the spikes of
instability indicate that GW is being nudged out of its pre-
vious attractor and is starting to fall into a new one. The new
attractor will be the outcome of a competition between
AC1b to AC3b. The resulting new contents of GW is then
broadcast to AC1a to AC3a, causing new activation pat-
terns to form in AC1b to AC3b, which in turn give rise to a
renewed competition for access to GW. This tendency to
chain a series of associations together is what gives the sys-
tem its ability to look several actions ahead.

Tables 1 and 2 summarise episodes within two typical
runs of the system, corresponding respectively to the with-
out-aversion and with-aversion conditions in the classic
experiment of Tolman & Gleitman (1949) described in the
introduction (Fig. 1, left). Each episode starts with the initial
presentation of a new stimulus, and ends with the robot’s
first action. Under both conditions, the robot’s environment
contained just three cylinders – one green, one red, and one
blue (Fig. 1, right). Area MC1 of the motor-cortical system
was trained to recommend “rotate right” (RR) when pre-
sented with a green cylinder, while area MC2 was trained to
recommend “rotate left” (RL).

Fig. 10: Cycles of stability and instability



Time Events
0 Green cylinder comes into view.

2

Green cylinder image in both visual buffers.
MC1 recommends RR, MC2 recommends RL.
RR has higher salience and is currently selected
action. Veto is on.

3

Green cylinder image in GW and broadcast to
AC1a to AC3a. AC1b has association with red
cylinder, AC2b has association with blue cylin-
der.

6 Associated red cylinder image in GW.

8 Affective system quiescent, but urgency in-
creasing.

19 Urgency very high. Veto released.

20 RR passed on to motor command area. Robot
rotates right until red cylinder in view.

Time Events
0 Green cylinder comes into view.

2

Green cylinder image in both visual buffers.
MC1 recommends RR, MC2 recommends RL.
RR has higher salience and is currently selected
action. Veto is on.

3

Green cylinder image in GW and broadcast to
AC1a to AC3a. AC1b has association with red
cylinder, AC2b has association with blue cylin-
der.

5 Associated red cylinder image in GW.

6 “Punish” neurons active, salience of RR going
down.

9 Salience of RR very low. RL becomes currently
selected action.

10 Transient visual buffer reloaded with green cyl-
inder image.

14 Green cylinder image in GW and broadcast to
AC1a to AC3a.

15 Associated blue cylinder image in GW . “Re-
ward” neurons active. Salience of RL going up.

16 Salience of RL very high. Veto released.

17 RL passed on to motor command area. Robot
rotates left until blue cylinder in view.

The action selection networks were trained in such a way
that MC1’s recommendation (rotate right) had the higher
initial salience, and in a purely reactive system this action
would have been immediately executed under both the
without- and with-aversion conditions. But thanks to the
imposition of a veto, the inner rehearsal system had a
chance to anticipate the outcome of the recommended ac-
tion, giving rise to contrasting behaviours in the two ex-
perimental conditions, as in Tolman and Gleitman’s rat ex-
periments. The inner rehearsal system was trained, using a
predefined script matching the experimental setup, to asso-
ciate 1) the RR action and the image of the green cylinder

with the subsequent presentation of the red cylinder, and 2)
the RL cylinder and the image of the green cylinder with the
subsequent presentation of the blue cylinder.

To emulate the without-aversion condition, the affective
system was trained so that neither its “reward” nor its “pun-
ishment” neurons fired when GW contained the image of a
red cylinder. Under this condition, the robot’s behaviour is
the result of pure reinforcement. As Table 1 shows, this
brought about the execution of RR – the system’s immedi-
ately preferred, reactive response – as soon as the combina-
tion of urgency and salience exceeded the threshold required
to release the veto on that action.

By contrast, to emulate the with-aversion condition, the
“punish” neurons were trained to fire when GW contained
the image of the red cylinder. As Table 2 shows, this lead
the system to reduce the salience of its initially preferred
action (RR) following a period of inner rehearsal that re-
vealed its unpleasant expected consequences. The inner re-
hearsal system then explored the consequences of the alter-
native RL action. When these turned out to be more palat-
able, the salience of the RL action increased until its veto
was eventually released, the RL command was forwarded to
the motor output area, and the robot finally rotated to face
the blue cylinder.

As all of this took place, urgency was increasing, but not
fast enough to outpace the process of rehearsal and prevent
it from influencing the selected action. The upper row of
Table 3 summarises the results of eight further trials under
the with-aversion condition, using the same training script
but with a different randomly generated network configura-
tion for each trial. The RL action is selected on each occa-
sion, with some variation in timing.

Time to first action / action taken
1 2 3 4 5 6 7 8

m=8 17
RL

16
RL

15
RL

16
RL

15
RL

15
RL

20
RL

15
RL

m=24 6
RR

9
RL

3
RR

15
RL

2
RR

14
RL

17
RL

3
RR

The behaviour the system exhibits under these two ex-
perimental conditions demonstrates that the architecture is
capable of an elementary from of cognitively mediated ac-
tion selection similar to that first reported by Tolman and
Gleitman (1949). Moreover, the architecture is broadly con-
sistent with contemporary high-level neuroanatomy, and it
conforms to the theoretical proposals of both Baars (1998)
and Hesslow (2003). In addition, the episodic dynamics of
its core circuit is supportive of Freeman’s interpretation of
recent EEG findings in terms of discrete frames of cortical
processing (Freeman & Rogers, 2003; Freeman, 2004).
Neither the architecture nor the current implementation is
confined to the simple experimental setup described in this
paper, and their use in richer environments is the subject of
ongoing work.

For example, by varying the system’s baseline level of
urgency (m), it is possible to adjust the trade-off between

Table 1: Without aversion to red cylinders

Table 2: With aversion to red cylinders

Table 3: Sample runs with aversion



deliberation and reactivity – a high baseline level of urgency
results in a tendency to act quickly but “unthinkingly” (Ta-
ble 3, lower row), while a low baseline level of urgency
results in slower but sometimes more effective action selec-
tion (Table 3, upper row). Preliminary experimentation also
suggests that it may be possible to reproduce the behav-
ioural phenomenon of “microchoices” reported by Brown
(1992), wherein rats make tentative small explorations of
arms of a star-maze before eventually making an apparently
goal-directed choice. Using the mechanisms described here,
a similar effect can be had by selecting a baseline level of
urgency that allows for some anticipation of the conse-
quences of actions, but only enough to look a very few ac-
tions ahead. The long-term hope is that, through experi-
ments such as this, the conceptual framework and architec-
ture of the present paper will help to further our under-
standing of the basis of cognition in both animals and ma-
chines.
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