
Counting with Neurons: Rule Application with Nets of Fatiguing Leaky Integrate
and Fire Neurons

Christian R. Huyck and Roman V. Belavkin
Middlesex University, UK

Abstract

This paper shows a system that performs simple symbolic pro-
cessing. The system is based entirely on fatiguing Leaky Inte-
grate and Fire neurons, a coarse model of neurons. Following
Hebb, the symbols are encoded by neurons that form Cell As-
semblies. Additionally simple rules of the formifX → X+1
are encoded by Cell Assemblies, and this symbolic comutation
is performed. Finally, a more complex rulewhileX < F →
X = X + 1 is encoded using variable binding via a compen-
satory learning rule. This rule performs the symbolic compu-
tation of counting entirely subsymbolically. The binding can
be erased and reused via spontaneous neural activation. Un-
like the symbolic parallel, the counting rule fails at times when
humans might fail.

Introduction
Neurons have inspired a range of connectionist models in-
cluding multi-layer perceptrons, self-organising maps, and
Hopfield nets. These connectionist models are useful for a
range of tasks, but they make simplifications that may inval-
idate them as neural models. For example, most multi-layer
perceptron systems learn using the supervised algorithm of
error back propogation, while neurals learning is unsuper-
vised.

There is a wide range of models of neurons, but they are
usually used to model neural behavior and are rarely used
for cognitive tasks. This paper describes a system based on
model neurons that simulates a simple symbolic processing
task.

There are a range of cognitive architectures based around
rules (e.g. ACT [Anderson and Lebiere, 1998], SOAR
[Laird et al., 1987], and EPIC [Kieras et al., 1997]). These
have proven quite successful in modelling psychological data
and for applications.

An alternative approach to the rule based model is a neural
model. It is unclear how or even if cognition is implemented
by rules. It is however clear that cognition can be achieved
by neurons. The unanswered question is how cognition is
generated by neurons.

The scientific community has a sound if incomplete under-
standing of the function of biological neurons, but there is
much less known about how they work together. This is at
least partially due to the difficulty of inspecting a large num-
ber of neurons in a functioning animal. Scanning techniques,
such as fMRI, are too coarse to view individual neural behav-
ior. So computational modelling is a good method to explore
large numbers of neurons working together.

While there have been advances in implementing ACT in a
connectionist system [Anderson and Lebiere, 1998], it is not
clear how it would be implemented in a neural system. In par-
ticular, it is not clear how the connections between the neu-
rons could be learned.

There is a long-standing neurally based psychological the-
ory. Hebb proposed Cell Assemblies (CAs) as the basis of hu-
man thought over 50 years ago [Hebb, 1949]. There has been
little large scale modelling of CA using neurons. While it is
relatively well understood how to categorise inputs using CAs
and other attractor networks, it is not clear how more sophis-
ticated processing can be done. For instance, it is not well un-
derstood how symbolic processing can be implemented with
CAs.

In this paper we describe a neural system that simulates
a form of symbolic processing. Simple arithmetic is a com-
mon symbolic task. The simulations first implement a series
of simple rules that perform an add one calculation. This re-
quires rules that only use input CAs that represent constants.
These simple rules are then used as a basis for a second se-
ries of simulations that count. This counting makes use of
variable binding.

The simulations are based on fatiguing Leaky Integrate and
Fire (LIF) neurons. These simulations show a neural imple-
mention of two sorts of rules. Simple rules involving primi-
tives are used to add. A complex rule using variable binding
is used along with the simple rules to count. Later bindings
are affected by earlier bindings and may lead to problems in
counting that might be exhibited by a human.

The paper initially gives a background of work on CAs.
There is then a description of the simple rules, followed by
a description of the system that counts. These sections are
written for the uninitiated neural modeller and are follwed
by a section that specifies details of the model. The paper
concludes with a discussion.

Background
Hebb proposed Cell Assemblies (CAs) as the basis of human
thought [Hebb, 1949], and there has been a long history of
work based around CAs (e.g. [Sakurai, 1998, Palm, 1990]).
The basic idea is that concepts are represented by groups of
neurons that have high mutual synaptic strength called CAs.
If enough of these neurons fire, a cascade of neuronal firing
causes the reverberating circuit to remain active; this is called
CA ignition. After the stimulus ceases, the circuit can still
remain active via this reverberating activity.

There are a wide range of long standing benefits for this

model. Perhaps the most powerful benefit over rule based
models is symbol grounding [Fodor, 2000]; symbols can be
learned from the environment and thus have a basis.

Hebb’s main argument for this type of model was figure-
ground separation. CAs are ignited for particular items in the
environment (figures), and the background can be separated.

A third advantage is that CAs give a neurally based expla-
nation for long and short-term memory. A short-term mem-
ory is the ignition and persistence of a CA; as long as the
activity persists the memory is active. Long-term memories
happen when the CA is formed via synaptic weight adjust-
ment.

A CA is an attractor state; most configuration of neural ac-
tivations never occur. Instead, when neurons are activated,
particular neural activation patterns are prefered. These pat-
terns or states are called attractor states. A CA is an attractor
state. So, a network of fatiguing LIF neurons is an attrac-
tor net. There has been significant work with attractor nets
such as Hopfield nets [Hopfield, 1982], and these attractor
nets have been used to model the brain [Amit, 1989].

Attractor nets, and thus nets of fatiguing LIF neurons, are
good at categorisation. An initial state is given to the network,
and it settles into a stable state that represents the category of
the initial input.

Unfortunately, there has been little work with getting at-
tractor nets to do more than categorise. A notable recent ex-
ception has a CA based system being used for robots that have
visual and textual input [Knoblauch and Palm, 2001].

While there has been little work in developing large scale
neural simulations of CA activity, there has been a long his-
tory of CA-based models that account for psychological phe-
nomena. These systems are based on idealised models of CA
behaviour. A good example of such a model is the TRACE
system [Kaplan et al., 1991]. Another model shows how a
letter matching task might be done [Dalenoort, 1985].

The system described below can be thought of as a bridge
from older idealised CA models for psychological tasks
to neural processing models of CAs. The neural mod-
els are capable of learning symbols based on envrionmen-
tal stimulus [Braitenberg, 1989, Huyck, 2004, Palm, 1990,
Sakurai, 1998].

Simple Rules
It may not be clear to those who commonly develop soft-
ware using rules, but there are different types of rules. In
this section, a system that implements several simple rules of
the form if1 + 2 → 3 is presented. In the next section an
extension that counts is presented. The simulations use fa-
tiguing LIF neurons. There has been considerable interest in
LIF neurons [?], though comparatively little work has made
use of fatigue. The model we use is a relatively simple model
of neurons, but to a large degree it is biologically plausible.

The simulation sections are written for the neural model
novice. Details of the model and simulations are provided in
the section entitled Details of the Model.

In the simple rule simulation, there are four networks used
in the process of rule application, called the Input, Internal,
Rule and Done nets. Each contains neurons (between 200
and 2600), and these neurons form CAs (between 1 and 13).
Figure 1 represents the relationships between these networks.

Input
Network

Internal
Network

Rules
Network

Done
Network

?

... ?

......

6

@
@

@
@...........
..........
..........
..........

¡
¡

¡
¡

...........
..........
..........
..........

Figure 1: Simple Rule Topology

Arrows represent excitatory activation and forks represent in-
hibition.

The general flow of control of the simulation is that the In-
put net is activated from the environment igniting CAs in it.
The Input net passes activation onto the parallel Internal net,
igniting parallel Internal CAs; the Internal net is used to store
later internal state. The Internal CAs send activation along
to the Rule net; a Rule CA ignites if the Internal net has the
antecedent (if) CAs active. The ignited rule CA sends activa-
tion to the consequent (then) Internal CA, supresses the an-
tecedent CAs, and sends activation to the Done network. The
Done network has one CA that supresses the Input and Rule
nets. The consequent Internal CA also supresses the Rule CA
that ignited it. The result of the interactions is that the conse-
quent CA is left running, the Done CA is left running, and all
other CAs are turned off.

There are 13 CAs in the Input network, 13 in the Internal
network, 10 in the Rule network, and one in the Done net-
work. The Input and Internal CAs correspond to the num-
bers1 to 12 and the+ sign. The 10 rules correspond to
if1 + 2 → 3 throughif1 + 11 → 12.

For example, neurons in the1, 2, and+ Input CAs are ex-
ternally activated. This causes a cascade of activation within
these CAs leading to many neurons firing in each step. After
10 steps, external activation is removed. If the Internal net
were isolated, those CAs would continue to run indefinitely.
Activation is passed from the Input1, 2, and+ CAs to the1,
2, and+ Internal CAs causing them to ignite. In turn activa-
tion is passed from the ignited Internal CAs to the Rule net.
Since the1, and+ CAs are active and they are antecedents
of all of the rules, all of the rules receive some activation. In-
hibitory connections between the Rule CAs causes the rules
to compete. As theif1+2 → 3 rule is the only one with three
antecedents active, it receives more activation than other rules
and wins the competition and it ignites.

When theif1 + 2 → 3 CA ignites, it sends activation to
the 3 Internal CA and also inhibits the Internal1, 2, and+
CAs. More or less simultaneously, the done CA ignites and
the 3 Internal CA ignites. Next, the Done CA turns off the
Input 1, 2, and+ CAs, while the Internal3 CA inhibits the

0
50

100
150
200
250

Input 2 CA

0
50

100N
e
u
r
o
n
s

150
200 Internal 2 CA

Internal 3 CA

0
50

100F
i
r
i
n
g

150
200 Rule 1 CA

Rule 2 CA

0
50

100
150
200

0 10 20 30 40 50
Cycles

Done CA

Figure 2: Number of Neurons Active Over Time

internal2 CA. The combination of fatigue in its own neurons,
loss of activation from the Input net, and suppression from
the Internal3 CA and the Rule CA causes the1, 2, and+
Internal CAs to shut down. Finally, the inhibition from the
Internal3 CA and the Done CA causes theif1+2 → 3 Rule
CA to shut down.

Figure 2 shows this process. It shows the number of neu-
rons firing per cycle for the described CAs. Note that some
neurons in the second rule fire, but the CA is suppressed by
the first rule when it ignites.

Counting using Rules with Variable Binding
The simple rules are used as the basis of a more complex
system that counts from one value to another. For example,
the system may count from 3 to 6, and the same system can
be reused to count again from 4 to 9.

The simple rule topology is augmented with three new nets,
Finish, Repeat and Bind. This topology is shown in Figure 3.
The line between the Bind and Internal networks represents
learned connections in both directions. The simple rule archi-
tecture from Figure 1 forms the core of this topology. As with
1 the arrows represent excitation and the forks inhibition.

Initially, the final value is remembered by the system by
presenting it to the input layer, and stimulating the Finish CA.
Later this value is erased by spontaneous activation.

When counting starts, the initial value is presented to the
input layer and the Reset CA is stimulated. Both Reset and
Finish nets have one CA each. The Reset CA sends activa-
tion to the Internal1 and+ CAs causing them to ignite. The

Input
Network

Internal
Network

Rules
Network

Done
Network

?

... ?

......

6

@
@

@
@...........
..........
..........
..........

¡
¡

¡
¡

...........
..........
..........
..........

Bind
Network

Finish
Network

Reset
Network

?
6

...

@
@

¡
¡µ

Figure 3: Topology of the Count System

ignited Internal CAs activate rules, which turn off the internal
1 and+ CAs, and ignite the subsequent CA. The reset net is
still on, so the internal1 and+ CAs come on again and the
process is repeated until the final internal CA is ignited.

The initial presentation of the Finish CA causes the Bind
CA to ignite. The Bind CA has connections to and from the
Finish CA and the Internal network. The only part of the
system that learns is the Bind network and the connections
to and from the Internal and Finish networks. As the Bind
CA is now active it learns becoming associated with the final
Internal CA. This learning is unsupervised and is based on
neural co-firing. So, when the final internal CA comes on,
the Bind CA and thus the Finish CA comes on.

The Finish CA has strong inhibitory connections to the Re-
set CA in addtion to connections to the Bind CA. So when the
Finish CA ignites, it shuts down the Reset CA, and the pro-
cess stops.

After this process, the binding is partially erased to enable
the system to count again. This is done by spontaneous acti-
vation in the Internal and Bind Networks. The Bind network
has two components with an equal number of neurons. The
Bind CA and another component that does not actually rever-
berate and is thus not a CA. This extra component acts as a
synaptic strength sink.

Our work uses a form of Hebbian learning called compen-
satory learning [Huyck, 2004]. As with all Hebbian learn-
ing, excitatory synapses are strengthened when the neurons
they connect fire simultaneously. An anti-Hebbian learning
rule is also used so that the excitatory synapses are weakened
if only the presynaptic neuron fires without the postsynaptic
neuron firing. The compensatory learning rule forces the to-
tal synaptic strength of a neuron toward a predefined constant
value. There are parallel rules for inhibitory neurons so that
co-firing inhibitory synapses are reduced toward zero becom-
ing less inhibitory.

During spontaneous activation, a neuron in the bound inter-
nal CA may fire while a neuron in the Bind CA it is connected
to does not. This weakens that connection. Additionally, the
bound internal neuron may be connected to a neuron in the
other part of the Bind network. If this neuron also fires, it will

0

50

100

150

200

0 50 100 150 200
Cycles

3 CA
4 CA
5 CA
6 CA

Figure 4: Selected Activity in the Count System

remove synaptic strength that may be used for a new bind-
ing. Spontaneous neural firing is a property of a biological
neurons [Bevan and Wilson, 1999, Abeles et al., 1993]. Re-
lated work with fatiguing LIF neurons indicates that sponta-
neous neural activation has useful properties for CA systems
[Huyck and Bowles, 2004] and can be used for variable bind-
ing [Huyck, 2005].

For example the system counts from 3 to 6. Initially, Finish
and the Input 6 CA are externally stimulated. This causes
both to ignite, the Bind CA to ignite, and the internal 6 CA
to ignite. As Bind CA neurons and Internal 6 CA neurons
are frequently co-active, the synaptic strength between them
is increased.

After binding, the system starts by activating the internal
3, and the Repeat CA. Repeat activates the Internal+ and1
CAs igniting them. This in turn activates theif1 + 3 → 4
Rule CA, and as in the prior section the Internal4 CA comes
on. Again as in the prior section, Done comes on, the Input
layer is shut down, the Rule CA is shut down and the Internal
1, 3, and+ CAs are shutdown.

The Repeat CA again ignites the internal+ and 1 CAs
leading to the rule igniting followed by the Internal5 CA
igniting. This process repeats itself until the Internal6 CA
comes on. As this is bound to the Bind CA and the Bind CA
activates the Finish CA, they both come on. The Finish CA
suppresses the Repeat CA turning it off. The process then
ceases. An example of neural activity is shown in Figure 4. It
shows the neurons firing per cycle in the 3 to 6 Internal CAs.

The binding is then erased by spontaneous activation. The
system can then be reused for further counting for example
from 4 to 9. This usually succeeds, but interestingly, it fails
sensibly occasionally at 6. In some sense the system has for-
gotten where to stop and stops at an earlier binding.

Details of the Model
The basis of the model is fatiguing LIF neurons. Neurons col-
lect activation from other neurons via synaptic connections.
If the neuron does not fire some of that activation leaks away.
Equation 1 describes the activation of a neuroni at timet if it
does not fire at timet− 1.

Ait =
Ait−1

d +
∑

j∈Vi
wji Equation 1

The amount of leak isd and this is a number greater than 1.Vi

is the set of all neurons that have connections toi and fire at
timet−1. The weight, or synaptic strength, of the connection
from neuronj to neuroni is wji.

Neurons also fatigue so that the more steps they fire the
more difficult it becomes for them to fire. This is modelled
by increasing the activation thresholdθ if a neuron fires as
described by Equation 2.

θt = θt−1 + Fc Equation 2
In Equation 2 the thresholdθ at timet is set to the threshold
at timet-1 + the fatigue constantFc. If the neuron does not
fire, the threshold is reduced toward the base resting level as
in Equation 3.

θt = θt−1 − Fr Equation 3
The threshold is reduced by the fatigue recovery constantFr

though it never becomes less thanθ. So a neuron fires if it has
more activity than the threshold plus accumulated fatigue. If
it fires, it loses all activity.

Neurons may be inhibitory or excitatory, but they obey
Dale’s principle [Eccles, 1986] so that a neuron cannot have
both inhibitory and excitatory synapses leading from it. The
ratio is usually 80/20 excitatory/inhibitory as in the mam-
malian cortex [Braitenberg, 1989].

The fatiguing LIF parameters are described in Table 1. The
first major difference between nets is that the Done network
is largely inhibitory because it is used to suppress other net-
works. The Bind network has a larger threshold and a slightly
larger leak factor to make it more tolerant to input noise.

θ d Fc Fr Inhib
Input 4 1.5 1.0 2.0 20%

Internal 4 1.5 1.0 2.0 20%
Rules 4 1.5 1.0 2.0 20%
Done 4 1.5 1.0 2.0 80%
Finish 4 1.5 2.0 2.0 20%
Bind 6 2.0 2.0 2.0 20%
Reset 4 1.5 2.0 2.0 20%

Table 1: Fatiguing LIF Parameters by Network

Synaptic weights are modified by a compensatory Hebbian
learning rule described by Equations 4 and 5. Equation 4 is
applied when neuronsi andj fire in the same cycle. Equation
5 is an anti-Hebbian rule applied when the presynaptic neuron
i fires and the post-synaptic neuronj does not.

∆+wij = (1− wij) ∗R ∗ 5(WB−Wi) Equation 4
∆−wij = (wij) ∗ −R ∗ 5(Wi−WB) Equation 5

The learning rate is a constantR (0.1 in these simulations),
and the first two terms of both rules are the standard corre-
latory learning rules. The compensatory modifier is the last
term. WB is a constant which represents the average total
synaptic strength of the pre-synaptic neuron, andWi is the
current total synaptic strength. This modifier forces the total
synaptic weight of a neuron towardWB .

Synaptic weights for most nets and connections between
nets are calculated before hand. The only case where they are
learned is within the Binding network, between the Binding
and Finish networks, and between the Binding and Internal
networks. The target synaptic weight,WB , for the Bind net-
work is 30, for the Finish network is 35, and for the Internal
network is 15.

CAs Synapses Inter-CA Intra-CA
Input 13 150 1.0†/-0.01 0.01/-0.12

Internal 13 150 1.0†/-0.01 0.01/-0.12
Rules 10 150 1.2†/-0.01 0.01/-4.0
Done 1 150 1.0†/-0.01 none
Finish 1 30 1.0†/-0.01 none
Bind 1‡ 50 learned learned
Reset 1 30 1.0†/-0.01 none

Table 2: Topology within Nets

The topology within nets can be described by Table 2. All
CAs consist of 200 neurons and they are orthogonal, no neu-
ron is in two CAs. The Input net has 13 CAs and thus 2600
neurons. Each neuron has 150 synapses to other neurons in
the net. These neurons are connected randomly, though a neu-
ron can not connect to itself. The weights are predetermined,
so an Input CA has connections to itself with weight 1 if it is
an excitatory neuron or -0.01 if it is inhibitory. Connections
to other neurons outside the CA have a 0.01 or -0.12 weight.
There are two caveats within this table. The Inter-CA con-
nections marked by†have a weight near the number. The 1.0
number (e.g. Input) is calculated by 1.5 - a random number
between 0 and 1, and the 1.2 number in Rules is 1.7 minus a
random number between 0 and 1. The second caveat, as de-
scribed on the section on counting and noted by‡, is that the
Bind net has one CA but also has an additional 200 neurons
that never form a CA.

Table 3 describes the number of synapses per neuron from
one net to another. The presynaptic net is in the column, and
the postsynaptic net the row. So, each Input neuron has 50
connections to the Internal network. All of these are ran-
domly assigned. The connections within a net are marked
by * and are described in table 2.

Input Int. Rules Done F B R
Input * 50

Internal * 20 10
Rules 60 * 10
Done 100 30 *
Finish 50 * 15 50
Bind 15 15 *
Reset 50 *

Table 3: Topology between Nets

The weights of these connections are set in all cases ex-
cept between Internal and Finish and Bind. Input to Internal
weights are 2.0 minus a random number if they are excita-
tory, and 0.1 if not; inhibitory connections are -0.1. Internal
to Rules have 0.36/-0.01 and 0.01/3.6 weights. Rules to In-
ternal stimulating weights are 2.8/0.01, suppressing weights
are 0.01/-4.0, and neutral weights are 0.01/-0.01. Rules to
Done are 0.4/-0.1, Done to Input are 0.01/-1.0, and Done to
Rules are 0.01/-0.5. Finish to Reset are 0.01/-1.0, and Finish
to Rules are 0.01/-4.0. Reset to Internal weights are 0.5/-0.1
to the Internal+ and1 CAs, 0.01/-0.01 otherwise.

Initially some training is needed to put the Finish, Bind,

and Internal learnable weights to a good position. This is
done by an initial 400 cycles of spontaneous activation to the
bind net. This is followed by alternating presentations of Fin-
ish and Bind instances with instances of the non-Bind neu-
rons. In each case 50 neurons are selected at random from
the patterns and receive external activation. They are pre-
sented for 10 cycles, and then the system is allowed to run for
40 more cycles. The fatigue and activity are then reset. This
continues for a total of 1600 cycles. So, by the 2000th cycle
Finish and Bind are CAs that are to some extent connected.

Binding occurs by presenting 50 neurons of the Input CA
to be bound, and 50 of the Finish CA’s are externally stimu-
lated for 10 cycles. This is then allowed to run for a further
190 cycles. By this time, the Internal CA is bound to the Bind
CA, and thus to the Finish CA.

Unbinding is achieved by 1200 cycles of spontaneous acti-
vation of the Bind and Internal networks. During spontaneous
activation each neuron has a one percent chance of firing.

The system is by no means perfect, but it works in prin-
ciple. We ran the system with 50 different nets, each time
counting from 3 to 6, then from 4 to 9 to show that bind-
ing can be erased and reused. 74% of the time it correctly
counted from 3 to 6. On the second test, 50% of the time it
counted from 4 to 9; 28% of the time it stopped prematurely
at 6 showing that the binding was not properly erased; 22%
of the time it ended somewhere else.

Conclusion and Discussion
Clearly this is a poor cognitive model of counting. No psy-
chological data is presented, timing is described only by cy-
cles, it fails catastrophically too frequently, and it probably
fails sensibly too frequently.

What is interesting is that a neural model can do counting
at all. Moreover, from a cognitive model perspective, it fails
sensibly when counting stops at a prior binding that should
have been erased.

Another interesting point is this shows a neural reason for
classifying rules. Simple rules are based on constants and
are of the formifc1c2 . . . cn → cmcm+1 . . . cp and these
only require the proper sort of excitatory and inhibitory links.
The counting rule is more complex and could be described
by whileX < F → X = X + 1. TheX = X + 1 por-
tion is handled by the simple rules, but theF portion requires
binding.

Of course there is a long way to go to have a complete
cognitive model of this phenomena and even further to have
a solid cognitive model. A relatively simple expansion of the
system could enable it to learn new simple rules likeif3 +
2 → 5 This would require a process to add beyond one, but
would then allow the system to cache results it had processed.
This would be similar to chunking [Laird et al., 1987]

There are more complex modifications that could improve
the model. It could be tied to psychological data; timing could
be modeled by attaching a time, say 10 ms, to a cycle; sys-
tem parameters could be modified to correspond to failure
rates. More rapid binding could be done by using short-term
synaptic changes instead of long-term changes. Spontaneous
activation could be used all the time.

While these modifications seem tenable, we have no idea
how the connections between nets (aside for Input to Internal)

could be learned. An alternative is another topology that did
the same task could be learned, but again we have no sound
idea. The simple rules described above encode a sequence.
There has been some work and learning sequences with neu-
rons, and this provides some guidance for learning other pro-
cesses. Still this failure to even propose a method points out
the strength and weakness of a neural system, learning.

A neural system develops, in the long-term, by a change
in synaptic strength. This self-organisation should enable the
system to learn tasks and not have them simply programmed.
There have been advances in understanding how a system can
learn to categorise, but we are not aware of a sound theory that
specifies the boundaries of what is learned and when. Perhaps
the development of such a theory will shed light on learning
more complex processes such as counting.

References
[Abeles et al., 1993] Abeles, M., Bergman, H., Margalit, E.,

and Vaadia, E. (1993). Spatiotemporal firing patterns in
the frontal cortex of behaving monkeys.Journal of Neuro-
physiology, 70:4:1629–38.

[Amit, 1989] Amit, D. (1989). Modelling Brain Function:
The world of attractor neural networks. Cambridge Uni-
versity Press.

[Anderson and Lebiere, 1998] Anderson, J. and Lebiere, C.
(1998). The Atomic Components of Thought. Lawrence
Erlbaum.

[Bevan and Wilson, 1999] Bevan, M. and Wilson, C. (1999).
Mechanisms underlying spontaneous oscillation and
rhythmic firing in rat subthalamic neurons.Journal of Neu-
roscience, pages 7617–7628.

[Braitenberg, 1989] Braitenberg, V. (1989). Some arguments
for a theory of cell assemblies in the cerebral cortex. In
Nadel, Cooper, C. and Harnish, editors,Neural Connec-
tions, Mental Computation. MIT Press.

[Dalenoort, 1985] Dalenoort, G. J. (1985). The representa-
tion of tasks in active cognitive networks.Journal of Cog-
nitive Ssytems, 1:3:253–272.

[Eccles, 1986] Eccles, J. (1986). Chemical transmission and
dale’s principle.Prog. Brain Research, 86:3–13.

[Fodor, 2000] Fodor, J. (2000).The Mind Doesn’t Work That
Way: the Scope and Limits of Computational Psychology.
MIT Press.

[Hebb, 1949] Hebb, D. O. (1949).The Organization of Be-
havior. J. Wiley & Sons.

[Hopfield, 1982] Hopfield, J. (1982). Neural nets and phys-
ical systems with emergent collective computational abil-
ities. Proceedings of the National Academy of Sciences,
79.

[Huyck, 2004] Huyck, C. (2004). Overlapping cell assem-
blies from correlators.Neurocomputing, 56:435–9.

[Huyck, 2005] Huyck, C. (2005). Variable binding of cell
assemblies with binding areas and spontaneous neural ac-
tivation. In Proceedings of the 22nd Workshop of the Eu-
ropean Society for the Study of Cognitive Systems.

[Huyck and Bowles, 2004] Huyck, C. and Bowles, R.
(2004). Spontaneous neural firing in biological and artifi-
cial neural systems.Journal of Cognitive Systems, 6:1:31–
40.

[Kaplan et al., 1991] Kaplan, S., Sontag, M., and Chown,
E. (1991). Tracing recurrent activity in cognitive ele-
ments(trace): A model of temporal dynamics in a cell as-
sembly.Connection Science, 3:179–206.

[Kieras et al., 1997] Kieras, D., Wood, S., and Meyer, D.
(1997). Predictive engineering models based on the
epic architecture for a multimodal high-performance
human-computer interaction task.ACM Transactions on
Computer-Human Interaction, 4:3:230–275.

[Knoblauch and Palm, 2001] Knoblauch, A. and Palm, G.
(2001). Pattern separation and synchronization in spiking
associative memories and visual areas.Neural Networks,
14:763–780.

[Laird et al., 1987] Laird, J., Newell, A., and Rosenbloom,
P. (1987). Soar: An architecture for general cognition.
Artificial Intelligence, 33:1.

[Newell, 1990] Newell, A. (1990).Unified Theories of Cog-
nition. Harvard University Press.

[Palm, 1990] Palm, G. (1990). Cell assemblies as a guideline
for brain research.Concepts in Neuroscience, 1:1:133–47.

[Sakurai, 1998] Sakurai, Y. (1998). The search for cell as-
semblies in the working brain.Behavioral Brain Research,
91:1–13.

