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ABSTRACT

Manufacturing loss is usually addressed among other quality improvement measures using statistical process control and process improvement, but rarely as a problem of its own. Expert systems applied in the manufacturing field analyse quantitative parameters to optimize process functions. In the pharmaceutical and similar industries, certain criteria render this approach not applicable alone to reduce manufacturing loss.  The knowledge base of an Expert System (ES) was developed in close consultation with domain experts and revealed a novel approach that implies quantification of the defects as the means to discover the possible causative factors and derive intelligent conclusions.  The Knowledge elicitation process partly uncovered the crucial aspects of the complex Material-Machine-Human interaction (MMHI) in inducing production yields fluctuations. In depth analysis of the product-specific manufacturing process structure correlates to the MMHI and may explain the extent of a potentially beneficial role of an ES to reduce manufacturing loss.

A prototype of a small ES was designed and implemented on 10 consecutive batches (400,000 ampoules) of a selected pharmaceutical product. Mean post-implementation loss showed a statistically significant reduction of 60 percent compared to the pre-implementation value. Inter-batch variation was also confined to an interestingly low range. Post-implementation results were further analysed to better understand the mechanism and site of action of the ES on the process structure. The analysis cited possible refinement opportunities and provided a rationale that warrants further evaluation of an integrated pattern recognizer.

Introduction

Current approaches dealing with manufacturing loss focus on setting a minimum percentage of loss for each product and investigating only those batches that significantly go beyond such percentage. Statistical process control (SPC) methods are described [Smith, 1998] primarily as trouble indicators.  SPC would, therefore, not improve output nor minimise loss. Traditional process improvement techniques modify process steps but do not contemplate the continual batch-to-batch variations secondary to the Material-Machine-Human interaction  (MMHI).  The absence of a pragmatic approach to deal with batch-tobatch variation formed the basis of this work: evaluate the efficacy of an Expert System (ES) to significantly reduce manufacturing loss in a pharmaceutical plant and hence, contribute to equally significant cost savings.

Methodology

The nature of the problem was evaluated according to the framework of testing the fit of an E.S. as proposed by Waterman [Waterman, 1985]. It was found to match the set criteria for requirements, appropriateness and justification. Task related criteria were fulfilled. For example, the task was well defined, and stable, neither requiring common sense nor physical skills. Conventional software would not provide satisfactory results due to the complex, sometimes imprecise and probabilistic nature of the information. The anticipated direct cost savings as well as preservation of the human expertise known to be of high cost in this industry justifies the development of the system. The decomposability of the task, the nature and scope of the problem and its complexity satisfy the criteria for appropriateness.   

The nature of the problem imposed the selection of the domain experts. It was mandatory that the development team include an expert from the production department and an expert from the engineering department. These people acted as knowledge providers, and one of the authors acted as the knowledge engineer. Both experts complied with the psychological characteristics as advocated by several authors in this field [eg. Goyal et al., 1985]. The synthesis rules and the description of the defects are an example of what is pertinent to the production expert, while analysis of the underlying cause(s) is the domain of the engineers. 
a) Building the Knowledge Base

b) Knowledge Elicitation:

A flow-chart of the selected product was used as the basis of the whole knowledge elicitation process. Both experts were asked to diagrammatically illustrate and explain, with a medium level of detail, the various steps of the relevant manufacturing process. (Fig. 1)
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(Figure 1)

c) PLPs identified:

Each step believed to contribute to any loss was identified.  Each step was marked PLP (Potential Loss Point) on the chart and numbered according to the direction of material flow.  Some of the steps marked represent some type of obligatory loss such as a certain quantity of ampoules that is analysed by Quality Control as part of the in-process control. Such obligatory loss was marked OLP (Obligatory Loss Point) to serve for the calculation of the actual theoretical output and compare it to the actual output to determine the loss. Depending on the complexity of each PLP, the knowledge elicitation sessions addressed one or more of the PLP(s) per session, in the order of the material flow direction.

c) Analysis of each PLP aimed at:

1- identifying the manifestation (defect or symptom)

2- defining the underlying cause(s)

3- setting the threshold frequency and relating the number of occurrences and their ranges to the 

    possible underlying causes, if such relations exist.

4-  setting the recommended actions to cure the state.

d) Creating the rules:

At this point, the rules were created.  The domain experts were allowed to review the rules and this provided the means to review the knowledge acquired in the analytical procedure.

Most rules were based on the defect or symptom, and the quantity of the defect.  The defects were classified into five types, D1-D5 (see below).  The rules identified underlying causes and recommended changes to the manufacturing process to cure the problem. 

e) Defining the Input:

A list of all the data required by the system was prepared. A specific document, production loss form, was designed to disclose all data. The output parameters of each batch would form the input of the E.S. to provide the recommendations for the batch to follow; this was a repetitive process for 10 batches. The batch size is approximately 40,000 ampoules, so the total number of ampoules included in the trial were around 400,000 ampoules.

f) Developing the Prototype:

The rules were entered into the ES shell.  Inferencing was controlled via backward chaining.  The system was exposed to test examples and its performance was compared to the decisions of human experts. During the normal manufacturing process, each batch is analysed for number and types of defects, and the properties of the materials used in production are also recorded. This information provided the input to the ES. If a batch had a significant number of defects of a certain type, the ES would modify the manufacturing process to reduce that defect on the next batch.

Results
The effectiveness of the ES was tested based on the statistical analysis of the percentage loss pre- and post-implementation of the process. The pre-implementation data are cumulated from retrospective analysis of the percentage loss of 10 batches that were found also to be in accordance with the average loss of the product over the last 2 years. 

The values taken as guidance were reduced such that the sum of all defected ampoules is less than 120 ampoules. This was included in the top-level goal.

For a given product analysed, mean pre- and post-implementation loss was expressed in mean percent +/- SD (Standard Deviation) and SEM (Standard Error Mean). The comparison between the pre- and post- data was carried out using wilcoxon sum rank test and expressed in probability p value, where a p value less than 0.05 [Rosner, 1990] is considered significant. For the post-implementation phase and for a given defect, the loss was plotted against the total loss to monitor the contribution of each defect in manufacturing loss reduction. The results were analysed using the correlation coefficient test and linear regression analysis [Breslow et al., 1980]

Pre-implementation manufacturing loss:

The average total percentage loss in the pre-implementation phase was 3.67% over 10 batches, compared to 3.8% for a number of 80 batches manufactured during last 24 months. The behaviour of the pre-implementation curve reflected considerable inter-batch variation (fig. 2a). The upper limit of percentage loss set for this product was 4%. Above the limit a non-conformity report is issued and the reasons are investigated.
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(Figure 2a)





(Figure 2b)

Post-implementation total manufacturing loss:

Total manufacturing loss percentage (fig. 2b) decreased significantly  (p=0.005) to 1.45% representing a 60% drop versus the pre-implementation phase. Following the implementation of the ES recommendation, the batch to batch reduction in loss became more obvious with smoothing of the curve and minimal inter-batch variation.

[image: image4.wmf]OLP 

4

PLP 

20

PLP 

21

OLP 

5

PI-

1

PI-

2

Obligatory loss point 

4

 - 

No rule - Qty lost = 

60

 

amp.

Potential loss point 

4

 - 

Insignificant quantity.

Potential loss point 

5

 - 

Insignificant quantity.

Obligatory loss point 

5

 - 

No rule - Qty lost = 

20

 

amp.

Process Improvement I

Process Improvement II

PREPARATION

FILLING

Start up 

Adjustment

Filling & 

welding

Collection 

racks

INSPECTION

in process

control

CLEANING

LABELING 

bacteriological

examination

PACKAGING

SHRINK 

PACKING

WAREHOUSE

QUARANTEEN

Weighing     

of gel 

calculated

concentrate 

Add 

(

B

12

)

mixture in 

Stir the 

prep. tank

PLP 

1

Filtration 

through 

Jaconite

OLP 

1

OLP 

2

 

PLP 

2

 -

19

OLP 

4

PLP 

20

 

PLP

21

 

OLP

5

OLP 

3

PI-

1

PI-

2

1

1

2

 

3

PLP 

OLP 

OLP 

OLP 

PLP 

2

-

19

Potential loss point 

1

 - 

Rule No. 

1

Obligatory loss point 

1

 - 

No rule - Qty lost = 

170

 

amp.

Obligatory loss point 

2

 - 

No rule - Qty lost = 

113

 

amp.

Obligatory loss point 

3

 - 

No rule - Qty lost = 

100

 

amp.

Potential loss point 

2

 

to potential loss point 

19

 - 

Rules # 

2

-

5

, 

 

7

-

9

, 

11

-

13

, 

15

-

17

, 

19

-

20

, 

22

, 

23

 

functions #

1

, 

2

.


[image: image5.png]Manufacturing
Process

Non Specific (
HMH Coarse Expet
structure System
L
Speciic [ ]
MM Bl
Fine < "
structure
Pattern
F Recogniser
\

P3

M —p Manufﬂduﬂng:slep : : : . PR : P Propert
Mat. —p Material [ e L §_>—}S;’ppery
Mach ey Machine





The quantity of each defect was plotted versus each batch to monitor the regression over time. The baseline quantity at batch 1 was compared to the mean of batches 2-8. All defects except one showed statistically significant reduction in the number of lost ampoules.
Figure 3 shows the number of ampoules lost by defect.  The reduction of loss, as demonstrated by linear regression analysis, was highly significant (p<0. 001) for D1 Tailing and very highly significant (p<0.0001) for two types of defects: D2 Ballooning and Pin Holing, and D3 Charring. The reduction of loss was significant (p<0.05) for D4 Unwelding With Neck.  Reduction of loss was not statistically significant (p>0.05) for the final defect D5 Unwelding Without Neck.

Causal-effect relationship analysis:

A causal-effect relationship analysis was conducted on one defect where the results showed statistically significant reduction in loss and on the defect that showed no such reduction. Any observation suggestive of the absence of a causal-effect relationship was subject to a review of the relevant rules. The rationale of this approach was to observe the correlation between the ES recommendations and measured responses over time, hence, reflect the reproducibility of the former. This would provide, in addition to the objective evaluation, some subjective evidence of the system responsiveness, sensitivity and predictability.

Defect D1 Tailing was selected as an example of for which the implementation of the ES recommendation yielded a significant reduction.   This defect was particularly selected as it ideally displays multiple peaks

and subsequent troughs that are in response to the implementation of the ES recommendations.

At the start of implementation there was an initial peak. The number of defected ampoules was 122. The set threshold for this defect is 40 ampoules.  This triggered the relevant recommendations pertaining

to two rules: “ If quantity of tailed ampoules is greater than 100, and  empty ampoule batch is the same as previous, then clean nozzles and IOP( inadequate operator performance)” and “ If quantity unwelded with neck greater or equal to 20 ,and quantity tailed greater or equal 40, then decrease distance between ampoules and nozzles”. Since the recommendations are qualitative in nature, repeated triggering has lead to gradual decrease in loss to below threshold (batch 3), that persisted for the following batch. At batch 5 and 7 there was a medium and mild peak that declined immediately in the following batches 6& 8 respectively to below threshold and was maintained until the last batch.

Defect D5 Unwelding Without Neck was selected as an example of a defect for which the implementation of the ES did not show any statistical significance. Until batch 8 the loss pattern did not show any evidence of causal-effect relationship. As implicated in the methodology, the relevant rules were reviewed where a potential modification was found to be worthwhile. The following two batches declined to below threshold, a probable secondary effect to the modification.

Discussion

Our results demonstrate that implementing an AI tool, in our case an ES, is able to modulate the response of a pharmaceutical manufacturing process to the ES recommendations. This response was particularly translated into significant reductions in manufacturing loss. The value of such reduction is augmented notably and correlatively with maximising productive assets utilisation (people, facility, machines) as advocated and implemented in modern manufacturing environments [Veleris et al., 1998] to provide acceptable return on assets (ROA). The manufacturing loss value in such case is worth the product ex-factory price. Regardless of the capacity utilisation level in any organisation, worldwide-accepted loss percentages are considered in the cost structure of pharmaceuticals and any reduction thereof, can be translated directly into profit gains.

In our study the implementation of the ES recommendation has lead to a statistically significant drop (60%) in the mean manufacturing loss. Furthermore, there was a significant reduction in inter-batch variation. Using statistical terms, the manufacturing process is said to be 'capable', with minimal variations embedded in the process during the post-implementation phase. This was also evident when comparing the standard deviation (SD) of the post-implementation phase (0.34) versus the pre-implementation phase (1.27).

The knowledge elicitation process traditionally represents one of ESs, however the knowledge elicitation process was straightforward for this system. Highly developed perceptual abilities, the ability to simplify and make exceptions, the automaticity and the communication skills as recommended [Shanteau, 1996] were just a few examples among many others that characterized both experts. The success of the ideas generated was secondary to the interactive nature of the knowledge elicitation process and the in-depth analysis of the knowledge including the attempts to format it into rules.  Furthermore, some traditional process improvement measures were implemented as by-products of the knowledge elicitation process with no relevance whatsoever to the ES.

Expert systems and other intelligent techniques have been widely applied to many fields in manufacturing. Our review of the literature revealed only a few applications in the pharmaceutical or chemical industries [Alford et al., 1999].  On the other hand, many expert systems were developed for manufacturing applications such as metal fabrication, grinding, injection molding, assembly and others [Liebowitz, 1998].

There are certain criteria typical to the pharmaceutical industry that distinguish it from other industries:

1- The complex synthetic nature of any product containing multiple ingredients, each portraying diverse chemical and physical characteristics.

2- The nature of the industry characterized by mass production of small delicate units (millions of pills, capsules and ampoules) realized by enormous machine speeds.

3-  Difficult defect  identification and no rework of defected items possible.

4- The irrefutable quality of a product, once released. This is realized by strict inspection and in process sampling regimens as well as quality assurance measures.

These criteria can explain the suitability of an ES approach mainly based on defect quantification for the desired purpose.  Defect quantification is based on the probabilistic nature of the dynamic element interaction and synchronization liable to bring about a given defect. Currently, real time control applications built within the machines are not feasible. Consequently, the ES is run after each batch.  The output of the system is then used to modulate the manufacturing process.

Further analysis of the manner in which individual defects behave in response to the ES recommendations reveals the following facts:

1- A causal-effect relationship was evident in the selected case showing statistically significant reduction and absent in the other not showing such reduction. It does confirm the reproducibility of the ES recommendation when effective. It also explains the mechanism of action by which the ES exerts its effects. The rules consider a threshold quantity for each defect above which the recommendations are issued. Since the recommendations are purely qualitative (reduce speed of machine, increase oxygen supply, increase distance), it can be foreseen that a decline may or may not be stepwise, depending on how the recommendations are implemented. The ES recommends the machine speed to be decreased but does not indicate to which extent. So depending on the fine structure of the process, which may vary with each batch, the same action may produce either an immediate or a delayed decline to below threshold. The response is thus predictable while the time to reach its maximum is not.

Different ranges may reflect different causes that contribute to a given defect. Quantification towards the higher number of defects does not exclude a possible contribution of the causes of a smaller number of defects.  

 Accordingly qualitative rules may lead to a delayed decline to below threshold. The ES will issue first the recommendation relevant to the higher range followed by a recommendation to the lower range etc.

2-Most defects have started with an initially high baseline. This means that changing the machine set up from one product to the other will commonly result in a start-up peak in the first batch until the ES becomes active. Modern manufacturing trends enhance just-in-time production (JIT) to minimize inventory levels. This requires a certain degree of flexibility. Flexibility implies rapid response to customer demands and frequent modification of production plans, which in turn will result in multiple start-up peaks.

3-Different defects have shown different frequency of peak occurrences, which may or may not be consistent with the defect type.

4-The implementation of the ES did not show any statistical significance for D5 (unwelding without neck). The system development methodology advocated revising the rules in such case. This was carried out with some modification that may have caused a decline of the two following batches to below threshold, a probable secondary effect to the modification. It may also indicate, in case of the persistent absence of a causal-effect relationship that some defects will not respond to the ES recommendations irrespective of the correctness of the related knowledge representation.

The above discussion demonstrates that individual defects are prone to peaks that can be reduced but not prevented via the ES. Resistant defects may also exist. This is particularly important as it indicates that if such peaks can be prevented and resistant defects treated, a further significant reduction of the total loss can be realized. 

Future Work
Our experimental setting was based on a rational approach that contemplated the granularity of a pharmaceutical manufacturing process. A distinction of two main components of its structure was identified as follows:

Coarse structure: 

This can be represented by explicit knowledge deducted from the experts because the coarseness of its granularity renders the cause of any variations enhancing the manufacturing loss clearly visible to the expert.  The MMHI here is responsible for the variation but is clearly non-specific. The rules in the knowledge base are tailored to the manufacturing process. They cannot consider any variations caused by the specific chemical or physical characteristics of the ingredients, nor the results of their interaction with the machines at different phases. The ES targets this component of the coarse structure of the process. 


                                                               (Figure 4)

Fine structure:

The fine granularity of the process makes the knowledge contained therein poorly visible, if at all. This state is further complicated by variations in the material characteristics from one batch to the other, though still within acceptable quality ranges. At this level the MMHI depends on a specific product and plays a key important role in influencing the amount of manufacturing loss resulting therefrom. Figure 4 shows the two types of components of the process. It clearly demonstrates the granularity in relation to a tree-structured representation of the process, which can be carried out to as many levels as are needed by the product. The levels display the breakdown of each of the main constituents of the MMHI. For the machine, this means the number of steps and the complexity of each step. For the material it means the number of involved elements, the physical and chemical characteristics of each. Finally, it is the interaction at the lowest level of the tree that translates into the production of defective units. The depths as well as breadth of the tree determine the complexity and granularity of the process and hence, the extent of potential contribution to the manufacturing loss.

The ES cannot directly influence the fine structure of the manufacturing process that embeds dynamic non-linear phenomena that are too complex and product specific to be easily described by analytical methods or empirical rules.  It does indirectly affect the fine structure by acting on the coarse structure. 

However, each manufacturing run provides data on machine parameter settings, chemical properties and failure rates.  This data could be used to train a Pattern Recogniser that could select good initial parameter settings for the machines.  Consequently, the first batch of a given run would have fewer defects and would reduce or even eliminate the initial manufacturing loss peak. If a pattern recognition tool could be integrated into the process, the ES could dynamically interact with the manufacturing process to further reduce loss. 

Conclusion

The preliminary results reveal the beneficial role of an expert system in reducing manufacturing loss in the pharmaceutical or any other industry of the same nature.  The nature of the industry has imposed a different approach to building the knowledge base of the ES. Traditional methods used in manufacturing that analyse quantitative parameters to derive intelligent conclusions were not applicable due to industry specific criteria. For example the mass production of small sized delicate units and correspondingly difficult defect identification and classification with no rework possible makes traditional quantitative analysis currently infeasible.  Consequently, defect quantification was used to suggest the cause of the problem.  The ES recommended a treatment of the problem.

The Knowledge Elicitation process contributed to a better understanding of the manufacturing process.  A coarse structure represents the non-specific MMHI.  It is independent of a specific product and depends on the framework of the manufacturing process.  This is the site of a direct action of the ES.  A fine structure portrays the specific MMHI.  It depends merely on the specific property of the product components and may represent a potential site of action for a pattern recogniser.

While the role of the pattern recogniser remains to be investigated, an anticipated success will warrant further research to explore new applications for this model. Our model will hypothetically reduce the role of material variation to a minimum. With the advent of automation and unattended manufacturing, it may  be used as an objective tool, together with other parameters, to evaluate the performance of expensive machinery use in the pharmaceutical industry or similar industries.
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