
CABot1: Technical Report

Chris Huyck, Emma Byrne

September 28, 2009

This report describes CABot1, a games agent built using simulated neurons.
CABot 1 is the version of the project finished in July 2007. The agent ”lives” in
a very simple game, built using the Crystal Space game engine. It is hoped that
this report is sufficiently detailed to allow the reader to reproduce the agent from
the report. CABot1 is an agent that supports a user in a simple, Crystal Space 3D
navigation game. It takes one of several commands from the user, and parses the
command to set the goal. The goals are pursued following a partial implementation
of a spreading activation net. The agent also views the environment of the game
and recognizes two types of object, pyramids and stalactites. A control system is
used to alternate between parsing, goal setting, goal fulfilling and awaiting user
input.

The parser performs well on the 21 sentences in its repertoire. The performance
of nets varies, but a random net usually gets around 98% of parses correct as gauged
by semantic frames. Results of tests of the CABot1 agent shows that it succeeds
75% percent of the time in performing the correct action given a user’s command.

The agent itself does almost all of its processing in fLIF neurons. The net-
work is divided into 21 subnetworks. The structure of these subnetworks is largely
for programming convenience. Neurons coordinate their activity by connections
within and between cell assemblies (see Section 9). This report will explain how
to download and install CABot1(Section 1). It will give a walkthrough for a typi-
cal CABot1 run (Section 2). It will give an overview of the code, and each of the
functional areas of the CABot1 network (Sections 3 to 7). It will discuss the fLIF
neuron model (Section 8), the cell assembly model (Section 9) and the CABot1
model (Section 11).

1 Downloading and installing CABot1

The CABot1 code can be downloaded from:
http://www.cwa.mdx.ac.uk/CABot/cabot1/cabot1CANT.tar.gz
CABot1 extends several of the classes in CANT23 (also included in the down-

load.) CABot1 and CANT23 is known to run under JRE1.6.0 07. CABot1 talks to
the Simple2 game via shared files.

1



You need to compile CANT23, fastbind, utils, and cabot1. There
are .bat files for each of these: compilebase.bat, compilefastbind.bat,
utils/compileutils.bat, and cabot1/compilecabot1.bat respec-
tively. You will probably have to change the paths in these bat files, or you can use
your favourite development environment. The paths to the files used for commu-
nicating between CABot1 and Crystal Space are set in CABot1.java with the
methods:
bmpReader.setFilePath(String path) and
experiment.setFilePath (String path).

You then run the CABot1. There is a bat file provided, runcabot1.bat.
The paths to the files used for communicating between CABot1 and Crystal Space
need to be set here also. Note that CABot1 takes up a lot of memory and the -mx
flag has to be set as in the bat file (-mx400200000). Once the 21 CABot nets are
up, hit the start button on the base net, and you should be able to run.

To run the agent you’ll need the Simple2 Crystal Space game that we devel-
oped. Simple2 is based on the Simple2 tutorial that ships with Crystal Space with
some modifications. The environment consists of a single room (with no boundary
detection) with one object, a user, and the agent.

We found that the most difficult part of getting CABot1 installed is getting
Crystal Space running. If you’ve done it before move on. If not:

• Get the crystalspace3d.org tar.gz file from Crystal Space:

• http://www.crystalspace3d.org/main/Download

• Follow the directions on the building and installing manual link

• Go to the specific instructions for your platform. We have been using Win-
dows and cygwin with all devel and libs.

• Get the CABot1 specific code for Simple2 from www.cwa.mdx.ac.uk/CABot/cabot1/csCabot1.tar

• Place simple2.cpp and simple2.h files in CS/apps/tutorials/simple2
Keep a copy of the originals if you like.

• In the CS directory, do a make simple2 (you should be able to use the
build process that comes with CS, but we’re old fashioned and did it this
way).

• Put in the sprites. The objects in the scene (a pyramid or a stalactite) are
not correct. We’ve built two and they’re included in the tar file above. Go
to CS/data and add the two sprites (chrispyramid and chrisstalagmite) and
add them to the standard.zip file.

2



• Setup the paths. CS communicates with the CABot agent via a series of files.
These files have to be stored in a directory that the two systems agree on. I
usually put them in ../CANT23/cabot1/data.

• Modify the Crystal Space vfs.cfg file. The tar file includes my version of it,
but it is probably best to edit the one you already have. The relevant line to
add is the VFS.Mount.cantAgent line about 20 lines down.

• You should now be able to run simple2 by simply doing ./simple2.exe from
the command prompt in CS.

When Simple2 comes up you should see the agent and an object (pyramid). The
user has a body (which you can’t see but the agent can), and you can move the
agent around with the arrow keys. You can look at the agent’s view by using
the F2 key. If you type in text commands, they get passed onto the agent when
you hit return. Commands that work include ‘Move forward.’, ‘Move backward.’,
‘Turn left.’, ‘Turn right.’, ‘Go left.’, ‘Go right.’, ‘Turn toward the pyramid.’, ‘Go
to the pyramid.’, ‘Turn toward the stalactite.’, and ‘Go to the stalactite.’ (note the
terminating periods.) These commands should make the agent move if the CABot1
agent is running correctly. CABot1 takes around 1000 CABot cycles to parse a
command.

2 Using CABot1

First, ensure that the paths in lines 15 and 16 of CABot1.java are set to the path
that Crystal Space will write and read from. Build and run Simple2. Then build
and run CABot1.

In Simple2 type one of the 10 commands shown in Table 2. On pressing enter
the command will appear in an alert box. This command is also passed to CABot1
via the file csToCabotText.txt in the path set above. N.B. because of limita-
tions in the way in which Simple2 handles keystrokes, there may be some ”stutter”
in the typing of the command. CABot1 can handle many mistyped commands, but
if it fails to recognise the input id defaults to the command “move backwards.”

The Control net ignites, as does the assembly in the base net for the first word
of the command. If this is a verb (e.g. “turn”), then the corresponding assembly
in the verb frame ignites also. Activation continues to spread through the nets in
order for the input sentence to be parsed (see Section 5).

In the meantime, the vision area is permanently on and receiving images via
jpeg files, again in the same path as was set above. This input is updated periodi-
cally, and is received in the visual input net as a 50 × 50 array of neurons. These
fire if the pixels in the image that correspond to the area of each neuron are darker
than a certain threshold. Section 7 details how this visual input is processed by
CABot’s visual system.

3



Section 6 explains how the parsed textual input and the processed visual in-
put are used to determine the next action that the CABot agent should perform.
Once an action has been decided on, CABot1 writes the command to a text file
(cabotToCSText.txt) that is read by Simple2.

3 CABot1 Code

The main method for CABot1 is found in CABot1.java. The system first calls
the method makeNewSystem(). This method initialises the network of networks
CABot1Net nets using the network parameters in cabot1.xml.

Al nets are created and the method connectAllNets is called. This first
creates the other subnetworks (see Table 1). It then calls two methods, connectParseNets()
and connectVisionNets. The BaseNet in the network is used to control the
operation of the CABot network as a whole via the start, step and parameter con-
trols.

The networks in CABot 1
The Base Net The Instance Net
The Verb Net The Noun Net
The Other Net The Stack Top Net
The Stack Net The Test Net
The Push Net The Pop Net
The Erase Bound Net The Erase Net
The Rule Net The Visual Input Net
The Retina Net The V1 Net
The V2 Net The Control Net
The Fact Net The Module Net
The Action Net

Table 1: The subnetworks in the CABot1 network

The parse nets are those networks that are involved in parsing, that is, inputNet,
nounNet, otherNet, verbNet, instanceNet, stackTopNet, stackNet,
popNet, pushNet, eraseNet, eraseBoundNet, testNet and ruleNet.
The planning and goaling networks are the controlNet, factNet, moduleNet
and actionNet. The vision nets are retinaNet, v1Net, v2net. These
networks are connected with connection Methods such as the one in Figure 1.

Neurons in subnetworks may send activation (or inhibition) to neurons in other
subnetworks. It is in this way that the processes are executed in CABot1. The code
shown in Figure 1 shows how the Control net is connected to the Stack network
(labelled eraseNet in the method definition).

The first loop makes excitatory connections between excitatory neurons in po-
sitions 200 to 399 of the control net to the first 300 neurons in the stackNet. These

4



Figure 1: Sample connection method: connectControlToStack(CABot1Net
eraseNet)

connections ensure that activation in neurons 200-399 leads to activation in the
stack-top. Each (non-inhibitory) neuron in this portion of the control net is con-
nected (with a weight of 1.0) to five randomly chosen neurons in positions 0-299
in the stack net.

The second loop makes inhibitory connections between inhibitory neurons in
positions 400-599 in the control net to the first 300 neurons in the stack. This
implements part of cell assemblies 2 and 3 in the control net (see Section 4.) Cell
assembly 2 turns the first stack item on and cell assembly 3 turns it off. Each
inhibitory neuron is connected to 105 of the first 300 neurons in the stack net at
random, with an inhibitory weight of -2.0.

3.1 CANT

A CANT network is formed from one or more subnets. Constants such as firing
threshold θ and fatigue rate Fc are associated with each subnet and are shared by
all neurons in the subnet. Subnets allow easier software engineering by providing
a logical way to subdivide the full network.

Since the connectivity determines the behaviour of neurons (see Equation 1),
the connectivity determines the behaviour of the network. CANT allows the con-
nectivity to be programmed. By programming the connectivity, CANT can be used
to implement different subnets with different functions1.

1The base CANT23 class allows several subnets. The leak, fatigue and firing threshold parameters
for each subnet are set independently, and the values for these parameters are stored in an XML file,
ExperimentXMLFile. Each subnet is an instance of the class CANTNet. Each net has an array of
neurons, and these neurons are instances of the class CANTNeuron. Neurons are either inhibitory
or excitatory, and this value is stored in the isInhibitory variable. CANT23 has several functions

5



e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

u
u
u
u
u

u
u
u
u
u

u
u
u
u
u

u u u u u u u u u u

u u u u u u u u u u

u u u u u u u u u u

Figure 2: A Sample CA Network.

An example net is shown in figure 2, which is a 30× 20 subnet containing 600
neurons. Each circle represents a neuron; if the activation of a neuron surpasses
threshold θ (see Equation 5), the neuron is activated or fired (shown in black dot),
otherwise it does not fire (shown in white circle). Each of these neurons is a fLIF
neuron (see Section 8). The fired neuron spreads its energy to other connected
neurons, then loses all energy.

In the mammalian neural system, synaptic connections differ in strength, and
any given neuron is unlikely to connect to any other particular neuron [6]. In
CANT, the value of the weight between neurons is used to represent their connec-
tions; when two neurons have a stronger connection, the weight value is bigger.

3.2 Cell Assembly Topologies

CABot1 is a network made up of 21 specialised subnetworks. Using specialised
subnets makes programming more manageable and also makes it possible to set
some parameters, such as decay and fatigue, separately.

In each subnet (with the exception of the visual input, retina and V1 subnets)
there are several cell assemblies. Cell assemblies are groups of strongly inter-
connected neurons, such that partial activation of the assembly leads to sustained,

for adding synapses (connections). A synapse is associated with the neuron that it comes from (the
pre-synaptic neuron). The pre-synaptic neuron has an array of synapses; these are instances of class
Synapse. Each synapse also has a pointer to the post-synaptic neuron.

6



widespread activation. In CABot1, cell assemblies in all but the V2 subnet are or-
thogonal (that is, each neuron belongs to only one cell assembly). This need not be
the case but again, it makes the design and management of the CABot1 agent more
straightforward.

Cell assemblies may also cross subnet boundaries. For example the Noun and
Noun Instance cell assemblies that correspond to the same word are essentially the
same cell assembly, in that they both ignite in response to the same input, but they
play functionally different roles.

3.3 The CABot1 Process and Architecture

The CABot1 agent consists of 21 subnets. These are responsible for:

1. The Base subnet acts as an input layer for words. Individual words in the
sentences to be parsed are represented as cell assemblies in this subnet.

2. The Verb subnet has four cell assemblies - one each for the verbs “follow”
“move”, “turn” and “go”. Each one of these cell assemblies acts as a verb
frame (see Section 5 below). Each verb frame cell assembly contains three
sets of 60 fast bind neurons for short term binding. These bind to actor,
objects and location words in the noun or “other word” subnets.

3. The Noun subnet has nine cell assemblies for the words “me”, “left”, “right”,
“forward”, “back”, “stalactite”, “pyramid”, “door” and “it”. Each of these
also excites the corresponding Instance cell assembly. The Stack subnet can
bind to the noun cell assemblies.

4. The Instance subnet has 11 cell assemblies - each one represents either a
word from the noun net, or the prepositions “to” and “toward”. The cell
assemblies in the Instance subnet have fast bind neurons. These allow nouns
to be bound to prepositions in order to generate prepositional phrases.

5. The OWord subnet has cell assemblies for “the”, “toward”, “to” and the pe-
riod. “The” is not parsed: a rule discards the determiner when it is encoun-
tered. When the “Period” cell assembly ignites, this triggers the rule that
completes the parsing of the sentence. The prepositions “to” and “toward”
are bound to nouns via the instance net.

6. The Stacktop subnet contains five cell assemblies. When CABot1 initialises,
the 0th cell assembly ignites in response to external activation. The active
cell assembly indicates the highest occupied position in the stack. When the
Stacktop subnet receives activation from the Push subnet, the next cell as-
sembly ignites, and the previous cell assembly is inhibited. When activation
is received from the Pop subnet, the previous cell assembly ignites and the

7



currently active cell assembly is inhibited. In this way the Stacktop subnet
works as a counter.

7. The Stack subnet contains four cell assemblies, each one being a position
in the stack. Each of these cell assemblies is made up of 150 standard fLIF
neurons, which account for the “core” of the cell assembly’s activity. Each
one also contains 150 fast bind neurons that bind to active cell assemblies in
the Noun, Verb and OWord subnetworks.

8. The Test subnet tests if a parsing rule will work, by activating the items in a
stack in turn, twice. These stack positions send activation to semantic items,
which may ignite parsing rules (see Section 5).

9. The Push increments the stacktop position.

10. The Pop subnet decrements the stacktop position.

11. The Erase Bound subnet prevents items from being erased that are below the
stacktop when the erase net runs.

12. The Erase subnet contains 18 cell assemblies that ignite in turn - cell as-
sembly 1 excites cell assembly 2, which in turn excites cell assembly 3 (and
inhibits cell assembly 1). Thus, over several time steps, activation ‘chains’
through the subnet. The Erase subnet is used as a timer that suppresses ac-
tivation in the stack subnets in order to allow the weights of the fast bind
neurons to decay.

13. The Rule subnet contains six cell assemblies, each representing a different
parsing rule, such as VP − > VP Period (a verb phrase is made up of a verb
phrase followed by a period). The Noun, Verb or OWord cell assembly that
is bound to the top of the stack sends activation to rule cell assemblies.

14. The Visual Input subnet is not made up of cell assemblies, as the neurons
that fire do not belong to coordinated groups. Rather, the visual image that
the agent sees in the Crystal Space environment is translated into a 50 × 50
neuron grid. Where the pixel in the image is darker than a given threshold,
the neuron is on. Where the pixel is lighter, the neuron is off. As such, the
2500 neurons act as simple photoreceptors.

15. The Retina subnet contains 6 50 × 50 grids of neurons. These act in a
manner similar to human retinal ganglion cells with varying size on-centre
and off-centre receptive fields (see Section 7.2), which respond to “patches”
of differing sizes in the visual field.

16. The V1 subnet has neurons that integrate the activity in the Retina subnet.
Each of these CAs detects a line or an edge. See Section 7.3 for more details.

8



17. The V2 subnet is divided into six modules, each of which recognises one of
two shapes (a stalactite or a pyramid) at one of three sizes (small, medium,
or, large). Each of these modules also contains cell assemblies that indicate
where the stalactite or pyramid is in the visual field. See section 7.4 for more
details.

18. The Control subnet controls which subnets are active. For example, it al-
lows parsing by suppressing activation in the fact subnet in order to allow
activation to take place. See Section 4 for more details.

19. The Fact subnet contains cell assemblies for each of the possible goals that
CABot1 may execute, plus information about the content of the visual scene,
such as whether there is an object in the scene and if so, where is it.

20. The Module subnet contains cell assemblies for each of the possible goals
that CABot1 may execute.

21. The Action subnet contains a cell assembly for each of the primitive actions
(turning right and left, going forwards and backwards and two error states)
that the agent may carry out in order to fulfil the goals in module net.

Figure 3: The CABot1 gross topology.

These subnetworks are divided into two input regions and four functional re-
gions (see Figure 3). The input regions simply accept text and black/white repre-
sentations of what CABot1 can see in the game. The four functional regions are
described in the next sections.

4 The System Control region

The Control subnet controls the activation of various subnetworks by means of
inhibitory and excitatory connections with other networks. There are eight cell
assemblies in the Control subnet. These are orthogonal and each contains 200 fLIF
neurons. The activation spreads through the subnet from CA to CA. The CAs also
have inhibitory and excitatory connections with other subnets.

Control CA 1 (neurons 0 to 199) begins when parsing takes place. This CA
1 inhibits the Fact subnet and excites the CA 2 in the control subnet. It receives
an initial ’jolt’ of stimulation in the form of activation to 50 of its neurons, when
CABot1 is first run. Simultaneous to this the stack top receives external activation,
which begins the parsing process. Whilst parsing is ongoing, and stacktop is active,
CA 2 in the control subnet is inhibited. Once the rule VP − > VP Period is

9



encountered, parsing is complete (see Section 5). The stacktop is cleared and the
inhibition to CA 2 ceases. Activation in the control net moves on to the next cell
assembly.

CA 2 sends activation to CA 3 and inhibition to CA 1 in the control net. It also
sends activation to the stack net, which turns the stack on. At this point there is
only one item on the stack: the parsed sentence that is result of the parsing process.
Activating the parsed sentence causes activation in the fact net, thus setting a goal
(see Section 6). Activation in the fact net supresses activation in CA 2 and CA 4 in
the control net. Thus, activity in the control net moves to CA 3.

CA 3 in the control net excites CA 4 and inhibits the Stack, Instance and Verb
subnets. It remains active as long as an assembly in the fact net remains active.
Eventually the goal in the fact net will lead to activation in the module net, which
will inhibit the assembly in the fact net (see Section 6). Once the assembly in the
fact net is suppresed, CA 4 is no longer inhibited, and CA 4 becomes active.

CA 4 - CA 7 turn the erase net off and on twice. The Erase subnet is used
to support the erasing of the fast-bind neuron connections. When activated, the
erase net reinforces the fast-bind connections between the CAs that should remain
connected (those at or beneath the top of the stack - see Section 5). The Erase
subnet activates each of the pairs of CAs that must remain bound three times in
succession. This reinforces the weights in the fast bind connections. The Skip
subnet prevents the Erase network from reactivating those pairs of CAs that no
longer need to be bound (those above the stacktop), thus the weights of the fast-
bind neurons that are not reactivated decay to zero.

CA 4 sends activation to CA 5 and to the Erase subnet. CA 5 waits for the
erase to complete. CA 5 sends some activation to CA6. When the erase subnet
completes its operation, it too sends activation to CA 6. CA 6 activates erase and
CA7. CA 7 sends some activation to CA 8, which is fully activated when erase is
no longer active.

CA 8 waits for a new sentence to become available from the Simple2 game. If
the commandAvailable flag in CABot1Experiment.java becomes true
then activation is sent to CA 1 and the stacktop, the cycle begins again.

5 The language processing (parsing) region

CABot1 has a natural language parser built using cell assemblies of fLIF neurons
that parses natural language input and generates the meaning of a sentence given
the words and the sentence structure. The parser shows that a traditionally sym-
bolic task, natural language parsing, can be implemented in relatively biologically
accurate simulated neurons. The parser can be found at:
http://www.cwa.mdx.ac.uk/CABot/CANT.html and is described in [18]. The pars-
ing system contains 13 CAs. The topology of the parsing system is shown in Figure
5.

10



‘move forward’ ‘move back’
‘turn left ‘turn right’
‘go left’ ‘go right’
‘turn toward the stalactite’ ‘turn toward the pyramid’
‘go to the pyramid’ ‘go to the stalactite’

Table 2: The sentences that CABot1 successfully parses

Figure 4: The connection between text input and the verb cell assemblies is created
by these methods in CABot1Net.java

The parser in CABot1 is a neural parser, like that implemented by Knoblauch
and Palm [20]. However, unlike Knoblauch and Palm’s parser, the CABot1 parser
can interpret context free languages. The parser interprets the text commands that
the CABot1 agent receives from the user. These commands are drawn from a
repertoire of ten sentences (see Table 2).

Text arriving from the game activates neurons in the Input (Base) subnetwork.
These are connected to the nouns, verbs and other words in the lexicon. For exam-
ple, cell assemblies 0, 5, 4 and 3 are connected to verbs 0, 1, 2, 3 (‘follow,’ ‘move,’
‘turn’ and ‘go’) in the verb net. Each neuron in the input cell assemblies synapses
with seven random neurons in the matching verb cell assembly (See Figure 4).

The parser has a lexicon (implemented as noun, verb and “other word” subnets
containing one cell assembly per word) and a small grammar (with storage in verb
frames) (see Table 3). Each verb CA in the verb subnet acts as a verb frame. The
assembly consists of 240 standard neurons that constitute the verb symbol, three
sets of 60 fast bind neurons that bind to an actor, location or object CA in the noun

11



Nouns Verbs Other
‘me’ ‘follow’ ‘period’
‘left’ ‘move’ ‘the’
‘right’ ‘turn’ ‘to’
‘forward’ ‘go’ ‘toward’
‘back’
‘pyramid’
‘stalactite’
‘door’
‘it’

Table 3: CABot1’s lexicon

subnets respectively 2. These fast bind neurons are activated in response to rules
(see Section 3.3), and 60 fast bind neurons that synapse to these three slots.

The parser is a partial implementation of a Marcus parser [22]. It has a stack,
preferences for rule selection, limited look-ahead and grammar rules that combine
syntax and semantics in the form of verb frames. The stack allows the parser to
interpret context free languages.

The noun subnet contains nine cell assemblies, each of which corresponds to
one of the nouns listed above. When a noun is read in, the noun cell assembly
ignites and is bound to an element in the stack. The corresponding instance cell
assembly is also ignited.

Whilst parsing, words (in the form of active cell assemblies in the word sub-
nets) are bound to stack positions. Verbs are bound to verb frames using fast bind
neurons in the Verb subnet (see Section 8.4). In the Instance subnet, fast bind
neurons bind noun instances to prepositions in order to represent noun phrases.
The parser is a Push Down Automaton: the state of the parsing system changes
depending on the current state and inputs. The parsing algorithm is as follows:

1. Start by pushing a word onto the stack

2. Repeat

(a) Test rules

(b) If no rule succeeds,

i. Push new word on stack

(c) Else (a rule succeeds)

i. Apply the rule
2The grammar used in CABot1 is such that no Actor objects are ever encountered, thus these fast

bind neurons are not used in the current implementation.

12



Parameter Verb Subnet Noun Subnet OWord Subnet
θ Threshold 4 4 4
τ Decay Rate 1.5 1.5 1.5
Fc Fatigue 0.1 0.2 0.1

Fr Recovery rate 0.8 0.8 0.8
η Learning rate 0.2 NA NA

Table 4: Parameter values for the Verb, Noun and Object Word subnets. Learning
rates are not given for the noun and other word subnets as these subnets contain no
fast bind neurons.

Parameter Stack Subnet Stacktop Subnet Instance
θ Threshold 4 4 4
τ Decay Rate 2 1.5 0.5
Fc Fatigue 1 1 0.01

Fr Recovery rate 3 3 0.011
η Learning rate 0.2 NA NA

Table 5: Parameter values for the Stack and Stacktop. A learning rate is not given
for nets that contain no fast bind neurons.

ii. Pop stack

3. Until VP -> VP Period rule applied

The grammar is defined by the rules in the parser. Rules are stored as CAs in
the rule subnet. When one of these rules fires it ignites CAs in the word subnets and
the stack operation subnets. The rules can construct verb phrases and prepositional
phrases from verbs, nouns and prepositions. Determiners are discarded via a rule
that pops them from the top of the stack.

If a preposition is at the top of the stack, the PP->PP noun rule fires. The
instance subnet forms prepositional phrases by binding instance cell assemblies
(representing noun phrases) together via fast bind neurons. The CAs in the instance
net for the noun and the next preposition in the stack are bound together via fast

Parameter Rule Subnet
θ Threshold 4
τ Decay Rate 1.05
Fc Fatigue 0.3

Fr Recovery rate 0.6
η Learning rate 0.1

Table 6: Parameter values for the Rule subnet

13



Figure 5: The connection between verb cell assemblies and a rule is created by this
method in CABot1Net.java

bind neurons. The noun and preposition are popped from the stack and the bound
prepositional phrase, in the form of a filled noun frame, is left on the stack.

If a noun phrase is at the top of the stack the VP->VP NPObj rule may fire.
Slots in verb frames are filled when a noun phrase is at the top of the stack, imme-
diately preceded by a verb phrase. The nouns in the noun phrase are attached to
the slots in the verb frames via fast bind neurons. The noun phrase is then popped
from the stack. This is done by the rule firing the object slot neurons in the verb
frame. As the slot neurons and the noun frame are simultaneously firing, they bind.

If a full stop is encountered at the top of the stack, the parser tries to apply the
VP -> VP Period rule. At this point the stack is halted and the VP and control
passes to the planning and goaling system (see Section 6). Connections between
the verb and rule nets are instantiated by the method shown in Figure 5. Each
neuron in a verb cell assembly synapses with 15 neurons in the respective rule
cells.

The parser was tested, in isolation from CABot1, on each of the 17 sentences
using five grammar rules and 16 words that fall into five lexical categories. The
best performing network was over 99% accurate on 32 presentations of each of the
17 sentences (the performance of the parser is 542/544=99.63%). The errors that
did arise came from mistakes in the choice of slot fillers.

6 The Planning and Goaling region

Planning and goaling control the CABot agent’s behaviour. Goals are set in re-
sponse to natural language text commands from the user. When a command is
parsed, assemblies in the verb and instance nets are active.

Spreading activation between sub-networks executes the appropriate plans for

14



these goals. The control net inhibits the fact net whilst parsing takes place, and
the fact net inhibits the control net whilst goal-directed activity takes place. This
ensures that processing is carried out one step at a time. The parameters of the
subnetworks involved in planning and goaling are shown in Table 7.

Facts and goals are combined in the CABot1 FactNet. Goals may be simple,
compound or object driven. The four primitive goals are:

• turn+left

• turn+right

• move+forward

• move+backward

There are two compound goals that are:

• go left

• go right

These goals consist of a turn to the left or right, followed by one step forward. The
subsidiary goal “forward after turn” is used to activate the goal “go forward” once
a turn to the left or right is accomplished. the goal “forward after turn” can not be
set directly.

There are two object-driven goals:

• turn toward

• go to

There are two goal objects that can be combined with the last two compound
goals: pyramid and stalactite.

There are six facts that may be active:

• pyramid in scene

• stalactite in scene

• object in left

• object in right

• object in centre

• object big

15



These facts are partially ignited by spreading activation from the visual system.
They only become completely active when activation spreads within the fact net
from a relevant goal that is also active. The steps in the planning and goaling
process, as represented by populations of active assemblies, can be thought of as
states in a finite state automaton (see Section 10). Activation in the verb, instance
and vision cell assemblies act as preconditions to transitions between states. When
all necessary “precondition” cell assemblies are fully active, the next assembly in
the process becomes activated.

The control net inhibits the fact net whilst parsing is taking place. Once pars-
ing is complete, the appropriate goal in the fact net will be ignited by spreading
activation from a completed verb frame in the verb net and associated instance
nets.

Figure 6: Verbs in the verb net are connected to the goals in the fact net
via the connectOneVerbToOneFact(int verbNum, int factNum,
CABot1Net factNet)

Figure 7: The method connectVerbToFact(CABot1Net factNet) cre-
ates the connections that spread activation between verbs and the fact net.

For example, verb 1 is “turn.” Activation here sends activation to fact 1 “turn+left”
and fact 2 “turn+right.” connectOneVerbToOneFact(int verbNum, int
factNum, CABot1Net factNet) sends four synapses from each of 300 neu-
rons associated with verb verbNum to 100 neurons in the factNum assembly in
the fact net, each with a weight of 0.25. Note that the total number of neurons de-
voted to each verb in the verb net is 480. The verbNum*480 and factNum*100

16



ensure that the correct assemblies are connected.
Similar methods, connectOneInstanceToOneFact(int instanceNum,

int factNum, CABot1Net factNet) and connectInstanceToFact(CABot1Net
factNet) exist to connect instances to facts. For example the instance assembly
for “left” connects to facts “turn left” and “go left.”

Parameter Fact subnet Control subnet Module Subnet Action Subnet
θ Threshold 4 4 1.5 4
τ Decay Rate 1.5 2 1.5 2
Fc Fatigue 0.4 1 0.4 1

Fr Recovery rate 1.2 3 1.2 0.3

Table 7: Parameter values for the Fact, Control, Module and Action subnetworks.

The primitive goals spread activation to corresponding assemblies in the mod-
ule net, which then spreads that activation directly to the action net. There is a
one-to-one connection between the primitive assemblies in the fact, module and
action nets for these goals.

The compound goals send activation to the module net. The module net then
sends activation to a number of simple actions in sequence. For example, the com-
pound goal“go left” sends activation to the “go left” module, which ignites the
“turn left” and the “go forward after turn” assemblies in the module net.

The object driven goals send spreading activation to the module net. However,
the module net also requires activation from the fact assemblies in order to ignite.
For example: if the goal and object “turn toward” and “goal pyramid” are both
active in the fact net, and the facts “pyramid in scene” and “object on left” are both
active, then the module net will receive enough activation for the turn left module
cell assembly to ignite. The module net will then determine which sub-goal is the
most appropriate (in this case, “turn left”). This goal will be repeatedly activated,
and the appropriate action activated, until the facts “pyramid in scene” and “object
in centre” become active. The module net will then ensure that the action “go
forward” is repeatedly executed until the fact “object big” is active. If the object
“drifts” out of centre, the goal “turn left” or “turn right” will become active again.

If the object disappears from the agent’s field of vision, then an error module
ignites and turns the goal off. Once a simple or compound goal has been executed,
or the object of a goal occupies the entire visual field (“object big” in the fact net),
the goal net ceases to be active and the control net can switch state.

7 Vision

The visual system of CABot1 consists of four subnets: a visual input network, a
retina and two visual processing areas, V1 and V2.

17



The retina and V1 share some similarities with their human counterparts, but
are much simplified models of only a few of these elements. V2 is less biologically
plausible, and does not mimic known mechanisms in the human visual system. It
does however carry out two important functions of the visual system: the identifi-
cation of what is seen and where it is in the visual field.

Parameter Visual Input Subnet Retina Subnet V1 Subnet V2 Subnet
θ Threshold 4 4 4 5
τ Decay Rate 1.2 2 2 1.1
Fc Fatigue 0.4 0.3 0.6 1

Fr Recovery rate 0.8 0.6 0.15 3

Table 8: Parameter values for the Visual Input, Retina, V1 and V2 subnets

7.1 Visual Input

The visual input subnet is a 50*50 network of fLIF neurons. As fatigue is switched
off and the input is externally presented, this subnet acts as a constant stimulus
until the agent’s point of view changes. Activation levels in the visual input subnet
are the direct result of the input received from the game and are not dependent on
the activation of any other neurons. The activation of the visual input subnet is
retinotopic: each neuron in the 50*50 subnet corresponds to an identically located
”cell” in a 50*50 grid applied to the input from the environment.

At intervals, the Crystal Space game writes a 400 × 400 pixel JPEG file that
shows the grey-scale image that the CABot1 agent can see in the game. This grid
is translated into a 50*50 grid by taking every eighth row and column, each cell of
which corresponds to one of the neurons in the visual input subnet. The CABot1
agent receives this as visual input via a CANT pattern. A CANT pattern is an
array that stipulates the level of activation for each neuron in the visual input sub-
net. Where the RGB value of one of the cells in the grid is below a threshold
(-9,000,000) the CANT pattern activates the respective neuron. Otherwise, no ac-
tivation is received (see Figure 8).

7.2 Retina

The CABot1 retina subnet contains six 50*50 grids of fLIF neurons. Each of these
neurons acts as either an on-centre or an off-centre retinal ganglion cell. In the
human visual system, the retinal ganglion cells respond favourably to patches of
light, with a dark surround (on-centre cells) or patches of dark with a light surround
(off-centre cells), of differing sizes. Each CABot1 off- and on-centre cell has a
square receptive field that receives activation from the visual input net. The level
of activity in each of the retinal neurons is the result of feedforward connections
from a 3*3, 6*6 or 9*9 grid of cells in the visual input subnet. The receptive fields

18



Figure 8: Activation in the visual input network. A single stalactite is in the scene.

are segmented into a centre and a surround: the 3*3 receptive fields have a single-
cell centre, the 6*6 receptive fields have a 2*2 cell centre and the 9*9 receptive
fields have a 3*3 cell centre.

Each of the 150,000 neurons in the retina receives input from an n*n grid of
cells in the visual input subnet. The position of the neuron in the retina subnet is
the same as the position of the central neuron in the n*n grid3 in the visual input
subsystem.

Figure 9: The connections to a 3 x 3 on/off centre surround cell (right) in the retina
subnet from neurons in the visual input subnet (left).

An on-centre neuron is connected to the visual input subnet such that activation
in the centre of the receptive field excites the retinal neuron, whilst activation at
the edges of the retinal field inhibits the retinal neuron. An off-centre neuron is
connected to the visual input subnet such that the reverse is true: excitation at the
centre inhibits the retinal neuron and excitation at the edges excites it.

The on- and off-centre cells simulate processing in the late retina. This simu-
3in the 6*6 neuron receptive field the neuron is in the same position as the upper left neuron in

the 2*2 cell centre of the receptive field.

19



Figure 10: Activation in part of the retina network, in response to the input shown
in Figure 8. Retinotopic is activation can be seen in the 3x3 off centre cells and
6x6 on centre cells.

lation of the retina makes a number of simplifying omissions with respect to the
human visual system. For example there are no colour photoreceptors, there is no
fovea (acuity is constant across the visual field) as these features are not required
for an object identification and location task. The simulation of the on- and off-
centre ganglion cells is sufficient for the requirements of the visual processing at
subsequent stages, to recognise lines and shapes, and to determine location. Fig-
ure 10 shows the activation in two of the retinal cell assembles in response to the
stalactite in Figure 8.

7.3 Area V1

In the V1 area of the human visual system there are neurons, known as simple cells,
that are tuned to specific line orientations. These simple cells are location specific.
In the CABot1 V1 subnet, model neurons exhibit this type of behaviour. These
model neurons are selective for horizontal and acute and oblique angled lines and
edges. There are also model neurons that identify compound shapes composed of
these oriented lines - the ‘and’, ‘or’, ‘less-than’ and ‘greater than’ angles.

Weighted connections feed activation from on-centre and off-centre cells in the
retina subnet. The horizontal and angled lines each accumulate activation from
three 3*3 on-centre cells in the retina subnet. For example, the horizontal line de-
tector fires when it receives activation greater than a threshold θ = 4. If a V1 hori-
zontally selective neuron (call it H[0,0]) is at coordinates [0, 0] then three on-centre
cells with 3*3 receptive fields centred at [−1, 0], [0, 0] and [0, 1] are connected to
H[0,0], each with a weight of 1.4 (see Figure 9).

20



The neurons that identify angles accumulate activation from both on- and off-
centre cells in the retina of multiple receptive field sizes. Figure 11 shows activation
in two of the cell assemblies in the V1 net in response to the activation in Figure
10.

Figure 11: Activation in V1 in response to the activation in 10. A single stalactite is
in the scene. V1 identifies a ‘greater than angle’ (the top left corner of the stalactite)
and an ‘or angle’ (the bottom corner of the stalactite’

7.4 Area V2

Area V2 is the least biologically plausible of the visual subnets. It is able to recog-
nise both ”what” and ”where” features of the visual stimulus. There are six mod-
ules in the in the V2 subsystem, made up of a number of overlapping cell assem-
blies. The six modules are specialised to recognise small, medium and large projec-
tions of an upright triangle(pyramid) or downward triangle(stalactite) respectively.

The “what” (object recognition) pathway of V2 is made up of object- and size-
specific modules. Within these modules, cell assemblies ignite in response to the
contents of the visual field, as mediated by the connections from the Retina and V1
subnets. For example, if a small stalactite is visible, a cell assembly in the small
stalactite module will ignite.

Figure 12 shows the activation in the small stalactite cell assembly in response
to activation in Figure 11.

The same modules also carry the “where” (position) information. Each module
is a 50*50 grid of fLIF neurons, divided into a 5*5 grid of subsections (of 10*10

21



Figure 12: Retinotopic activation in V2 in response to the activation in V1: a small
stalactite has been detected in the middle-left of the visual field.

neurons each). Each of the 25 grid sections corresponds to a retinotopic area of the
visual field: the top left section corresponds to the top left area of the visual field
and so on. Each of these sections functions as a “position” cell assembly. The cell
assembly corresponding to the position of an object in the visual field is primed
in each module. Extra activation from the “what” pathway is enough to ignite the
position cell assembly in the module corresponding to the object in the visual field.

8 fLIF Neurons

The CABot1 network is built on the fLIF neuron model, an idealised model of
a biological neuron that is an extension of the Integrate and Fire neuron model
[23, 13]. There are a wide range of neural models, and the fatiguing Leaky Integrate
and Fire (fLIF) model is one that is simple, relatively biologically faithful, and
efficient to simulate. Most neural simulations based on neurons of this, relatively
simple, complexity learn new things. For example, fLIF neurons have been used
to learn hierarchical categories [16] and in real world categorisation tasks [14].
However, fLIF nets can also be used to implement programs without learning.
This technical report describes how the CABot1 games agent is implemented using
networks of fLIF neurons.

Integrate and Fire (IF) neurons are a long-standing and widely-used model of
neural activity [23]. The IF neuron is a model of a spiking neuron - at a given time
step, if the activation that reaches the neuron passes a certain threshold then the
neuron fires. Maass and Bishop extended this model to include a leak component

22



½¼

¾»
input

HHj

©©* HHj
output

©©*

Figure 13: A Simplified Model of a Biological Neuron.

[21], based on the observations that some of the activation in a biological neuron
’leaks away’ over time if the neuron does not fire. This model is more biolog-
ically plausible than the simple IF neuron, and it precludes firing caused by the
accumulation of trivial amounts of activation over very long periods of time. The
fatigue component chase the refs in [9] - esp TRACE models the observation that
repeated firings lead to an increase in the threshold level of activation that a neuron
must surpass in order to fire.

There are a number of biological features that the fLIF model does not address,
such as the opening of ion transfer channels, or synaptic delays. However, these
features are below the useful level of granularity for the purposes of this model.
fLIF neurons represent processes that take place in around 10ms of biological time.
A model neuron that fires at a given time step can be considered to have ’spiked’.

A fLIF neuron is described by three sets of equations that define:

1. Firing, in response to the integration of activation levels

2. The leaking of potentiation

3. The fatiguing of neurons due to their firing

Neurons fire in discrete cycles with time steps. As the model does not take
synaptic delays or refractory periods into account, these time steps are tentatively
mapped to 10ms of biological time. This also enables the system to perform effi-
ciently enough to enable several 100,000 neurons to be simulated on a PC in real
time.

8.1 Integrate and Fire

Figure 13 is a simplified model of a biological neuron. At its most basic level, a
neuron receives activation (energy or “potentiation”) from other neurons and fires
once this activation passes a given level. Biological neurons that fire send activation
on to other neurons via connections called synapses. The strength of the connection
between two neurons is modelled using a simple weight coefficient.

Let Ei be the level of activation energy for neuron i. Let Wji be the strength
of the connection from neuron j to neuron i. Let Pj be a “potential flag”. Pj = 1
if neuron j fires or Pj = 0 if neuron j does not fire.

23



Ei(t) =
n∑

j=1

Wji × Pj(t− 1) (1)

Thus the activation energy (E) of neuron i at time t is the sum of the activation
passed from other neurons connected to i that fired at time t− 1.

Biological neurons may spread either excitatory or inhibitory signals. Both
convey information between neurons, the difference is that the inhibitory signals
always reduce or remove action potential of a neuron, and excitatory signals always
add action potential to a neuron. When a neuron receives inhibitory inputs, the
neuron becomes less active. To model this, weights may have negative values.

Let θ be the firing threshold for the network. That is, for any neuron i, if
Ei > θ then neuron i fires. All neurons in a given subnetwork (see Section 3.2 for
the definition of a subnetwork) have the same value of θ.

Implicit in Equation 1 is the discrete nature of the simulation. The model and
the code that implements it assumes that there are discrete cycles. All of the neu-
rons have a chance to fire, and the activity is passed to other neurons for reintegra-
tion in the next cycle.

8.2 Leak

Biological neurons integrate activation over a period of time (several time steps
in the model). However, some of that activation ’leaks away’ after it arrives at
the neuron. Terms are added to represent the accumulation of activation and the
leaking of activation if the neuron does not fire.

In Equation 2, Ei(t) is the sum of the activation passed from other neurons
connected to i that fired at time t − 1 and the existing activation energy of neuron
i at time t − 1 reduced by a decay constant. Let d be a decay constant such that
d > 1. All neurons in a given subnetwork have the same value of d. The activation
energy of neuron i at time t is now given by the following equation:

Ei(t) =
1
d
Ei(t− 1) +

∑
Wji × Pj(t− 1) (2)

There is an exception to this: if a neuron fires, all of its activation leaks away.
Thus if neuron i fires at time t − 1, the activation carried over to time step t is 0,
rather than Ei(t− 1).

8.3 Fatigue

Neurons fatigue after firing. Immediately after firing there is a brief refractory
period of 2-3ms. This element of fatigue occurs at 〈10ms intervals and so is not
relevant to the model. After repeated firings, the neuron experiences longer term
fatigue in which the response of that neuron diminishes. This feature of the biolog-
ical cell is modelled with a fatigue level, that uses a fatigue constant and a fatigue

24



recovery constant. The higher the fatigue level, more energy the neuron needs in
order to fire. Thus it is possible to model the reduction in the spiking rates of a
fatigued neuron.

Let Fi(t) be the fatigue level of neuron i at time t. Let Fc be a fatigue constant,
which increases the fatigue level if a neuron fires. Let Fr be a recovery constant
that decreases the fatigue if a neuron does not fire. The overall fatigue level has a
lower bound of 0.

If neuron i fires:
Fi(t) = Fi(t− 1) + Fc (3)

If neuron i does not fire:

Fi(t) = max{0, Fi(t− 1)− Fr} (4)

Note that Fc and Fr are positive and may take identical values. The ratio be-
tween the fatigue constant and the fatigue recovery rate determines the maximum
proportion of the neurons in a cell assembly that may be firing on average at any
time. For the purposes of the model, all neurons in a subnetwork have the same
values for Fc and Fr, with the value of Fi(t) entirely dependent on the firing be-
haviour of neuron i in previous time steps.

A cell assembly is made of a finite number of fLIF neurons. If these all fatigue
at the same time then the activity in the cell assembly will spontaneously extin-
guish. If these neurons do not fatigue then the cell assembly will continue to fire
indefinitely. Cell assemblies must oscillate in their activity in order to remain active
for a sustained period. Having a proportion of neurons in the assembly that are not
firing at any given time step allows these to recover as the rest of the cell assembly
remains active. Different subnets in CABot1 have different ratios between their Fc

and Fr values and therefore have different persistence levels.
Taking fatigue into account in the model, a neuron i fires if and only if:

Ei(t)− Fi(t) > θ (5)

8.4 Variable binding with fast bind fLIF Neurons

In section 8, Wji was defined as the weight variable that represents the connection
strength from neuron j to neuron i. It is possible for these weights to be plastic, thus
allowing the network to learn. In CABot1, long term links are created manually,
so no long term learning takes place. Decaying Short Term Potentiation (STP) is
used to make short term modifications of connections between neurons in CABot1.
These STP links form the basis of the bindings used in processing. For a more
complete explanation see [15].

Biological systems make use of short term potentiation (STP) as well as long
term potentiation (LTP) [12, 1]. In LTP, when a neuron fires, the connection be-
tween that and other neurons that are simultaneously firing is strengthened. Con-
versely, the connection between a firing neuron and all neurons that are not firing is

25



weakened. These processes are referred to as Hebbian learning and anti-Hebbian
learning respectively. With STP, as with LTP, simultaneous firing of two neurons
increases the synaptic weight between them. However, with STP the synaptic
weights decay to their initial strengths relatively soon after the firing.

STP is a plausible mechanism for binding [17]. There is evidence that STP in
the human brain provides support for LTP by reinforcing the activation levels in
the emerging CA [19]. STP has also been proposed as a basis for working memory
[8]. In CABot1, STP is used to bind concepts. STP acts as a means of temporarily
associating concepts in order that processing may take place. A class of neurons
called “fast bind neurons” permits short term connections. Certain CAs have fast
bind neurons that connect to cell assemblies in other subnets. Ordinarily the weight
of these connections is 0. When two neurons are active at the same time the weight
of these connections increases, thus binding the two cell assemblies. At each time
step that the two cell assemblies do not fire together, the weights decay until they
reach 0. For example, the stack subnet has a learning rate of 0.2, that is, when the
pre and post synaptic neurons are both firing together, the weights of the fast bind
synapses increases by 0.2 per time step.

STP via fast bind neurons is used in CABot1 to permit variable binding. Vari-
able binding is used in parsing, to bind nodes (existing CAs representing words) to
elements in the stack, and to bind slot fillers (words or phrases) to verb frames. For
example, if the command “Turn right” is received via the Crystal Space interface
the CA for the word “Turn” ignites in the verb network as does the 0th element in
the stacktop subnet. The 0th element in the stacktop subnet ignites the 0th node
in the stack subnet. As these the stack and verb CAs are firing together, fast bind
neurons in the stack are activated and STP increases the weights connecting them.
If fast bind neurons are sufficiently high in weight, ignition of one stack CA will
cause the bound word CA to ignite. If the fast-bind synapses are still of sufficiently
high weight then it is possible to retrieve the word at stack position 0 by activating
the stack CA (causing the word CA to ignite).

As STP is based on weights that automatically decay, and as the LTP weights
in CABot1 are not changed by learning, these bindings are automatically erased.

9 Cell Assemblies

A cell assembly (CA) is a set of neurons within a network that have high mutual
synaptic strength. As a result when a few of the neurons in the assembly fire,
mutually reinforcing activation tends to propagate to the rest of the CA. The CA
will then ”reverberate”, maintaining the activation pattern, even in the absence of
external stimuli. This reverberation serves not only to allow patterns of activity
to persist, but also facilitates the strengthening of links between neurons, aiding
learning.

Hebb suggested the CA as a basic unit of neural processing thus: “[A] repeated

26



stimulation of specific receptors will lead slowly to the formation of an ‘assembly’
of association-area cells which can act briefly as a closed system after stimulation
has ceased; this prolongs the time during which the structural changes of learning
can occur and constitutes the simplest instance of a representative process (image
or idea).” [11, pp 60]. Hebb suggested two types of memory, a “dual trace” sys-
tem. Instantly formed, evanescent memories (such as the short term memory of a
sequence of numbers) may be the result of a “reverberatory trace” whilst an assem-
bly is active. This trace will persist for a short time (on the order of half- to one
second) even when the stimulus is removed or changed. After decay the memory
will not be readily retrievable. In the second type of longer term memory, the re-
verberatory trace allows the memory to persist long enough for physical changes
to take place at the synaptic level, thus leading to a long term change in the associ-
ation between neurons. This has useful parallels with the psychological concept of
short term or working memory and long term memory respectively.

10 Processing with fLIF neurons

Much of the processing in CABot1 relies on the fact that the sub-networks in
CABot1, and indeed CABot1 as a whole, can function as a finite state automa-
ton. A finite state automaton (FSA) is a quintuple A = 〈Σ, S, S0, T, nF 〉 where:
Σ is the input alphabet. S is a finite, non-empty set of states.
In general, S0 ⊂ S is the set of start states. If S0 is not a singleton, then the au-
tomaton is non-deterministic. In CABot1, S0 is always a singleton.
T is a set of transition rules such that T : S × Σ → S.
F ⊂ S is a set of final states, such that no further transitions are applied.

In CABot1, the input alphabet is a set of text and visual inputs. The set of
states are the cell assemblies in the subnets. Transition rules are the weights of the
connections between these cell assemblies. In order to allow the transition between
different states, depending on input, a CA may send excitatory input to a number
of other CAs. This is enough to prime those CAs, but extra activation is required
from the inputs in order to cause one of the CAs to ignite.

A sequence topology is a subnet, or set of assemblies that cross subnets. In
these subnets, when a CA ignites it sends activation to the next CA and inhibition
previous CA. Ignition then spreads from one CA to another in sequence. It is
possible for the sequence to branch. A CA may send activation to two (or more)
CAs. This activation is enough to prime those CAs, but is not enough to make
either one ignite. One of these CAs will then receive activation from some other
CA or direct from input which is enough to ignite that CA. This in turn inhibits the
CA that was primed but did not ignite.

The general processing abilities of the Cell Assembly architecture are described
in [7] and [2].

27



11 Discussion

The CABot1 agent is an agent that can parse text commands in order to navigate
a simple, virtual 3D environment. The agent is novel in that its architecture is
entirely based on cell assemblies of fLIF neurons. These biologically plausible
ensembles of neurons permit “mental states” to arise and to persist for some time.
Mental states (in the form of cell assemblies) cause other mental states by means
of excitatory and inhibitory connections to other cell assemblies.

CABot1 is capable of parsing text commands. The stack permits it to parse
context free languages. The agent also has a visual system that is capable of recog-
nising objects and their positions within the scene. Parsed text commands and the
representation of the objects in vision permit the agent to determine the actions that
will allow it to carry out commands such as “go to the pyramid”.

CABot1 does not include a capacity for long term learning. The cell assemblies
are manually constructed and their interconnections hard coded to result in the
desired behaviour. It is possible, however, to add the capacity to learn through
the longer term alteration of weights. CABot1 is a relatively simple agent but it
potentially forms the basis of a much more ambitious neuro-cognitive architecture
that will allow a better understanding of embodied cognition via cell assemblies.

CABot1 is a software agent that is based solely on simulated neurons. The pur-
pose of this agent is to assist the user in this environment. The agent is embedded
in a 3D virtual game environment. The CABot1 agent is able to understand natural
language instructions from a user. These may be simple commands, such as ‘turn
left’ or higher level goals, such as ‘go to the pyramid’. CABot1 is able to carry out
appropriate actions in response to these instructions.

There is, however, a more fundamental reason for placing the CABot1 agent
in a virtual environment. CABot1 is, in effect, an initial step towards a neuro-
cognitive architecture, masquerading as a games agent. As such, the decision has
been taken to make CABot1 an embodied agent with a neural architecture.

An embodied agent is able to learn from its interactions with its environment.
CABot1 is ‘virtually’ embodied, in that is has no physical existence, but it receives
and processes sensory data via its visual inputs, and the ‘speech’ of the user via
text input. As a result, CABot1 is able to ground the symbols that appear in the
user’s speech in terms of the visual inputs it receives from the environment, thus
addressing the classic symbol grounding problem (see Section 12) [5, 3, 10].

The neural architecture of CABot1 is based on biologically plausible fatiguing,
leaky, integrate-and-fire (fLIF) neurons (see Section 8). Sets of neurons can be
used as Cell Assemblies (CAs), the neural basis of concepts (see Section 9). Cell
Assemblies were posited by Hebb [11] as the underlying structure of an element
of thought. CAs are tightly connected groups of neurons that spread activation
among themselves. Once a CA receives sufficient activation to ‘ignite’, the level
of activity in the assembly spreads and persists until fatigue, or an inhibitory signal

28



from outside the assembly, causes its activation to cease.
CABot1 uses CAs built from fLIF neurons to implement a number of different

modules. CABot1 has a modular architecture in order to facilitate development
and analysis. We do not claim that these modules necessarily have counterparts in
the human brain, however elements such as the retinal and V1 networks harness
known features of human vision.

12 Related Work

The CABot1 agent was designed to address one of the underlying problems of
language acquisition: the symbol grounding problem. According to Harnad [10],
“the meaning of... symbols comes from connecting the symbol system to the world
‘in the right way.’ But it seems apparent that the problem of connecting up with
the world in the right way is virtually coextensive with the problem of cognition
itself.”

Cangelosi and Harnad [4] propose two complementary methods of the acqui-
sition of meaning for symbols: sensorimotor toil versus symbolic theft. Symbolic
“theft” is the process of learning symbols by means of an interaction between a
knowledgeable and a naive individual (let us call them K and N respectively). N
can learn from K’s propositional statements. These propositional statements pro-
vide N with information about a symbol’s meaning. So N need never see a zebra
in order to learn what one is if K is able to define the zebra as ”a striped horse.”

However, suppose our N does not know the meaning of “striped”, or “horse”.
K may provide definitions such as “having a pattern of bars or lines of two or more
alternating colours” or “a fast, domesticated mammal”. Again, poor N may not
know what a “pattern”, a “line”, a “colour” or a “mammal” is. The problem is
one of infinite regress. This is, in short, the symbol grounding problem: symbolic
theft is only possible if N has an existing repertoire of grounded symbols. These
groundings can, therefore, only be obtained by sensorimotor toil.

CABot1 is, first and foremost, an agent that is designed to support users in 3D
game environments. However, given that the CABot1 agent can see its environment
and react to natural language commands, it is sufficiently embodied to form the
basis for a system that can learn from its environment through sensorimotor toil.
CABot1 does not do this at present, but there are plans to add the ability to learn
symbols from the environment.

References

[1] Dean V. Buonomano. Distinct functional types of associative long-term po-
tentiation inneocortical and hippocampal pyramidal neurons. J. Neurosci.,
19(16):6748–6754, aug 1999.

29



[2] Emma Byrne and Chris Huyck. Processing with cell assemblies. Neurocom-
puting - Under Review, 2009.

[3] Angelo Cangelosi, Alberto Greco, and Stevan Harnad. Symbol grounding
and the symbolic theft hypothesis. Simulating the Evolution of Language,
2002.

[4] Angelo Cangelosi and Stevan Harnad. The adaptive advantage of symbolic
theft over sensorimotor toil: Groundinglanguage in perceptual categories.
Evolution of Communication, 4:117—142, 2000.

[5] Angelo Cangelosi and Domenico Parisi. Simulating the Evolution of Lan-
guage. Springer, 1 edition, dec 2001.

[6] Patricia S. Churchland and Terrence J. Sejnowski. The Computational Brain
(Computational Neuroscience). MIT Press, new ed edition, mar 1994.

[7] Yulei Fan and Christian Huyck. Implementation of finite state automata using
flif neurons. In Seventh Conference on Cybernetics Systems, 2008.

[8] Stefano Fusi. Neuroscience: A quiescent working memory. Science,
319(5869):1495–1496, mar 2008.

[9] H. Ghalib and C. Huyck. A cell assembly model of sequential memory.
In Neural Networks, 2007. IJCNN 2007. International Joint Conference on,
pages 625–630, 2007.

[10] Stevan Harnad. The symbol grounding problem. Physica D, 42:335–346,
1990.

[11] D.O. Hebb. The Organization of Behaviour. J Wiley and Sons, 1949.

[12] Chris M. Hempel, Kenichi H. Hartman, X.-J. Wang, Gina G. Turrigiano,
and Sacha B. Nelson. Multiple forms of short-term plasticity at excitatory
synapses in rat medial prefrontal cortex. J Neurophysiol, 83(5):3031–3041,
may 2000.

[13] J.J. Hopfield. Neural networks and physical systems with emergent collective
computationalabilities. PNAS, 79(8):2554–2558, apr 1982.

[14] C. Huyck and V. Orengo. Information retrieval and categorisation using a cell
assembly network. Neural Computing and Applications, 14:282–289, 2005.

[15] Chris Huyck. Variable binding by synaptic strength change. Connection
Science, to appear, 2009.

[16] Christian Huyck. Creating hierarchical categories using cell assemblies. Con-
nection Science, 19(1):1–24, mar 2007.

30



[17] Christian Huyck. Variable binding by synaptic strength change. In Prepara-
tion, 2008.

[18] Christian Huyck and Yulei Fan. Parsing with flif neurons. In Proceedings of
Advances in Cybernetic Systems, 2007, Dublin, 2007.

[19] Stephen Kaplan, Martin Sonntag, and Eric Chown. Tracing recurrent activity
in cognitive elements (trace): a model oftemporal dynamics in a cell assembly
- connection science. Connection Science, 3(2):179–206, 1991.

[20] Andreas Knoblauch and Günther Palm. Pattern separation and synchroniza-
tion in spiking associative memories andvisual areas. Neural Networks, 14(6-
7):763–780, jul 2001.

[21] Wolfgang Maass and Christopher M. Bishop. Pulsed Neural Networks. MIT
Press, apr 2001.

[22] Mitchell P. Marcus. Theory of Syntactic Recognition for Natural Languages.
MIT Press, 1980.

[23] Warren McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biology, 5(4):115–133, dec
1943.

31


