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Abstract

Donald Hebb proposed a hypothesis that specialised groups
of neurons, called cell-assemblies (CAs), form the basis for
neural encoding of symbols in human mind. It is not clear,
however, how CAs can be re-used and combined to form new
representations as in classical symbolic systems. We demon-
strate that Hebbian learning of synaptic weights alone is not
adequate for the task, and that additional meta-control process
should be involved. We describe a proposed earlier architec-
ture implementing such a process, and then evaluate it by mod-
elling the probability matching phenomenon in a classical two-
choice task. The model and its results are discussed in view of
mathematical theory of learning, existing cognitive architec-
tures as well as some hypotheses about neural functioning in
the brain.

Keywords: Symbolic and sub-symbolic information pro-
cessing, cell-assemblies, decision-making, statistical learning,
conflict resolution, Hebbian learning, neural networks.

Introduction
There exists a variety of artificial systems and algorithms
for learning and adaptation. Most of them can be classi-
fied as sub-symbolic (e.g. Bayesian and neural networks) or
symbolic systems (e.g. rule-based systems). Known natu-
ral learning system use neural networks, and therefore can
be classified as using sub-symbolic computations. A distin-
guishing feature of human mind, however, is the ability to use
rich symbolic representations and language.

From information-theoretic point of view, symbols are el-
ements of some finite set that are used to encode discrete cat-
egories of sub-symbolic information. They enable commu-
nication of information about the environment or a complex
problem in a compact form. One obvious benefit is that with
language, one can learn not only from its own experience, but
also from experiences of others. The benefits of reading a
guidebook before going to a foreign country are obvious.

The duality between sub-symbolic and symbolic ap-
proaches has been studied in cognitive science. There ex-
ists sub-symbolic (i.e. connectionist), symbolic (e.g. SOAR,
Newell, 1990) and hybrid architectures (e.g. ACT–R, Ander-
son & Lebiere, 1998) for cognitive modelling. These differ-
ent approaches, however, have not yet explained where are
the symbols in the human mind, or how does the brain imple-
ment symbolic information processing?

It was proposed by Hebb (1949) that symbols are repre-
sented in the brain not by individual neurons, but by cor-
related activities of groups of cells, calledcell assemblies
(CAs). The CABOT project was set out to test and demon-
strate this idea in an engineering task by building an artificial

agent, situated in a virtual environment, capable of complex
symbolic processing, and implemented entirely using CAs of
simulated neurons. Some of the objectives have been already
achieved and reported elsewhere (e.g. Huyck & Belavkin,
2006; Huyck, 2007; Belavkin & Huyck, 2008). The archi-
tecture and some of these works will be discussed in the next
section.

This work is concerned with a particular aspect of the
project — a stochastic meta-control mechanism that modu-
lates Hebbian learning to allow for re-use and combination of
CAs into new representations, such as learning logical impli-
cations (i.e. procedural knowledge). As will be discussed in
this paper, this cannot be achieved by using Hebbian learning
mechanism alone. A unique contribution of this work is eval-
uation of the meta-control mechanism in a cognitive model
of the probability matching phenomenon in a two-choice ex-
periment due to (Friedman et al., 1964). The results suggest
that a proposed mechanism is a plausible model. Some neuro-
physiological studies and hypotheses about the brain circuitry
will be discussed supporting also biological plausibilityof the
architecture.

Cell-Assemblies as the Basis of Symbols
In this section, we outline some of the basic features of the
CABOT architecture as well as the CA hypothesis.

Neural Information Processing in CABOT

It is widely accepted that human cognition is the result of
activity of approximately 1011 neurons in the central nervous
system (CNS) that interact with each other as well as with
the outside world via the peripheral nervous system (PNS).
Biological neurons are complex systems, and they have been
modelled with various levels of details. In our system, we use
spiking, fatiguing, leaky, integrate and fire (fLIF) neurons.

The ‘integrate and fire’ component is based on the classical
idea that the neuron ‘fires’ (or spikes), if its action potential,
A, exceeds a certain threshold valueθ: y = 1 if A≥ θ; y = 0
otherwise. The action potential,A, is a function of the in-
ner product (integrator):〈x,w〉 = ∑k

i=1xi wi , wherex∈ R
k is

the stimulus vector (pre-synaptic), andw∈ R
k is the synaptic

weight vector of the neuron. Here,R
k is ak-dimensional real

vector space, wherek is the number of synapses to the neu-
ron. We use binary signals, and thereforex is k-dimensional
binary vector.

The ‘leaky’ property refers to a more complex (non-linear)
dependency of the action potential on the pre and post-



synaptic activity:

At+1 =
At

dt
+ 〈xt ,wt〉 , dt =

{

∞ if fired (yt = 1)
d ≥ 1 otherwise

Thus, the action potential is accumulated over several time
moments if the neuron does not fire. Parameterd ≥ 1 allows
for some of this activation to ‘leak’ away. This is the LIF
model (Maas & Bishop, 2001).

The ‘fatigue’ property refers to a dynamic threshold that is
defined as follows:

θt+1 = θt +Ft , Ft =

{

F+ ≥ 0 if fired (yt = 1)
F− < 0 otherwise

where valuesF+ andF− represent thefatigueand fatiguere-
coveryrates. Thus, if a neuron fires at timet, its threshold
increases, and it is less likely to fire at timet +1.

The fatiguing and leaky properties of the neural model al-
low for a non-trivial dynamics of the system. Repetitive stim-
ulation of excitatory synapses increases the probability of a
neuron to fire, even if the weights have small (positive) val-
ues. On the other hand, if the neuron fires repetitively, its
threshold increases reducing the chance of it firing again.
Thus, frequencies of pre- and post-synaptic activities areim-
portant factors in our system.

The weights,w, of a neuron can adapt according to the
compensatory learning rule (Huyck, 2007), which is an im-
plementation of the Hebbian principle (Hebb, 1949), where
wt+1 depends on the correlation between the pre-synaptic,xt ,
and the post-synaptic,yt , activities..

The described above properties are known characteristics
of biological neurons, and our model is a compromise be-
tween computational efficiency and biological plausibility
that is important for the emerging dynamics, discussed be-
low.

Neural Cell-Assemblies
Networks of neurons can be used as general function approx-
imators and applied in a variety of tasks including control,
pattern recognition and classification. Our system, CABOT,
uses recurrent, partially connected networks (a mesh) of fLIF
neurons with some pre-defined topology. The non-linearity
of the cells and the topology of the network leads to a com-
plex dynamics of the system similar to that in attractor and
recurrent nets (e.g. Hopfield, 1982), where some of the states
are more probable. These more ‘stable’ states can be charac-
terised by groups of neurons that remain significantly more
active than the other cells in the system. According to Hebb
(1949), we refer to such reverberating groups of cells ascell
assemblies(CAs).

In our system, the formation of CAs depends on the topol-
ogy of the network, and it is facilitated by the adaptation of
the weights between connected cells. Therefore, CAs can be
used for pattern classification of sensory stimuli (i.e. patterns
from external connections). This leads to functionalspecial-
isationof neurons in the network based on CAs — two cells

are functionally different if they belong to different CAs,even
though they are similar architecturally. Such specialisation is
observed in many neural networks, such as in self-organising
maps (Kohonen, 1982) and even in human brain. Note that
CAs are not necessarily disjoint sets of cells. A single cell
may be a member of several overlapping CAs. This feature
can be used to encode hierarchies of patterns (Huyck, 2007).

An important property of CAs’ dynamics is their persis-
tence. When enough neurons fire to start the reverberating
circuit, the CA ignites. Once ignited, the activity within the
cells in a CA may be sufficient to support itself. Many vari-
ables can contribute to this effect. In particular, the fatigue
and recovery rate parameters in our system effect persistence.

A CA’s activity does not only depend on the external pat-
terns, but also on the activity of other CAs in the system as
they can ignite and extinguish each other. Thus, the activ-
ity of several CAs can be characterised by different patterns
of ignition order and so on. It was demonstrated earlier that
such state transitions in the system of CAs are sufficiently
controllable to implement a broad range of tasks simulating
symbolic processing that will be discussed below.

Symbols and Human Cognition

Many models of biological neurons suggest that synaptic
weights may represent the memory for statistical and sub-
symbolic information of the stimulus. In particular, in many
algorithms for training artificial neural networks (e.g. Oja,
1982), the weight vectorw ∈ R

k corresponds to one of the
principal eigen vectors of the covariance matrixE{xx†} of
input vectorsx ∈ R

k that have been observed. On the other
hand, human cognition, and human knowledge in particular,
is encoded using symbolic representations, and the link be-
tween the symbols and neural models is less clear.

It was proposed by Hebb (1949) that CAs may be consid-
ered as the neural basis of symbols. Indeed, as discussed in
previous section, CAs can be easily mapped to some discrete
categories of the stimuli, and their activity patterns can model
serial processing typical for symbolic algorithms. Testing this
hypothesis experimentally is one of the main objectives of the
CABOT project. However, many challenges had to be over-
come to make a purely CA-based system performing some
non-trivial symbol processing task.

Previously, we reported a system performing a counting
task that consisted of 7 modules and 40 CAs (Huyck &
Belavkin, 2006). A more recent system, CABOT, is an ar-
tificial agent functioning in a virtual 3D environment and that
has a model of visual information processing, capable of nat-
ural language processing and action selection (Belavkin &
Huyck, 2008). One of the advantages of such a CA-based
architecture is that neural CAs, that we associate with sym-
bolic representations, integrate also all the sensory (i.e. sub-
symbolic) information, which can be a natural solution to the
symbol groundingproblem. An associated phenomenon of
symbolic processing isgrounding transfer— combination
and re-use of existing symbols to form new representations.



The re-use of symbols is also important for learning pro-
cedural knowledge. Indeed, a logical implication (i.e. a
production rule) may use combinations of symbols both in
the antecedent and the consequent, and generally there are
many more possible combinations than the number of rules
that are actually used. Hybrid architectures, such as ACT–R,
rely on statistical (sub-symbolic) computations to ‘filter’ out
the unwanted rules in the process called aconflict resolution.
In CABOT, associations between CAs are learnt due to the
Hebbian learning mechanism. However, as will be pointed
out below, this mechanism alone is not sufficient to imple-
ment learning of particular associations between CAs rep-
resenting existing symbols. To resolve this problem, an ad-
ditional stochastic meta-control mechanism, moderating the
Hebbian learning, has been introduced (Belavkin & Huyck,
2008). Here, we use this mechanism to model the probability
matching phenomenon in a classical two-choice experiment,
and this way evaluate its plausibility.

Stochastic Meta-Control of Learning
Two-Choice Task
Let x, y1 andy2 be three symbols, wherex represents a stim-
ulus (antecedent), andy1, y2 represent two alternative re-
sponses (consequents). Thus, we have a conflict between two
implicationsx→ y1 andx→ y2 shown on the diagram below

x
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y1 y2

This is a simplest two-choice task (a more complex two-
choice task may involve a set of different stimuli). The choice
of y1 or y2 is followed by some reinforcement eventE that
may have different utility values (e.g. a success after choos-
ing y1 or a failure after choosingy2). Learning the asso-
ciations between the choices and the utility values, such as
u(x → y2) ≤ u(x → y1), leads to a preference ofy2 . y1,
and therefore learning rulex → y1. If the reinforcement
event is not deterministic, but occurs with some probability
P(E) = π ∈ [0,1], then the preference ofy1 to y2 may also
be stochastic. It was demonstrated in many experiments with
animals and human participants that the frequency of choos-
ing y1 adapts to probabilityπ of reinforcement with high util-
ity — a phenomenon referred to as theprobability match-
ing. This phenomenon can be explained based on the theories
of optimal statistical decisions (Wald, 1950) and information
value (Stratonovich, 1965).

Principles of Statistical Learning
Let us consider an abstract system with inputx∈ X and out-
puty∈Y. Any learning system can be characterised by some
optimisation criteria and information constraints (Belavkin,
2009). Optimisation corresponds to some preference relation
on the input-output pairs(x,y) ∈ X×Y. In deterministic set-
ting, this preference relation can be represented by a utility

functionu : X×Y → R, while in stochastic setting one con-
siders conditional probability distributionsP(u | x,y) on val-
ues of utilityu ∈ R. If the utility function u = u(x,y) or the
joint distributionP(u,x,y) is known (and henceP(u | x,y)),
then given inputx, the optimal output ˆy∈Y is such that max-
imises the expected utility:

ŷ(x) = arg max
y

EP{u | x,y}

whereEP{·} denotes the expected value with respect to dis-
tribution P (in deterministic case,EP{u | x,y} coincides with
u = u(x,y)). Thegreedystrategy of choosing always the op-
timal output can be expressed as follows:

P(y | x) =

{

1 if y = ŷ(x)
0 otherwise

(1)

Information constraints mean that either the utility function
u= u(x,y) or the distributionP(u,x,y) is not known. Instead,
one has some data from past occurrences of(u,x,y) ∈ R×
X ×Y which can be used to estimate ˜u(x,y) ≈ EP{u | x,y}.
In this case, the greedy strategy for choosing the system’s
output is not optimal. The optimal policy is the following
exponential (‘soft-max’) distribution (e.g. Belavkin, 2009):

P̂(y | x) = Q(y | x) exp{β ũ(x,y)−Ψ(β,x)} (2)

whereQ(y | x) is the distribution corresponding to the mini-
mum of information (e.g. no data), parameterβ is related to
the amount of information available in data, andΨ(β,x) is de-
fined from the normalisation condition (i.e.eΨ(β,x) = ∑Y Q(y |
x) exp{β ũ(x,y)}). The above exponential distribution̂P is
obtained by solving the following variational problem

U(I) = sup
P
{EP{u} : I(P,Q) ≤ I}

where I(P,Q) is the Kullback-Leibler divergence of dis-
tribution P(u,x,y) from Q(u,x,y) representing information
amountI contained in the data. Parameterβ−1 appears in
the solution as the Lagrange multiplier that is related to infor-
mation constraintI by the derivative ofU(I):

β−1 = U ′(I)

The function above is decreasing so thatβ−1 → 0 (orβ → ∞)
as information increases. Note that the exponential distribu-
tion (2) converges to the greedy strategy (1) asβ → ∞.

Exponential distributions are often used for selecting the
output of a system in machine learning and stochastic optimi-
sation algorithms. It is also used in the ACT–R cognitive ar-
chitecture to model some stochastic properties of behaviour.
In particular, it was used in the ACT–R model of the two-
choice experiment, discussed below. However, the ‘tempera-
ture’ parameterβ−1 is usually set to some constant value or
determined from some arbitrary ‘annealing’ schedule. The
relation ofβ−1 to entropy of success in ACT–R was proposed
in (Belavkin, 2002/2003), and it was shown that it improves
the match between the models and data. The derivation of
optimal functionβ−1 = U ′(I) can be found in (Stratonovich,
1965) and more generally in (Belavkin, 2009).



Meta-Control of Hebbian Learning

The output of a neuron depends on its weight vectorw∈ R
k,

which, according to Hebb’s hypothesis, adapts according to
correlation between the pre- and post-synaptic activitiesx and
y in the past. It is attractive to conclude, therefore, that Heb-
bian learning is a particular implementation of the statistical
learning. However, the utility is clearly missing in this de-
scription of neural plasticity. What criteria does such a pro-
cess of changing the weights optimise? If in a two-choice
task a particular neuron in question belongs to cell-assembly
y2, then increasing its weights also increases the chance of
cell-assemblyy2 igniting following the stimulusx. However,
combinationx→ y2 may correspond to a low value of utility
(i.e. a failure), but correlation-based Hebbian learning only
increases the chance ofx → y2 igniting in the future and re-
duces the chance of the correct combinationx → y1. Thus,
some additional process should be involved in order to cor-
rect Hebbian learning, especially if symbolic representations,
formed earlier, are to be re-used.

The meta-control process involves two specialised mod-
ules: Value and Explore. Their connections in the system
are shown on the diagram below. Here,X = {x1, . . . ,xm} and

Value // Explore

��
x1
...

xm

//

//

//

y1
...

yn

Figure 1: Components and connections of the Value and Ex-
plore modules controlling Hebbian learning of connections
between CAs in modulesX andY. Solid and dashed arrows
show excitatory and inhibitory connections respectively.

Y = {y1, . . . ,yn} are sets of CAs representingm stimuli and
n responses respectively. Initially, there are excitatory con-
nections from every CA inX to all CAs inY, which means
that all pairs(x,y) (i.e. all rulesx→ y) are equally preferred.
Thus, given inputx∈ X, any responsey∈Y can be selected.
However, due to Hebbian learning, the connectionx → y is
reinforced if a particular pair of CAs ignite together, giving
the pair a higher chance to ignite together in the future. Thus,
simply by virtue of Hebbian learning, the system can learn
eventually to prefer some random pairs. The purpose of the
Value and Explore modules is to make this process selective
according to the utility value of the feedback.

The output activity of the Value module represents the util-
ity valuesu associated with the pair(x,y) selected on the pre-
vious step. The input of the module can be configured ac-
cording to the application (e.g. sensory inputs from the envi-
ronment).

The purpose of the Explore module is to randomise the ac-

tivity of the response CAs (i.e. CAs in setY). The Explore
module contains cells that can be active without any external
stimulation due to spontaneous activation. The cells in the
Explore module send excitatory signals to all CAs inY, and
the weights of these connections do not change. Thus, the
activity in the Explore module can trigger randomly any re-
sponse CA, and this process does not have a memory. The
Explore module implements the effect of parameterβ−1 in
the exponential distribution.

The Value module sends inhibitory connections to the Ex-
plore module, so that high activity of the Value cells may shut
down the activity in the Explore module. As a result, any re-
sponse CA that has been ignited in setY will persist longer
because it is less likely to be shut down by another CA. Such
a connectivity implements the following learning scheme: If
a particular pair(x,y) results in a high utility value, then high
activity of the Value module inhibits the Explore module, and
the responsible(x,y) pair is allowed to persist longer, and the
x→ y connection increases relative to others due to Hebbian
learning.

Learning the ‘correct’ rules (subsetR⊂ X×Y) contributes
to a better performance of the system (i.e. higher expected
utility). As a consequence, the average activity of the Value
module increases with time, while the activity of the Explore
module decreases. This dynamics corresponds also to a de-
crease of parameterβ−1 as information increases making the
system less random and more deterministic.

Modelling Probability Matching
To test how adequately the described above mechanism can
represent properties of human cognition, we evaluate its per-
formance against data from a classical two-choice experiment
due to Friedman et al. (1964). The choice of this dataset was
motivated not only by its quality and detailed description of
the procedures, but also because it was used to ‘calibrate’
stochastic properties of other cognitive architectures, such as
ACT–R (Anderson & Lebiere, 1998). The complete descrip-
tion of the experiment and data can be found in the original
paper (Friedman et al., 1964). Here we give a basic outline.

Experiment Description and Previous Work
In this experiment, participants were asked to select one of
two responses on presentation of a stimulus. After the re-
sponse was selected, a reinforcement eventE occurred with
probability P(E) = π that did not depend on the response.
Each participant had to perform this task in three sessions,
each session consisting of 8 blocks, each block consisted of
48 trials. The probabilityP(E) = π changed between each
48–trial block. This paper will report only simulations of re-
sults in Sessions 1 and 2. In these two sessions, blocks 1, 3,
5 and 7 hadP(E) = .5, and blocks 2, 4, 6, and 8 were with
P(E)∈ {.1, .2, .3, .4, .6, .7, .8, .9} that was assigned according
to a random pattern. Thus, probabilityP(E) = π was alter-
nating between .5 and some value above or below .5 between
48-trial blocks. The data recorded the number of times Re-
sponse 1 was chosen in each 48-trial block.
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Figure 2: Frequency of response (ordinates) as a function
of the probability of reinforcing this response (abscissae).
Points and error bars represent average response and stan-
dard deviations in 48–trials of two-choice task from 80 partic-
ipants, reported in (Friedman et al., 1964). Dashed line shows
frequency of the reinforcing event itself.

Figure 2 shows the results of these experiments, reported
by Friedman et al. (1964). The charts show frequencies of
Response 1,F(R), and reinforcement events,F(E), as func-
tions of the control probabilityP(E) = π. One can see that
the F(E) curve showing the frequency of the reinforcement
event approximates the identity functionF(E) = P(E). The
distribution of the response frequencyF(R) closely matches
the probabilityP(E), but it differs significantly at the lower
and higher ends of the range: WhenP(E) is low (π = .1),
the participants overestimate the probability (F(R) ≥ P(E));
whenP(E) is high (π = .9), the participants underestimate it
(F(R)≤P(E)). Thus, the response of the participants appears
to be less certain than the reinforcing event.

As suggested by Anderson and Lebiere (1998), this ex-
perimental evidence indicates against using the greedy strat-
egy (1) for choosing the response. The data was modelled
in ACT–R by sampling responses from exponential distribu-
tion (2) with someβ−1 > 0. We now describe a model of this
experiment, implemented in CABOT.

Model Description

The model used architecture, shown on Figure 1, where mod-
uleX consisted of CAs representing one or more stimuli, and
moduleY contained two CAs representing two alternative re-
sponses. There were excitatory connections with low weights
from moduleX to all CAs in moduleY. The weights on these
connections, however, could adapt according to Hebbian rule
increasing associationsx → y between active CAs. The fa-
tigue and leak parameters of theY network were set in such a
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Figure 3: Comparison of response frequency produced by
the CABOT model with response frequency by participants
in (Friedman et al., 1964). RMSE=8.937%.

way that CAs ignite only when an external stimuli are present.
The CAs inY inhibited each other so that only one of the CAs
in Y was active at any moment. The Explore module had ex-
citatory connections with a small proportion of cells in mod-
uleY. These connections were distributed uniformly, and the
weights did not adapt. Spontaneous activation in the Explore
module could randomly trigger any of the two response CAs
in moduleY. The activity of the Explore module could be
inhibited by the output activity from the Value module that
was triggered in each trial according to probabilityP(E) = π
of the reinforcement event, controlled by the experimentalse-
quence.

When the Explore module is inhibited by reinforcing ac-
tivity of the Value module, the active pair(x,y) is allowed to
persist longer strengthening the connectionsx→ y relative to
other connections. We found that the robustness of this ef-
fect depends on the time (i.e. number cycles) these CAs are
allowed to persist. In this model, it takes approximately be-
tween 10–20 cycles for a response CA inY to ignite, and if the
Explore module is active, then the response CA may change
during another 10–20 cycles. In this experiment, the system
ran for 100 cycles per trial which was sufficient for the the
control of learning to have robust effect. The complete code
of the simulation will be available online from the CABOT

project website.

Results

The model was used to simulate Sessions 1 and 2 of eight
48-trial blocks each with variable control probabilitiesπ
(Friedman et al., 1964). The results comparing response fre-
quency of the model with the data are shown on Figure 3. The
model approximates the data fairly well (RMSE=8.937%)



showing the probability matching effect that also overesti-
mates and underestimates the low and high value of the con-
trol probability π respectively. Note that unlike the ACT–R

model, where the estimated parameterβ−1 in the exponential
distribution was constant (Anderson & Lebiere, 1998), the
activity of the Explore module randomising the response is
dynamic.

Conclusions
In this paper, we discussed the CABOT architecture some
challenges associated with implementing the CA hypothesis
of symbolic processing in the brain. The problem of re-use
and combination of symbols, particularly in learning proce-
dural knowledge, pointed at one significant shortcoming of
the standard Hebbian learning mechanism — adaptation of
weights based purely on correlations does not take into ac-
count the optimisation criteria that a system may have to sat-
isfy. To resolve this problem, a stochastic meta-control based
on utility feedback was introduced into the system.

It is attractive to speculate about the existence of the Value
and Explore modules in the brain. Some researchers have
proposed that tonically active cholinergic neurons in the basal
ganglia and striatal complex play an important role in con-
flict resolution and learning procedural knowledge (Granger,
2006). These neurons account for a small proportion of the
connections that are quite uniform and non-topographic, and
the activity of these neurons was suggested to play the role
of stochastic noise, similar to the activity of cells in the Ex-
plore module (see Fig. 1). Interestingly, the activation ofthe
tonically active cholinergic neurons is inhibited by the acti-
vation from the reward path, similar to the function of the
Value module in our system. Other studies of mechanisms
for exploratory behaviour in the brain are also in favour of
the exponential distribution model (Daw, O’Doherty, Dayan,
Seymour, & Dolan, 2006).

Setting these speculations aside, this work has demon-
strated that the proposed mechanism can be used for con-
trolling Hebbian learning in biologically inspired neuralnet-
works. The mechanism allows for selective learning of con-
nections between specialised groups of cells (CAs), and fol-
lowing Hebb’s hypothesis it shows not only that CAs can in-
deed be associated with symbols, but also shows how such
representations can be re-used and combined to learn new
knowledge. Simulation of the probability matching effect has
demonstrated that the mechanism is also a plausible cognitive
model. We anticipate that the proposed architecture can also
be used to model other psychological phenomena, such as the
effect of reinforcement values on speed of learning, and this
is one possible direction of our future research.
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