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Abstract agent, situated in a virtual environment, capable of corple

: o symbolic processing, and implemented entirely using CAs of
Donald Hebb proposed a hypothesis that specialised groups " L
of neurons, called cell-assemblies (CAs), form the basis for simulated neurons. Some of the objectives have been already
neural encoding of symbols in human mind. It is not clear, achieved and reported elsewhere (e.g. Huyck & Belavkin,

however, how CAs can be re-used and combined to form new >q0g: Huyck, 2007; Belavkin & Huyck, 2008). The archi-
representations as in classical symbolic systems. We demon- ' ’ : . " ’ .
strate that Hebbian learning of synaptic weights alone is not tecture and some of these works will be discussed in the next

adequate for the task, and that additional meta-control process section.

should be involved. We describe a proposed earlier architec- This work is concerned with a particular aspect of the
ture implementing such a process, and then evaluate it by mod-

elling the probability matching phenomenon in a classical two-  Project — a stochastic meta-control mechanism that modu-
choice task. The model and its results are discussed in view of lates Hebbian learning to allow for re-use and combination o
mathematical theory of learning, existing cognitive architec-  cAs into new representations, such as learning logicaliimpl

tures as well as some hypotheses about neural functioning in : . : . :
the brain. yp 9 cations (i.e. procedural knowledge). As will be discussed i

Keywords: Symbolic and sub-symbolic information pro-  thiS paper, this cannot b_e achievec_i by_ using I—!ebbian_le@rnin
cessing, cell-assemblies, decision-making, statistical learning, mechanism alone. A unique contribution of this work is eval-

conflict resolution, Hebbian learning, neural networks. uation of the meta-control mechanism in a cognitive model
. of the probability matching phenomenon in a two-choice ex-
Introduction periment due to (Friedman et al., 1964). The results suggest

There exists a variety of artificial systems and algorithmsthat a proposed mechanism is a plausible model. Some neuro-
for learning and adaptation. Most of them can be classiphysiological studies and hypotheses about the brainitriycu
fied as sub-symbolic (e.g. Bayesian and neural networks) awill be discussed supporting also biological plausibitfythe
symbolic systems (e.g. rule-based systems). Known natwarchitecture.
ral learning system use neural networks, and therefore can ) )
be classified as using sub-symbolic computations. A distin-  C€ll-Assemblies asthe Basis of Symbols
guishing feature of human mind, however, is the ability te us In this section, we outline some of the basic features of the
rich symbolic representations and language. CABoOT architecture as well as the CA hypothesis.

From information-theoretic point of view, symbols are el- ) o
ements of some finite set that are used to encode discrete cAfeural Information Processingin CABOT
egories of sub-symbolic information. They enable commu-t is widely accepted that human cognition is the result of
nication of information about the environment or a complexactivity of approximately 18 neurons in the central nervous
problem in a compact form. One obvious benefit is that withsystem (CNS) that interact with each other as well as with
language, one can learn not only from its own experience, buhe outside world via the peripheral nervous system (PNS).
also from experiences of others. The benefits of reading Biological neurons are complex systems, and they have been
guidebook before going to a foreign country are obvious. modelled with various levels of details. In our system, we us

The duality between sub-symbolic and symbolic ap-spiking, fatiguing, leaky, integrate and fire (fLIF) neuson
proaches has been studied in cognitive science. There ex- The ‘integrate and fire’ component is based on the classical
ists sub-symbolic (i.e. connectionist), symbolic (e.@AR, idea that the neuron ‘fires’ (or spikes), if its action potaint
Newell, 1990) and hybrid architectures (e.gc AR, Ander- A, exceeds a certain threshold valley=1if A>0;y=0
son & Lebiere, 1998) for cognitive modelling. These differ- otherwise. The action potentiad, is a function of the in-
ent approaches, however, have not yet explained where areer product (integrator)(x,w) = zik:lxi wi, wherex € R¥ is
the symbols in the human mind, or how does the brain implethe stimulus vector (pre-synaptic), awd= R is the synaptic
ment symbolic information processing? weight vector of the neuron. HergK is ak-dimensional real

It was proposed by Hebb (1949) that symbols are reprevector space, whereis the number of synapses to the neu-
sented in the brain not by individual neurons, but by cor-ron. We use binary signals, and therefaris k-dimensional
related activities of groups of cells, calle#ll assemblies binary vector.
(CAs). The CABOT project was set out to test and demon-  The ‘leaky’ property refers to a more complex (non-linear)
strate this idea in an engineering task by building an adific dependency of the action potential on the pre and post-



synaptic activity: are functionally different if they belong to different CAsjen

o though they are similar architecturally. Such specialsais
A oW, = { o0 if fired (y; = 1) observed in many neural networks, such as in self-organisin
o T d>1 otherwise maps (Kohonen, 1982) and even in human brain. Note that

. N . CAs are not necessarily disjoint sets of cells. A single cell
Thus, the action potential is accumulated over several tlm%ay be a member of several overlapping CAs. This feature
moments if thg neuron QOes n?t f|r(?. Paramdtgrl_ allows can be used to encode hierarchies of patterns (Huyck, 2007).
for some of this activation to ‘leak’ away. This is the LIF An important property of CAs' dynamics is their persis-
model (Maas & Bishop, 2001). ' .
e , ._tence. When enough neurons fire to start the reverberating
The ‘fatigue’ property refers to a dynamic threshold thatis ;- o A ignites. Once ignited, the activity withinet
fi follows: ! L ’ . .
defined as follows cells in a CA may be sufficient to support itself. Many vari-
61— 6 [ F.>0 iffired ( =1) ables can contribute to this effect. In particular, thegfiagi
h1=8+hR, h= F_ <0 otherwise and recovery rate parameters in our system effect persisten
) ) A CA's activity does not only depend on the external pat-
where values,. andF_ represent théatigueand fatiguere-  terns, but also on the activity of other CAs in the system as
coveryrates. Thus, if a neuron fires at timgits threshold  they can ignite and extinguish each other. Thus, the activ-
increases, and itis less likely to fire at time 1. ity of several CAs can be characterised by different pastern
The fatiguing and leaky properties of the neural model al-of ignition order and so on. It was demonstrated earlier that
low for a non-trivial dynamics of the system. Repetitiversti  sych state transitions in the system of CAs are sufficiently
ulation of excitatory synapses increases the probabifi 0 controllable to implement a broad range of tasks simulating
neuron to fire, even if the weights have small (positive) Va"symbolic processing that will be discussed below.
ues. On the other hand, if the neuron fires repetitively, its
threshold increases reducing the chance of it firing againSymbols and Human Cognition

Thus, frequencies of pre- and post-synaptic activitiesrare ) i _
portant factors in our system. Many models of biological neurons suggest that synaptic

The weights,w, of a neuron can adapt according to theweightg may represent the memory for staFisticaI_and sub-
compensatory learning rule (Huyck, 2007), which is an im_symbphc |nformat_|o.n of th.e. spmulus. In particular, in nyan
plementation of the Hebbian principle (Hebb, 1949), wheredlgorithms for_tralnmg art|f|C|akI neural networks (e.g. &Qj
W1 depends on the correlation between the pre-synaptic, 1982), the weight vectaw € R corresponds to oneT of the
and the post-synaptig, activities.. prmupal eigen velt(:tors of the covariance matExxx'} of

The described above properties are known characteristid8Put vectorsx € R that have been observed. On the other
of biological neurons, and our model is a compromise befand. human cognition, and human knowledge in particular,
tween computational efficiency and biological plausipilit IS €ncoded using symbolic representations, and the link be-
that is important for the emerging dynamics, discussed beWeen the symbols and neural models is less clear.

A1 =

low. It was proposed by Hebb (1949) that CAs may be consid-
_ ered as the neural basis of symbols. Indeed, as discussed in
Neural Cell-Assemblies previous section, CAs can be easily mapped to some discrete

Networks of neurons can be used as general function approxategories of the stimuli, and their activity patterns cadet
imators and applied in a variety of tasks including control,serial processing typical for symbolic algorithms. Tegtinis
pattern recognition and classification. Our system, @&B  hypothesis experimentally is one of the main objectivesef t
uses recurrent, partially connected networks (a mesh)lgf fL CABOT project. However, many challenges had to be over-
neurons with some pre-defined topology. The non-linearit)come to make a purely CA-based system performing some
of the cells and the topology of the network leads to a comnon-trivial symbol processing task.
plex dynamics of the system similar to that in attractor and Previously, we reported a system performing a counting
recurrent nets (e.g. Hopfield, 1982), where some of thesstatdask that consisted of 7 modules and 40 CAs (Huyck &
are more probable. These more ‘stable’ states can be charaBelavkin, 2006). A more recent system, CAB is an ar-
terised by groups of neurons that remain significantly mordificial agent functioning in a virtual 3D environment anéth
active than the other cells in the system. According to Hebthas a model of visual information processing, capable of nat
(1949), we refer to such reverberating groups of cellsadls  ural language processing and action selection (Belavkin &
assembliegCASs). Huyck, 2008). One of the advantages of such a CA-based
In our system, the formation of CAs depends on the topol-architecture is that neural CAs, that we associate with sym-
ogy of the network, and it is facilitated by the adaptation ofbolic representations, integrate also all the sensory giub-
the weights between connected cells. Therefore, CAs can ®ymbolic) information, which can be a natural solution te th
used for pattern classification of sensory stimuli (i.etqras ~ symbol groundingoroblem. An associated phenomenon of
from external connections). This leads to functiosgdcial-  symbolic processing igrounding transfe— combination
isation of neurons in the network based on CAs — two cellsand re-use of existing symbols to form new representations.



The re-use of symbols is also important for learning pro-functionu: X xY — R, while in stochastic setting one con-
cedural knowledge. Indeed, a logical implication (i.e. asiders conditional probability distributio¥u | x,y) on val-
production rule) may use combinations of symbols both inues of utilityu € R. If the utility functionu = u(x,y) or the
the antecedent and the consequent, and generally there goént distribution P(u,x,y) is known (and henc®(u | x,y)),
many more possible combinations than the number of rulethen given inpuk, the optimal outpuy € Y is such that max-
that are actually used. Hybrid architectures, such @s#, imises the expected utility:
rely on statistical (sub-symbolic) computations to ‘filteut
the unwanted rules in the process callezbaflict resolution
In CABOT, associations between CAs are learnt due to th;N

Hebbian learning mechanism. However, as will be pointe ribution P (in deterministic caseEp{u | x,y} coincides with

out ?ellow, .th's Tech?mslm alone .'St.nOt Stl)mt'vcv'em tg'&mple-u = u(x,y)). Thegreedystrategy of choosing always the op-
ment learning of particular associations between CAS repg.; o tout can be expressed as follows:

resenting existing symbols. To resolve this problem, an ad-
ditional stochastic meta-control mechanism, moderatieg t P(y| x) = { 1 if y:)“/(x) 1)
Hebbian learning, has been introduced (Belavkin & Huyck, 0 otherwise

2008).. Here, we use thle mechanl.sm to mode! the prOb?b"'ty Information constraints mean that either the utility fuomt
matching phenomenon in a classical two-choice experiment, _ x v) or the distributiorP(u,x, ) is not known. Instead,
and this way evaluate its plausibility. one has some data from past occurrence@uof,y) € R x

X x'Y which can be used to estimatéx;y) ~ Ep{u | x,y}.

In this case, the greedy strategy for choosing the system’s

§(x) = arg masEp{u| x,y}

hereEp{-} denotes the expected value with respect to dis-

Stochastic Meta-Control of Learning

Two-Choice Task output is not optimal. The optimal policy is the following
Let x, y; andy, be three symbols, wheserepresents a stim- exponential (‘soft-max’) distribution (e.g. Belavkin, @®):
ulus (antecedent), angh, y» represent two alternative re- If’(y\x) — Q(y| X) expB(x,y) — W(B,x)} @)

sponses (consequents). Thus, we have a conflict between two
implicationsx — y; andx — y» shown on the diagram below whereQ(y | x) is the distribution corresponding to the mini-
mum of information (e.g. no data), paramefeis related to
X the amount of information available in data, a8H(pB, x) is de-
/ \ fined from the normalisation condition (i.€*®* = 5y Q(y |
x) exp{B(x,y)}). The above exponential distributid? is
y1 Y2 obtained by solving the following variational problem

This is a simplest two-choice task (a more complex two- U(l) =sup(Ep{u} : 1(PQ) <1}

choice task may involve a set of different stimuli). The ceoi P

of y; ory, is followed by some reinforcement eveltthat ~ where | (P,Q) is the Kullback-Leibler divergence of dis-
may have different utility values (e.g. a success after shoo tribution P(u,x,y) from Q(u,x,y) representing information
ing y1 or a failure after choosing,). Learning the asso- amountl contained in the data. Paramefer* appears in
ciations between the choices and the utility values, such a#e solution as the Lagrange multiplier that is related torin
u(x — y2) < u(x — y1), leads to a preference gb < yi, mation constraint by the derivative ot (I):

and therefore learning rulg — y;. If the reinforcement Bl= u(l)

event is not deterministic, but occurs with some probapbilit

P(E) = e [0,1], then the preference of; to y» may also  The function above is decreasing so that — 0 (or 3 — )

be stochastic. It was demonstrated in many experiments witas information increases. Note that the exponential istri
animals and human participants that the frequency of choogion (2) converges to the greedy strategy (1Bas .

ing y; adapts to probabilityr of reinforcement with high util- Exponential distributions are often used for selecting the
ity — a phenomenon referred to as thebability match-  output of a system in machine learning and stochastic optimi
ing. This phenomenon can be explained based on the theoriggtion algorithms. It is also used in theeA-rR cognitive ar-

of optimal statistical decisions (Wald, 1950) and inforimat ~ chitecture to model some stochastic properties of behaviou

value (Stratonovich, 1965). In particular, it was used in the &R model of the two-
o o ] choice experiment, discussed below. However, the ‘tempera
Principles of Statistical L earning ture’ parametef ! is usually set to some constant value or

Let us consider an abstract system with inpat X and out-  determined from some arbitrary ‘annealing’ schedule. The
puty € Y. Any learning system can be characterised by someelation of3 1 to entropy of success in@—R was proposed
optimisation criteria and information constraints (Béday  in (Belavkin, 2002/2003), and it was shown that it improves
2009). Optimisation corresponds to some preferenceoelati the match between the models and data. The derivation of
on the input-output pairgx,y) € X x Y. In deterministic set-  optimal functionB~* = U’(l) can be found in (Stratonovich,
ting, this preference relation can be represented by ayutili 1965) and more generally in (Belavkin, 2009).



M eta-Control of Hebbian L earning tivity of the response CAs (i.e. CAs in s¢}. The Explore
The output of a neuron depends on its weight veater Rk module contains cells that can be active without any externa

which, according to Hebb’s hypothesis, adapts according t(§t|mulat|on due to spontaneous activation. The cells in the

correlation between the pre- and post-synaptic activiteasd Explor(_a module send excitato_ry signals to all CAsfinand
y in the past. It is attractive to conclude, therefore, thab-He the weights of these connections do not change. Thus, the

bian learning is a particular implementation of the stigdt activity in the Explqre module can trigger randomly any re-
learning. However, the utility is clearly missing in this-de sponse CA, and this process does not have a memory. The

scription of neural plasticity. What criteria does such apro Explore mod_ule |_mp_|em_ents the effect of paramdget in
cess of changing the weights optimise? If in a two—choicethe exponential d|str|but|on.. . .

task a particular neuron in question belongs to cell-asgemb The Value module sgnds |qh!bltory connections to the Ex-
y2, then increasing its weights also increases the chance Qlore module., S0 Fhat high activity of the Value cells maytshu
cell-assemblyy, igniting following the stimulusx. However, own the activity in the EXP'Or_e quule. _AS a “_’S“'L any re-
combinationx — y» may correspond to a low value of utility sponse CA that hqs been ignited in ¥ewill persist longer
(i.e. a failure), but correlation-based Hebbian learninty o because 't. IS Ie;s likely to be shut dO.W” by an.other CA. Such
increases the chance of— y» igniting in the future and re- 2 connectivity !mplements t_he foI_Iowmg.Iearnlng schemfe: I
duces the chance of the correct combinatior y1. Thus, a pgrtlcular pai(x,y) results ina h|gh utility value, then high
some additional process should be involved in order to cor2ctivity of the Value module inhibits the Explore moduledan

rect Hebbian learning, especially if symbolic represeote the responsibléx, y) pair is allowed to persist longer, and the
formed earlier. are to be re-used X — Yy connection increases relative to others due to Hebbian

) o learning.

The meta-control process involves two specialised mod- ; . , .

ules: Value and Explore. Their connections in the systerr% Le’;\rnmg thef correct rulfesh(subslétc X'xY)h(?oL\trlbutes d

are shown on the diagram below. HeXe= {xy,...,Xm} and °a etter performance of the system (|.e.. ngher expecte
utility). As a consequence, the average activity of the ®alu
module increases with time, while the activity of the Explor
module decreases. This dynamics corresponds also to a de-

Explore‘ crease of paramet@r ! as information increases making the

system less random and more deterministic.

y1 M odelling Probability Matching
: To test how adequately the described above mechanism can
Yn represent properties of human cognition, we evaluate its pe

formance against data from a classical two-choice expatime

i _ i due to Friedman et al. (1964). The choice of this dataset was
Figure 1: Components and connections of the Value and Exs,qivated not only by its quality and detailed descriptidn o

plore modules_ controlling Hebbian I_earning of connectionsy,e procedures, but also because it was used to ‘calibrate’

between CAs in modules andY. Solid and dashed arrows  gyochastic properties of other cognitive architectureshsas

show excitatory and inhibitory connections respectively. ACT-R (Anderson & Lebiere, 1998). The complete descrip-
tion of the experiment and data can be found in the original

Y = {y1,...,yn} are sets of CAs representimgstimuli and  paper (Friedman et al., 1964). Here we give a basic outline.
n responses respectively. Initially, there are excitatamg-c

nections from every CA iX to all CAs inY, which means EXxperiment Description and Previous Work
that all pairs(x,y) (i.e. all rulesx — y) are equally preferred. In this experiment, participants were asked to select one of
Thus, given inpuk € X, any responsg < Y can be selected. two responses on presentation of a stimulus. After the re-
However, due to Hebbian learning, the connectior yis  sponse was selected, a reinforcement e#eatcurred with
reinforced if a particular pair of CAs ignite together, gigi  probability P(E) = 1t that did not depend on the response.
the pair a higher chance to ignite together in the future.sThu Each participant had to perform this task in three sessions,
simply by virtue of Hebbian learning, the system can learneach session consisting of 8 blocks, each block consisted of
eventually to prefer some random pairs. The purpose of thasg trials. The probability?(E) = 1t changed between each
Value and Explore modules is to make this process selectivgg—trial block. This paper will report only simulations @f-r
according to the utility value of the feedback. sults in Sessions 1 and 2. In these two sessions, blocks 1, 3,
The output activity of the Value module represents the util-5 and 7 hadP(E) = .5, and blocks 2, 4, 6, and 8 were with
ity valuesu associated with the palx,y) selected on the pre- P(E) € {.1,.2,.3,.4,.6,.7,.8,.9} that was assigned according
vious step. The input of the module can be configured acto a random pattern. Thus, probabil(E) = T was alter-
cording to the application (e.g. sensory inputs from thdé-env nating between .5 and some value above or below .5 between
ronment). 48-trial blocks. The data recorded the number of times Re-
The purpose of the Explore module is to randomise the acsponse 1 was chosen in each 48-trial block.
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Figure 2: Frequency of response (ordinates) as a functioRigure 3: Comparison of response frequency produced by
of the probability of reinforcing this response (absci3sae the CABOT model with response frequency by participants
Points and error bars represent average response and stam{Friedman et al., 1964). RMSE=8.937%.

dard deviations in 48—trials of two-choice task from 80 jgart

ipants, reported in (Friedman et al., 1964). Dashed linevsho o o
frequency of the reinforcing event itself. way that CAs ignite only when an external stimuli are present

The CAs inY inhibited each other so that only one of the CAs
in' Y was active at any moment. The Explore module had ex-
Figure 2 shows the results of these experiments, reportetitatory connections with a small proportion of cells in mod
by Friedman et al. (1964). The charts show frequencies otileY. These connections were distributed uniformly, and the
Response 1k (R), and reinforcement eventSE), as func-  weights did not adapt. Spontaneous activation in the Erplor
tions of the control probabilitf?(E) = . One can see that module could randomly trigger any of the two response CAs
the F(E) curve showing the frequency of the reinforcementin moduleY. The activity of the Explore module could be
event approximates the identity functi&ifE) = P(E). The inhibited by the output activity from the Value module that
distribution of the response frequen€yR) closely matches was triggered in each trial according to probabif§g) = 1t
the probabilityP(E), but it differs significantly at the lower of the reinforcement event, controlled by the experimeseal
and higher ends of the range: WhB(E) is low (= .1), quence.
the participants overestimate the probabilf(R) > P(E)); When the Explore module is inhibited by reinforcing ac-
whenP(E) is high 1= .9), the participants underestimate it tivity of the Value module, the active paix,y) is allowed to
(F(R) <P(E)). Thus, the response of the participants appearpersist longer strengthening the connectirns y relative to
to be less certain than the reinforcing event. other connections. We found that the robustness of this ef-
As suggested by Anderson and Lebiere (1998), this exfect depends on the time (i.e. number cycles) these CAs are
perimental evidence indicates against using the greedy str allowed to persist. In this model, it takes approximately be
egy (1) for choosing the response. The data was modelletiveen 10—-20 cycles for a response CAito ignite, and if the
in AcT-R by sampling responses from exponential distribu-Explore module is active, then the response CA may change
tion (2) with some3~1 > 0. We now describe a model of this during another 10-20 cycles. In this experiment, the system

experiment, implemented in CA®. ran for 100 cycles per trial which was sufficient for the the
Lo control of learning to have robust effect. The complete code
Model Description of the simulation will be available online from the C/AB

The model used architecture, shown on Figure 1, where modsroject website.
ule X consisted of CAs representing one or more stimuli, and
moduleY contained two CAs representing two alternative re-R%‘u”S

sponses. There were excitatory connections with low weightThe model was used to simulate Sessions 1 and 2 of eight
from moduleX to all CAs in moduléeY. The weights on these 48-trial blocks each with variable control probabilities
connections, however, could adapt according to Hebbian rul(Friedman et al., 1964). The results comparing response fre
increasing associations— y between active CAs. The fa- quency of the model with the data are shown on Figure 3. The
tigue and leak parameters of tHaenetwork were setin such a model approximates the data fairly well (RMSE=8.937%)



showing the probability matching effect that also overesti Belavkin, R. V. (2003). On emotion, learning and uncer-
mates and underestimates the low and high value of the con- tainty: A cognitive modelling approachPhD thesis, The
trol probability T respectively. Note that unlike thedd-R University of Nottingham, Nottingham, UK.

model, where the estimated paramddet in the exponential  Belavkin, R. V. (2009). Bounds of optimal learning. In
distribution was constant (Anderson & Lebiere, 1998), the 2009 IEEE International Symposium on Adaptive Dynamic
activity of the Explore module randomising the response is Programming and Reinforcement Learniap. 199-204).

dynamic. Nashville, TN, USA: IEEE.
. Belavkin, R. V., & Huyck, C. (2008). Emergence of rules
Conclusions in cell assemblies of fLIF neurons. Fhe 18th European

In this paper, we discussed the CAB architecture some Conference on Artificial Intelligence.

challenges associated with implementing the CA hypothesi®aw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., &
of symbolic processing in the brain. The problem of re-use Dolan, R. J. (2006). Cortical substrates for exploratory
and combination of symbols, particularly in learning proce  decisions in humans\atureg 441(7095), 876—-879.

dural knowledge, pointed at one significant shortcoming ofFriedman, M. P., Burke, C. J., Cole, M., Keller, L., Millward
the standard Hebbian learning mechanism — adaptation of R. B., & Estes, W. K. (1964). Two—choice behaviour under
weights based purely on correlations does not take into ac- extended training with shifting probabilities of reinferc
count the optimisation criteria that a system may have to sat ment. In R. C. Atkinson (Ed.)Studies in mathematical
isfy. To resolve this problem, a stochastic meta-contreklda psychologypp. 250-316). Stanford, CA: Stanford Univer-
on utility feedback was introduced into the system. sity Press.

It is attractive to speculate about the existence of thed/alu Granger, R. (2006, July). Engines of the brain: The compu-
and Explore modules in the brain. Some researchers havetational instruction set of human cognitioAl Magazine
proposed that tonically active cholinergic neurons in thedb 27(2), 15-32.
ganglia and striatal complex play an important role in con-Hebb, D. O. (1949). The organization of behavior New
flict resolution and learning procedural knowledge (Grange  York: John Wiley & Sons.

2006). These neurons account for a small proportion of thédopfield, J. (1982). Neural networks and physical systems
connections that are quite uniform and non-topographid, an with emergent collective computational abilitieRroceed-
the activity of these neurons was suggested to play the role ings of the National Academy of Sciences of the UQA
of stochastic noise, similar to the activity of cells in the-E 2554-8.

plore module (see Fig. 1). Interestingly, the activatiothef  Huyck, C. (2007). Hierarchical cell assembli€onnection
tonically active cholinergic neurons is inhibited by thdiac Science

vation from the reward path, similar to the function of the Huyck, C., & Belavkin, R. V. (2006, April). Counting with
Value module in our system. Other studies of mechanisms neurons, rule application with nets of fatiguing leaky in-
for exploratory behaviour in the brain are also in favour of tegrate and fire neurons. In D. Fum, F. D. Missier, &
the exponential distribution model (Daw, O’Doherty, Dayan A. Stocco (Eds.)Proceedings of the Seventh International
Seymour, & Dolan, 2006). Conference on Cognitive Modelingrieste, Italy: Edizioni

Setting these speculations aside, this work has demon- Goliardiche.
strated that the proposed mechanism can be used for cokehonen, T. (1982). Self—organized formation of topologi-
trolling Hebbian learning in biologically inspired neursgt- cally correct feature map®&iological Cybernetics43, 59—
works. The mechanism allows for selective learning of con- 69.
nections between specialised groups of cells (CAs), and folMaas, W., & Bishop, C. (2001).Pulsed neural networks
lowing Hebb’s hypothesis it shows not only that CAs can in- MIT Press.
deed be associated with symbols, but also shows how sudliewell, A. (1990).Unified theories of cognitiarCambridge,
representations can be re-used and combined to learn newMassachusetts: Harvard University Press.
knowledge. Simulation of the probability matching effeash Oja, E. (1982). A simplified neuron model as a principal
demonstrated that the mechanism is also a plausible cogniti  component analyzedournal of Mathematical Biology.5,
model. We anticipate that the proposed architecture can als 267-273.
be used to model other psychological phenomena, such as ti®ratonovich, R. L. (1965). On value of informatidavestiya
effect of reinforcement values on speed of learning, arsl thi  of USSR Academy of Sciences, Technical Cybernbtigs

is one possible direction of our future research. 12. (In Russian)
Wald, A. (1950). Statistical decision functionsNew York:
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