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Abstract A natural language parser implemented entirely in simulated neurons is de-

scribed. It produces a semantic representation based on frames. It parses solely using

simulated fatiguing Leaky Integrate and Fire neurons, that are a relatively accurate

biological model that is simulated efficiently. The model works on discrete cycles that

simulate 10 ms. of biological time, so the parser has a simple mapping to psychologi-

cal parsing time. Comparisons to human parsing studies show that the parser closely

approximates this data. The parser makes use of Cell Assemblies and the semantics of

lexical items is represented by overlapping hierarchical Cell Assemblies so that seman-

tically related items share neurons. This semantic encoding is used to resolve prepo-

sitional phrase attachment ambiguities encountered during parsing. Consequently, the

parser provides a neurally-based cognitive model of parsing.

1 Introduction

In 1988, Smolensky claimed that “neural models of cognitive processes are ... cur-

rently not feasible” [Smolensky, 1988]. This paper describes a neural simulation of a

sophisticated, modern cognitive model of parsing which leads to the conclusion that,

while Smolensky’s statement may have been true in 1988, it is now possible to model

cognitive processes with simulated neurons.

A natural language parsing system implemented entirely in simulated neurons is

described. The paper does not describe the full details of the parser, but the code,

written in Java, can be found at http://www.cwa.mdx.ac.uk/CABot/parse4.html. The

parser is a component in the second Cell Assembly Robot (CABot2) agent (see section

5.4).

While a synapse by synapse, or neuron level, description of the system would be

far too long and inappropriate here, a higher level description at the level of the Cell

Assemblies (CAs) (see section 2.3) that operate by the systematic firing of the simulated

neurons is provided. This descripition and simulation evidence shows that the parser

meets the following four goals:



2

1. The system parses in a manner that is linguistically, cognitively and

neurally plausible. While linguists do not agree on all aspects of language, there

is broad agreement on some areas, and the parser should be consistent with these

areas of agreement. In other linguistic areas there is not agreement, and in this

case the parser should be consistent with at least one theory. There are a range of

cognitive phenomena that could be modelled; the parser does not need to account

for all of them, but should account for some of the important ones. There are a

range of neural models, but there is also a trade-off between level of detail and

the speed of the simulation. The mapping between the simulated neural model

and biological neural topology needs to be reasonably accurate, but the simulation

needs to be efficient. Where neural mapping inaccuracies are imposed, due to, for

instance, the number of neurons that can be simulated in real-time, then there

should be a path to duplicating performance, in this instance, if there were more

neurons in the simulation. It is hypothesised that similarity in the substrate that

supports cognition and language in human and AI systems will directly improve

the latter’s parsing capabilities, i.e. making performance closer to that of people.

2. The system resolves Prepositional Phrase (PP) attachment ambiguity.

PP attachment ambiguity is a difficult problem for natural language parsing. Ex-

ample 1 is a commonly used sentence with a PP attachment ambiguity.

(example 1) I saw the girl with the telescope.

The PP with the telescope can be attached to (modify) the verb saw so that it is an

instrument, or can attach to the noun phrase the girl so that she has it. Resolving

PP attachment ambiguity is important because it is one of the many instances of

semantics being needed to resolve syntactic decisions. In example 1, attachment to

saw is more probable since telescopes are normally used for seeing, but replacing

tool for telescope might shift the attachment to the noun phrase the girl.

3. The system parses relatively effectively. The system must parse a reasonable

subset of English to be convincing, and it must be clear how it could scale up in a

relatively straightforward manner. Similarly, the system is a part of the functioning

CABot2 agent and must be effective for it.

4. All of the above involve semantics, so the system must represent se-

mantics in a reasonable fashion. For a system to handle natural language

effectively, it must deal with its combinatorial nature. It must be able to cope with

a practically unlimited number of sentences, and, in particular, generate a different

semantic representation for sentences that do have different meanings.

The remainder of the paper is broken into sections, starting with its background and

related work. This is followed by a section on the neural model, and then a section on

the CABot2 parser itself. These are followed by a section on the empirical results of the

parser on the test materials. The results show that it correctly parses, in times similar

to those found in human subjects, and that it resolves PP attachment ambiguities

correctly. The paper concludes with a discussion of the quality of the CABot2 parser

as a functioning system and as a cognitive model, and how it can be improved.

2 Background

The over-arching long-term goal for research in this area is to develop an AI system

that is capable of understanding and producing language at a level that is at or near
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the level of an adult human. It is hypothesised that the best way to do this is to

develop a model that behaves in a fashion that is both psychologically and neurally

close to that of the human one. For such a system to succeed, however, it must have

an understanding of semantics that is similar to a human’s. It must, among many

other things, ground symbols [Harnad, 1990], have sensory input, and function in an

environment. As a fully intelligent system is a huge goal, this paper describes a system

that starts to solve a particular subgoal.

The particular subgoal is to develop a parser based on neurons that parses in

a neurally and psycholinguistically plausible manner. Moreover, as this parser is a

component in a working agent [Huyck, 2008], it must be effective, efficient to simulate,

and able to work with other subsystems.

An earlier version of the system [Huyck and Fan, 2007] was based on a stack and

was used for CABot1, the first version of the CABot agent. Unfortunately, the dynamics

of this earlier system led it to spending a large amount of time managing the stack

(see 2.1). Moreover, the simulation time was too long and the putative biological time

of the CABot1 parser was also well beyond that of human parsing.

Consequently, a stackless parser was developed for CABot2. This is similar to a

range of psycholinguistic parsers including one [Lewis and Vasishth, 2005] based on the

ACT-R system. Nonetheless, this stackless parser still had to account for a traditional

problem of neural parsing systems, the variable binding problem.

2.1 The Binding Problem

The binding problem [von der Malsburg, 1986] needs to be resolved to allow compo-

sitional semantics and syntax [Fodor and Pylyshyn, 1988]. For instance, a standard

mechanism for representing the semantics of a sentence is a case frame representation

[Filmore, 1968], where a sentence like example 2 is represented by the head verb see

and two slot filler pairs, the actor I, and the object the girl. However, the slots need

to be bound to the appropriate filler for successful sentence parsing. For example, the

object slot would need to be filled by the boy in example 3.

(example 2) I saw the girl.

(example 3) I saw the boy.

Binding is simple for symbolic systems, because a variable can easily be given a

value and subsequently have that value replaced. It is a basic operation on all standard

computers.

A range of non-neural connectionist binding mechanisms also exist. Tensor product

binding has been used [Smolensky, 1990]. Recurrent multilayer perceptrons learning via

backpropagation [Mikkulainen, 1993] have also been used.

The most commonly used mechanism for binding in neural simulations is binding

by synchrony [von der Malsburg, 1981], where bound neurons fire with a similar oscilla-

tory pattern. Another option is binding by active links [van der Velde and de Kamps, 2006],

where special reusable circuits are developed to bind items.

In related work [Huyck and Belavkin, 2006], a system was developed that bound via

Long-Term Potentiation (LTP). However, this interfered with other learning, leading

to the stability-plasticity dilemma [Carpenter and Grossberg, 1988]. This dilemma is

the ability of a neural system to learn new information, while retaining the appropriate

older information.
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As in the earlier CABot1 parser [Huyck and Fan, 2007], the CABot2 parser uses

Short-Term Potentiation (STP) to bind. STP is a form of Hebbian learning that occurs

in biological neural systems [Hempel et al., 2000,Buonomano, 1999]. Hebbian learning

implies that the co-firing of two neurons tends to increase the synaptic strength between

them. With STP, this synaptic strength returns to its initial value automatically over a

relatively short period of disuse (seconds or minutes), thus the binding is quick (approx.

40 ms.) and it can be reused.

2.2 Neural and Other Connectionist Parsers

Interest in neural and other connectionist parsers is not new. While non-neural con-

nectionist parsers may have no direct link to neural processing, they may provide a

useful set of metaphors.

One early parser was a component of a larger connectionist natural language pro-

cessing system [Mikkulainen, 1993]. This system used a recurrent back-propagation

network to parse. Unfortunately, these types of systems have problems with longer

sentences since earlier portions of the sentence must be retained in the activation pat-

terns of the context nodes. Moreover, the overall system used several different types of

connectionist system, so the overall architecture is quite ad hoc.

Another parser [Henderson, 1994] uses a connectionist system [Shastri and Aijanagadde, 1993]

based on associations. These associations use a frame system with dynamic binding via

synchrony. It is known that certain constructs, like multiple centre embedded sentences,

are difficult for humans to parse. As the number of bindings that the system supports

is limited, the system also finds it difficult to parse these types of sentences. Acti-

vation decay and simulated annealing have been used to resolve attachment decisions

[Kempen and Vosse, 1991]. One of the problems of most non-neural connectionist pars-

ing models is that there is little notion of time; while such parsers must use word order

information, this does not provide timing data.

However, one hybrid-connectionist parser [Tabor and Tanenhaus, 1999] uses attrac-

tor basins, and the time the parser takes to descend into a basin corresponds to the

time to make a parsing decision, that is, how long it takes to apply a parsing rule.

This is in the spirit of the CABot2 parser, as Cell Assembly ignition (see section 2.3)

is equivalent to descent into an attractor basin [Amit, 1989]. Similarly, simulated an-

nealing [Kempen and Vosse, 1991] is related to statistical mechanics, which is used to

formalize attractor basins.

Non-neural connectionist parsers may provide insight into parallel processing, but

lack any direct link to neurons. Even though it may be more difficult to develop

systems based on models with direct links to neurons, there have been prior neural

parsers. One such parser used a spiking neural model to parse a regular language

[Knoblauch et al., 2004]. Importantly, like the CABot2 parser, this parser was embed-

ded in an agent. This shows that parsers can be developed in simulated neurons.

Further evidence of the ability to develop parsers using simulated neurons is the

CABot1 parser [Huyck and Fan, 2007]. The CABot1 and CABot2 parsers have many

similarities, but the earlier parser uses a stack and there are some indications that

the human parser does not [Lewis and Vasishth, 2005]. Both the CABot parsers make

extensive use of Cell Assemblies.
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2.3 Neuropsychology

Hebb introduced Neuropsychology [Hebb, 1949] and provided science with an intellec-

tual bridge between neurons and psychology. One of his key concepts was that of the

Cell Assembly (CA).

The CA hypothesis is that a CA is the neural basis of a concept [Hebb, 1949]. A CA

is a set of neurons that have high mutual synaptic strength. There is now extensive evi-

dence that the brain does contain CAs (e.g. [Abeles et al., 1993,Bevan and Wilson, 1999,

Pulvermuller, 1999]. Moreover, the CA concept has also been extensively used to

explain and model cognitive tasks (e.g. [Kaplan et al., 1991,von der Malsburg, 1986,

Wennekers and Palm, 2000]).

When a small subset of the neurons in a CA fire, a cascade of activation ensues

that leads to CA ignition [Wennekers and Palm, 2000]; the CA can then persist after

the initial stimulus (the initial small subset of triggered neurons) has ceased. This

persistence is the neural implementation of psychological phenomena such as short-

term or working memory. The formation of the CA in the first place is done via Hebbian

learning, and this neural formation constitutes a long-term memory.

The CA hypothesis gives two types of cognitive neurodynamics. The first and faster

dynamic is CA ignition, where neurons fire and start a cascade that can then persist.

The second and slower dynamic is CA formation, which is an emergent phenomena from

a large number of synaptic changes. This is often called the dual-trace mechanism.

It has been proposed that CAs gradually lose activity over time (see section 4.4).

One proposition that bridges the gap between neuropsychology and parsing is that the

stack that is typically used for parsing is implemented by this gradual loss of activity

[Pulvermuller, 2000]. This proposal is in the spirit of memory based parsers (see section

2.4) including the stackless CABot2 parser.

2.4 Psychology and Linguistics

The research literature in both psychology and linguistics is far too vast to summarize

here. There is, however, some research that attempts to unify these research fields. For

example, cognitive architectures (e.g. [Anderson and Lebiere, 1998]) are systems whose

ultimate goal is to be able to model all cognitive functions. Similar work based on neural

models (e.g. [Rolls, 2008]) is in its infancy and here the ultimate goal of these systems

is to show how the brain’s neural systems can be modelled with simulated neurons to

perform all cognitive functions.

Similarly, in linguistics there are unifying theories. The most famous is univer-

sal grammar [Chomsky, 1965], but this is largely about the way that humans learn

language. The tripartite theory [Jackendoff, 2002] fits parsing into a larger linguistic

system, and then into a psychological model. This theory shows how different aspects

of linguistics (e.g. semantics, syntax and the lexicon) inter-relate. The theory is not,

however, universally accepted.

Some linguistic theories are almost universally accepted. These include the use of

case frames to represent the semantics of a sentence [Filmore, 1968] and bar-levels

[Jackendoff, 1977] to account for simple and complex phrases. Perhaps more impor-

tantly, and related to universal grammar, is the notion of a combinatorial system. In

this, language is composed of components that can be combined in a tree-like struc-

ture that has a practically infinite number of possible topologies. Connectionist systems
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have been criticised for a lack of compositional syntax and semantics (combinatoriality)

[Fodor and Pylyshyn, 1988], but this criticism is largely addressed by neural mecha-

nisms used for implementing variable binding (see section 2.1).

There has been a vast range of psycholinguistic work on parsing. In linguistics,

a distinction is often made between performance and competence, with many psy-

cholinguists expressing the view that performance is not their concern, so, in such

circumstances, parsing is performance. While many linguists may express a lack of

interest in performance, they are not saying it is not of interest in general.

Psycholinguistic work in parsing can be divided into work that focuses on am-

biguity, and work that focuses on memory. One, of many approaches, that focus on

resolving ambiguity is a constraint based algorithm [MacDonald et al., 1994] which

simultaneously resolves lexical and syntactic ambiguity. This has been tested on PP

attachment ambiguity among other phenomena. Also, work in eye movement studies

[Rayner, 1998] (see section 5.2) has been extensively used to deal with back-tracking

and to show that humans make incorrect parsing decisions, and have to go back and

repair them. The incorrect decisions illustrate some of the biases of the human parser.

A modern example of a memory based parser [Lewis and Vasishth, 2005] is based

on the ACT-R cognitive architecture [Anderson and Lebiere, 1998]. In this model, each

word and phrase is represented by a symbolic memory chunk that has an associated

activation level. This level decreases over time, although it is reactivated when the

memory is re-accessed and this level is guided by ACT-R’s equations. These equations

have been used in a wide range of other psychological models, both linguistic and

non-linguistic. The activation levels are then used to resolve attachment decisions. For

instance, this mechanism can be used to account for center embeddings and to fail to

interpret center embedded sentences that people find difficult to interpret.

The CABot2 parser is a memory based parser that is able to resolve the types of

ambiguity discussed above. By the use of frames, it is capable of generating a combi-

natorial representation of semantics.

3 The Neural Model

This paper’s results and conclusions depend on the simulated neural model being a rea-

sonably accurate biological model. The neural model that forms the basis of CABot2

is a fatiguing Leaky Integrate and Fire (fLIF) model. It is not as accurate as com-

partmental models (e.g. [Hodgkin and Huxley, 1952,Dayan and Abbott, 2005]), but is

much more efficient to simulate. As parsing is complex, efficiency of simulation is im-

portant. The fLIF model is an extension of the more popular Leaky Integrate and Fire

(LIF) model [Tal and Schwartz, 1997], which is in turn an extension of the Integrate

and Fire model [McCulloch and Pitts, 1943].

A brief description of the fLIF model is given below, and a more detailed one

can be found elsewhere [Huyck, 1999,Huyck, 2007]. In the Integrate and Fire model, a

neuron collects activation from other neurons, and fires when it has sufficient activation

to surpass a threshold θ. When the neuron fires, it sends activation to each neuron

to which it has synapses, and the activation is directly proportional to the weight

associated with each synapse. The fLIF model uses discrete cycles, so the activation

that is sent from a neuron that fires in a cycle is not collected by the post-synaptic

neuron until the next cycle. If a neuron fires, it loses all its activation, but if it does

not fire, it retains some, while some activation leaks away (decay); this is the leaky
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component and is modelled by a factor D > 1, where the activation is divided by D to

get the initial activation at the next step.

Ait
=

Ait−1
D +

∑
j∈Vi

wji Equation 1.

Equation 1 shows the activity of a neuron at time t. The neuron combines the

retained activation after leak and the new activation from the active inputs of all

neurons j ∈ Vi, Vi being the set of all neurons that fired at t-1 that are connected to

i, weighted by the value of the synapse from neuron j to neuron i.

The LIF model is a widely used model of biological neurons, although the extension

of having neuron fatigue is relatively novel. The idea of fatigue is that the more a neuron

fires, the harder it becomes to fire, that is, neurons tire. This is modelled, in this paper,

by each neuron having an additional fatigue value which is increased by a constant, Fc,

in cycles in which the neuron fires, and decreased by a constant, Fr, in cycles where

the neuron does not fire. The value never goes below zero, and the neuron’s fatigue

value is added to the threshold, θ, to establish if a neuron fires. So, if a neuron becomes

highly fatigued, then it will need a great deal of activation to fire. This is shown in

equation 2, where the neuron fires at time t if its activitiy A minus fatigue F is greater

than the threshold.

Ait
− Fit

≥ θ Equation 2.

One emergent property of fatigue across all the neurons in a CA is that fatigue

can cause a CA to stop firing. Practically, it is used in the CABot2 parser to show

how long a memory item has been active (section 4.4), and to automatically shut down

rules (section 4.3).

The LIF model is widely used because it is a simple model of a neuron that is rela-

tively accurate biologically. The fLIF model is slightly more complex, and is a slightly

better model. A model similar to the one described in this paper [Chacron et al., 2003]

has been shown to mimic biological neural responses, particularly with respect to neu-

ronal adaptation, and does provide a more accurate simulation than the simpler LIF

models.

CAs composed of fLIF neurons can interact with each other in a range of ways.

Perhaps the simplest is for one CA to cause another to ignite, which is done by having

neurons from the first send sufficient activation, via synapses, to the second to ignite

it. A more complex mechanism is to require two CAs to be on to ignite a third, while

neither of the original alone is sufficient to ignite the third. Requiring two CAs to

be active to ignite a third is a mechanism for controlling spreading activation. This

mechanism can be used to implement finite state automata [Fan and Huyck, 2008]. A

third type of interaction is to have a CA suppress another so that its neurons stop

firing (the second CA is extinguished). The processing of the CABot2 parser is driven

by these types of CA interactions.

4 The CABot2 Parser

The CABot2 parser is merely a network of fLIF neurons with a symbolic interface to

allow each word in a sentence to be input. There is also a mechanism for converting

the subsymbolic semantic representation into a symbolic one for output. The CABot2

parser has a network of 30,000 neurons which have been divided into 15 subnetworks.

The threshold, θ; decay, D; fatigue; Fc; and fatigue recovery, Fr remain constant within

a subnetwork but may differ between subnets (see table 1). These subnets have been
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LEXICON

Input

Access

Next Word

SYNTAX

Rule One

Bar One

Rule Two

PP to NP

PP to VP

Counter

Verb Semantics

Noun Semantics

SEMANTICS

Verb Instance

Noun Instance

Fig. 1 Gross Topology of the CABot2 Parser. Each box represents a subnet with similar
subnets grouped together according to Jackendoff’s Tripartite theory.

used to facilitate the system’s development, but they also fit a logical, and to lesser

extent a psycholinguistic, structure.

4.1 Overall Topology

Figure 1 is a schematic of the network. Each box refers to a subnet except the Access

box, which refers to three separate subnets: the noun access, verb access, and other

lexical item access subnets. Information largely flows from the top to the bottom with

Input leading to Access and Semantics then being activated. Composite structures are

built in the Instances with the Rules and Bar One subnets explicitly invoking state

changes.

The overall topology adheres to a tripartite linguistic theory [Jackendoff, 2002]. In

this theory there are separate lexical, syntactic, and semantic systems. These com-

municate by special communication systems (e.g. the lexical syntactic communication

system). The lexical system is on the top right of the figure with the Input subnet en-

tirely within that system. The syntax system is on the top left with the rules entirely

within the syntax system. The semantics system is on the bottom with the instances

entirely within that system. The other subnets cross these systems boundaries. For

example, the access subnets are part of the lexical syntactic communication system.

Note that the focus of the CABot2 parser has been on the syntax system; the lexical

system in particular is under specified, and the semantic system is somewhere in be-

tween. The tripartite theory also allows extra links from these systems to others, e.g.

from semantics to other systems such as perception, planning and action.

The particulars of these subnets are more fully explained below. The number of

neurons in the subnets and the parameters are largely driven by expediency. That is,

engineering decisions had a large role in determining these parameters. The explanation
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Name Threshold Decay Fatigue Fatigue Recovery Neurons
Input 4 1.5 0 0 3000
Noun Access 4 2.0 0.8 0.8 1800
Verb Access 4 2.0 0.8 0.8 900
Other Access 4 2.0 0.8 0.8 900
Next Word 4 12.0 0 0 200
Bar One 4 1.5 0.8 0.8 200
Rule One 4 2.0 0.5 0.4 1200
Noun Semantics 4 2.0 0.8 0.8 10200
Verb Semantics 4 2.0 0.8 0.8 5400
Noun Instance 4 1.5 0.01 0.011 2000
Verb Instance 4 1.5 0.01 0.011 1000
Counter 4 2.0 0 0. 600
Rule Two 4 1.2 0.5 0.45 1800
PP to NP 4 1.25 0 0 400
PP to VP 4 1.25 0 0 400

Table 1 Subnetwork Constants and Sizes for the CABot2 Parser

of the subnets starts with the initial input and traces the processing of the example 4

sentence in the following sections.

4.2 Input, Access & Semantics

Input is a symbolic action that is achieved by activating the CA for the input word,

and only one word is active at a time. This is done when a particular rule CA in the

Rule One subnet ignites: the Read Next Word rule. This rule also ignites the first CA of

the Bar One subnet called Word Active. So to start parsing, the Read Next Word rule

is ignited. The next Input CA, consisting of 100 neurons, is then ignited, and remains

active until the next input is received.

The Bar One subnet has two CAs of 100 neurons. The first is called Word Active,

and is active while the input word is directly activating CAs in other subnets. The sec-

ond CA in Bar One is Bar One Active. This relates to X-bar theory [Jackendoff, 1977];

roughly, there are simple and complex phrases, with the simple phrases being bar one,

so the Bar One Active CA is firing while the simple phrase is being constructed.

(example 4) The girl saw the dangerous pyramid with the stalactite.

Parsing the sentence from example 4 starts with the Read Next Word rule being

ignited, which turns on the Input CA for The, and the Word Active CA in the Bar One

subnet. The combined activation from these two CAs is enough to cause the The CA

in the Other Access subnet to ignite. Each word has an element in one of the access

subnets; there is no lexical ambiguity resolution in the CABot2 parser, so, for instance,

left is always a noun and centre is always a verb.

Later, the word girl is read. This causes the girl input CA and the Word Active CA

to ignite. These combine to ignite the Noun Access CA for girl. This sends activation

to the Noun Semantics subnet, which ignites the semantics for girl. Each noun and

verb is semantically represented by a hierarchical series of features. In the case of girl,

this consists of girl, person, living-thing, object , and physical-entity. For nouns, this

hierarchy is derived from WordNet [Miller, 1990]. For verbs, this hierarchy is derived

from a verb hierarchy available locally. This type of hierarchical encoding can be learned
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[Huyck, 2007], but for reasons of technological expediency when implementing it on a

PC, CABot2 had its hierarchical encoding hard-coded.

It should be noted that this topology of CAs is inconsistent with current under-

standing of CAs in biological systems. Firstly, aside from the two semantic subnets,

where CAs share neurons, CAs are orthogonal with each neuron being in only one CA.

Secondly, CAs are by and large composed of sets of features that are in turn composed

of 10 neurons. These neurons once on, oscillate from one set of five firing, to the other

five firing. This is a persistent CA, but is not the kind of CA that has been learned

in past simulations. This was done to minimise the number of neurons used, and to

mathematically guarantee behaviour. Unfortunately, simulation time slows markedly

as the number of neurons and synapses increase, so the simulations are forced to use

a relatively small number of neurons. It is expected that the same behaviour could be

generated using larger CAs that are less uniform.

4.3 Simple Rule Activation & Instantiation

The syntax system builds simple phrases and complex phrases. The result of rule

applications are stored in the instance nets, in bindings between the instance nets, and

bindings from the instance nets to the access nets.

For example, the combined activation of Word Active and the the Access CAs causes

two rules to ignite, both in the Rule One subnet. One is the New Noun Instance rule.

This causes a new instance to become active in the Noun Instance subnet. Instances

are the data structures that are populated by parsing.

Instances are managed by the Count subnet, whose sole purpose is to note the next

free noun instance and verb instance. Initially there are no verb or noun instances.

This is represented in the Count subnet by having a CA associated with zero for each

of these. These CAs prime, but do not ignite, the CAs associated with a count of one.

When the New Noun Instance rule ignites, it stimulates all of the Count’s noun CAs.

As the only one that is primed is the one CA, it ignites, and in turn extinguishes

the zero noun count. This count CA in turn ignites the first noun instance in the

Noun Instance subnet. As yet, there is no information in the instance, but it is now

active. A duplicate mechanism is used to get a new verb instance when the New Verb

Instance rule is applied. Instances follow case frame theory [Filmore, 1968], and the

overall grammar with features is amenable to analysis from unification-based grammar

[Shieber, 1986], and head driven phrase structure grammar [Pollard and Sag, 1994].

As noted above, two rules ignite simultaneously. The second rule that ignites along

with the New Noun Instance rule is the NP adds det rule. This switches on the deter-

miner feature of the open noun instance. This is done again by having two CAs on

and these two turn on a third CA, or, as in this case, a third subCA. Features are

represented by neurons in the instance. The rule stimulates the determiner features of

all the noun instances and the open noun instance stimulates all of its bar one features.

Together, these turn on the determiner feature.

Figure 2 shows firing behaviour in the Verb Instance, Rule One and Rule Two

subnets. Each dot represents a neuron firing in a particular cycle. The Verb Instance

neurons are the bottom 500 neurons, and it can be seen that it begins around cycle

65, and persists through to the end of the parse. It can also be seen that different rules

ignite at different times.



11

Rule
Two

Rule
One

Verb
Instance

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300

Fig. 2 Rastergram of the Verb Instance and Rule SubNets The first 500 neurons are
Verb Instances, the next 1200 from Rule One, and the remainder from Rule Two.

Instances can be in one of four states. The first is inactive, meaning that no neurons

are firing. The second is open, meaning that a simple noun phrase is under construction.

Part of X-bar theory states that there is at most one simple phrase currently under

construction at any time [Jackendoff, 1977]. The third and fourth states of instances

are the active complex phrase state, and the done state (see section 4.4). When an

instance is started, it is open, and this is marked by having a specific feature in the

instance firing. When the instance is closed, this feature is turned off.

The NP adds det rule also turns off the Word Active CA in the Bar One subnet,

meaning that the net has finished, or is about to finish, with processing a word. It also

turns off the The CA in the Other Access subnet.

The NP add det rule then switches off automatically through a combination of

loss of external input (Word Active is now off), and fatigue. The fatigue constant is

greater than the fatigue recovery one (see Table 1), and neurons are on in only half of

the cycles. This causes fatigue to accumulate, eventually, as the neurons do not have

enough activation to surpass the threshold plus fatigue, so they stop firing after nine

cycles, and so the CA is extinguished.

The Next Word subnet now comes into play. The system will try to apply any rules

that it can. However, if no rule has applied in 10 cycles, the Next Word rule in the Rule

One subnet will come on. This is done by the Next Word subnet which is a counter.

It counts 10 cycles using 10 pseudo-CAs. Each of these pseudo-CAs turns on the next,

and turns off the prior one. The first pseudo-CA also turns off all of the others except

the second. All of the rules turn on the first one, and this implements the counter. The

last of the pseudo-CAs turns on the Next Word rule in the Rule One subnet.
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As noted in section 4.2, girl now comes into the Input subnet. It then, in collabora-

tion with other subnets, turns on the girl CAs in the Noun Access and Noun Semantics

subnets.

As before, the Word Active CA is on; in collaboration with the girl Noun Access

CA, the NP adds N rule ignites in the Rule One subnet. This turns on the Main Noun

feature in the open noun instance. This feature is represented by some neurons that

learn via STP (see section 2.1). These neurons connect to all of the noun instances,

and as the only noun instance that is active is girl, this instance is bound to girl after

a few cycles of co-firing.

Next the NP Done rule is applied. This turns off all noun access CAs, and both Bar

One CAs. This means the system is done with the word, and done with the instance

as a simple phrase. The rule also turns off the noun instance by switching on the Bar

One Done feature.

Note that there are parallel features for Bar One Done and Bar One Open. The

open feature is turned off when the instance is done, but the open feature has fast

bind neurons that bind to the rest of the features if they are turned on. This provides

memory within the instance. A duplicate mechanism is used to support features in the

verb instances.

A similar process now occurs with the word saw. The Next Word rule comes on,

which causes saw to be propagated through to the verb access and semantics subnets.

A new verb instance is created, and saw is made the main verb when the VP adds

Main Verb rule is applied. The Verb Done rule is then ignited, and the verb instance

is closed.

4.4 Complex Rules & Multi-Valued Cell Assemblies

Having processed saw, two instances are available and the system can now apply phrase

combination rules. These rules are in the Rule Two subnet, and are quite similar to

the simple phrase creation rules. These rules will not be applied when a simple phrase

is under creation because they are inhibited by the Bar One Active CA.

A few cycles after the VP Done rule for saw ceases firing, the V P → NPactor V P

rule is applied. This rule receives activation from both the verb instance and the noun

instance. When it ignites, it firstly turns on the verb’s actor slot (feature). This slot

has neurons that learn via STP, and these neurons have connections to all of the noun

instances. The only active noun is the instance that is bound to the girl, and so it

is bound as the actor after a few cycles. The actor slot also turns on the actor-done

feature which inhibits further application of the rule, and turns off the actor slot so

that no further binding will occur. Additionally, the noun instance has its bound feature

turned on, so that it will no longer be used as a slot filler. Note that the application of

V P → NPactor V P can be seen in figure 2; it can be seen at neuron 2300 near cycle

100. Other rules can be picked out.

This rule application is quite similar to the application of simple noun phrase rules.

However, two problems arise: the first is that there needs to be multiple rules for each

slot; the second is that without a stack, some mechanism is needed to select between

rules.

Without a stack, some mechanism is needed to select between rules. In the above

example, the V P → NPactor V P rule is selected instead of the V P → V P NPobject
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rule. The system has no explicit idea of order, so how does it know to select the actor

rule?

The answer to this lies in the third state of instances (see section 4.3). Having been

completed as a simple phrase, both instances are in the third state (active complex

phrase). Also, when an instance is created, a set of its neurons are activated that act

as a counter for how long the instance has been active. This system is set up in groups

of eight neurons with six neurons firing in each cycle. As (Fc ∗ 3) < Fr (see Table

1), the circuit accumulates fatigue. Due to fatigue these counter neurons gradually

stop firing; this is how it acts as a counter. For a more complete explanation see

[Passmore and Huyck, 2008]. Each instance CA has a set of counter neurons. This can

be seen in figure 2, where the counter neurons are between 300 and 500. These start

out firing, and then gradually decline.

The counter neurons are used as input to the actor and object rules. For the actor

rule, extra activation comes from the verb because it is more active. For the object

rule, extra activation comes from the noun because it is more active when the object

rule is applied. Passive constructions could be folded in with a passive feature on the

verb instance. Additionally, rule CAs have mutual inhibition, so while one is active,

others must wait until it has completed.

To return to the example, the dangerous pyramid is processed in a similar manner

to The girl, and a new instance is duly created for it. When this instance is completed,

the V P → V P NPobject rule is applied, and it is bound to the object slot of the verb.

Similarly, with the stalactite is made into a noun instance with the preposition feature

set.

At this stage, there is a PP attachment ambiguity that is resolved to attaching with

the stalactite to the pyramid. That is, the rule NP → NP PP is applied. Note that

while the instance for the pyramid has its bound feature on, it is still open to having

something bound to it. In this case the PP modifier feature of the pyramid is bound to

the noun instance for with the stalactite.

This is a proactive form of attachment that has been used in other natural language

processing models. Unlike traditional context free parsers, it focuses on attaching items

as soon as possible. For words, it has been suggested that each word is incorporated

into the sentence immediately [Milward and Cooper, 1994]. For phrases, this is a form

of left-corner parsing, e.g. [Roark and Johnson, 1999].

Another problem is closing off phrases so that they cannot have another phrase

attached to them. This happens to the first noun phrase in example 5.

(example 5) I saw with the telescope.

Here the noun phrase I is incorporated into the verb frame by the application of the

V P → NPactor V P rule, however, the noun instance is still active, and thus the

prepositional phrase with the telescope could be attached to it. This is prevented by a

feature in the noun instance that is turned on by the actor rule. When this feature is

on, the noun instance, has moved to the fourth state, done.

Attention should be drawn to one major difference between the two rule subnets.

They have different decay rates with Rule One having a decay of 2, and Rule Two

a decay of 1.2. This means that in each cycle when a neuron does not fire, more

activation leaks away from a neuron in the Rule One subnet than from a neuron in the

Rule Two one. This also means that evidence can take longer to accumulate for the

phrase combination rules in Rule Two. Figure 2 also shows that the number of Rule

Two applications is much smaller than the number of those from Rule One.
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This evidence is used to make more complex decisions in, for example, PP attach-

ment. Here the system makes use of known attachment decisions to decide how to

attach a PP. There are two subnets, the PP to NP and PP to VP subnets which are

used for making attachment decisions. These subnets get activation from the Noun

Semantics and Verb Semantics subnets that is sufficient to ignite particular CAs when

the appropriate words are active. For example, one CA in the PP to VP subnet gets

activation from saw, girl, and telescope, that is sufficient to ignite it. This CA in the PP

to VP subnet in turn sends activation to the V P → V P PPinstrument rule, causing

it to ignite and be applied. Similarly, one CA in the PP to NP subnet gets activation

from move, door and handle, and sends activation to NP → NP PP .

5 Results

The CABot2 parser is not capable of parsing all English sentences, but it does parse

several common constructs correctly. It is a relatively capable parser which can handle

the basic commands that are needed within the CABot2 computer game environment

and produce correct semantic output. More importantly, it is based on a neural model

with a link to biological time, and parses in times that are similar to human timing

data. It resolves PP attachment ambiguity in a way that appears to be similar to the

way humans resolve these ambiguities, and demonstrates one way that semantics can

be involved in making parsing decisions. Finally it can be readily incorporated into a

neural agent, and thus can make use of evidence that is not normally available to other

computational parsers, but is available to the human parser.

5.1 Semantic Output

The CABot2 parser has been tested on 27 sentences, and produces the correct seman-

tic output for all of these. This is a small number of sentences, but does include a

range of constructs including imperative sentences, multiple PP and NP slots, and PP

attachment ambiguities. Aside from PP ambiguities, all sentences that have the same

lexical format will parse correctly. Even with the small number of words in the current

lexicon, 28, this means thousands of sentences can be parsed by the system.

The semantic results of a parse are calculated by turning all neurons off, then

turning the first verb instance on. This spreads activation through the bindings to

other instances, and then on to the Access subnets. After 45 cycles, by which time the

system will be stable if a parse is successful, the nets are measured to create a symbolic

version, and this is the semantic output of the sentence.

The noun instances have the determiner, preposition, adjective, main noun and

prepositional phrase modifier slots. The verb instance has the main verb, actor, object,

location and instrument slots. All of these were tested and behaved correctly on the

27 sentences.

5.2 Timing

An important consideration for a neuropsychological parser is that it parses in the

correct time, that is, in times equivalent to those obtained from experimental human
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Fig. 3 Time Spent to Parse by Word the sentence The girl saw the dangerous pyramid
with the stalactite.

performance data. The fLIF neural model is based on cycles, and these cycles corre-

spond roughly to 10 ms. of biological time. The cycles are not much faster because

they ignore refractory periods and synaptic delays, all of which happen generally in

under 10 ms. Also, biological neurons generally do not spike more than once in a 10

ms. period.

Similarly, humans read at a wide range of speeds. None the less, studies have

been done using eye tracking to see when people foveate (fix their eyes) on particu-

lar words. This is one widely used way to measure how people are parsing sentences

[Rayner, 1998].

Van Gompel et al. [Gompel et al., 2001] used eye tracking to see how people read

sentences with PP attachment ambiguities. Figure 3 gives a comparison of the CABot2

parser and the human performance data. The x-axis represents the word in the sentence

that is being read, and the y-axis is time in milliseconds. The solid line is the parser’s

performance assuming that each cycle is 10 ms. and that each word’s processing is

completed before the next word is read. The dotted lines represent human performance;

humans do not foveate on each word and the human data was reported by groups of

words. In the example, the words were grouped as follows: The girl, saw, the dangerous

pyramid, with the, and stalactite; the additional period is included to show the end of

the parse. The reported data was averaged across a range of sentences with the same

lexical content. The human data that is reproduced in figure 3 is the total time spent

on a word group for ambiguous sentences. The parser data was counted from the cycle

that a new word was read, indicating that processing of the prior word had been largely

completed.

The CABot2 parser performs with almost the exact same timings as the human

data. The time to parse the complete sentence is 2940 ms. for the parser and 2931 ms.
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for the human model. The average difference between the five comparable data points

is 55.2 ms.

This is not to say that the CABot2 parser is a perfect model of human parsing

timing. For instance, the parser does not back track, and it is known that on some

sentences people do. Nonetheless, it does parse in roughly the correct time, giving

some support to the notion that it is doing something like the human parser.

5.3 PP-Attachment

The CABot2 parser does resolve PP attachment ambiguities. Seven sentences were

tested and all were attached correctly. The sentences are shown in table 2. The first

column represents the attachment decision that the parser makes for the sentence in

the third column. The second column represents how the parser makes the decision

and is further elaborated below.

Attachment Method Sentence
Verb Stored I saw the girl with the telescope.
Verb Inherited I saw the boy with the telescope.
Noun Stored Move the door with the handle.
Noun Inherited Move the gate with the handle.
Noun Default Turn the telescope with the pyramid.
Verb Stored Move it toward the stalactite.
Verb Inherited Move it toward the pyramid.

Table 2 Sentences with PP attachment ambiguities tested, their Attachment to noun or verb,
and the Method of ambiguity resolution used.

The first sentence is the standard PP attachment example. People typically resolve

this sentence, in the null context, by attaching the PP to the Verb so that the telescope

is used as an instrument for seeing [Ford et al., 1982]. As described in section 4.4, there

is a particular CA in the PP to VP subnet that is used to store the preference to attach

this PP as the instrument of the verb. This CA is ignited by a combination of evidence

from see, girl and telescope. The ignited preference CA in turn ignites the appropriate

grammar rule. As the decision is stored, table 2 marks this as stored.

For the second sentence, see and telescope still send activation to the preference

CA, but alone are insufficient to ignite the rule. However, as the words are stored as

a semantic hierarchy, boy shares many neurons with girl, and those shared neurons

also send activation to the preference CA. Consequently, the preference CA is ignited

followed by the grammar rule. In this case, the decision is not explicitly stored, but

instead derived via a hierarchical relation, so table 2 marks this decision as inherited.

Similarly, the third sentence has the attachment preference stored, but in this case

it is stored in the PP to NP subnet so that the door has the handle. Again, this CA is

ignited by a combination of the three inputs, and turns on the appropriate grammar

rule. The fourth sentence is similar to the third, but the decision is not stored. The

semantics of the words door and gate share neurons, so together they are sufficient to

ignite the preference CA.

In the case of the fifth sentence, no preference CA is ignited. Consequently, the

default behaviour occurs, and the PP is attached as a modifier of the noun. Note that
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sentences three and five are lexically identical. However it takes two cycles (or 20 ms.)

longer to begin to apply the NP → NP PP rule for sentence five. That is, the default

decision takes longer as there is less information available.

Finally, the sixth and seventh sentences attach the PP to the verb. The difference

here is that they differ on the NP instead of on the PP. This shows that inheritance

works on different elements, even though the elements are differently weighted.

Elsewhere [Nadh and Huyck, 2009], hierarchical relations have been used to learn

attachment preferences, although in a symbolic system. This shows that the basic

idea can be translated to a neural system. However, it is not clear how well the neural

approach will scale. That is, the use of hierarchical CAs for the semantics of words may

in itself be insufficient to resolve a large number of decisions as different preference CAs

may begin to conflict. None the less, it is obvious how these preference CAs can be

generated for any learned relation.

5.4 CABot

People parse sentences in the context of both related sentences and in the broader

environment in which the sentences occur. Particularly during conversation, parsing

interacts with other cognitive systems both receiving information from them, for exam-

ple, to resolve referential ambiguity, and providing information to them. The CABot2

parser is a component of an agent called CABot2. The agent exists in a video game,

and the agent, including the parser, is implemented entirely in fLIF neurons.

At this stage, the agent is relatively simple and has gone through two major versions

with associated minor versions. CABot2, the most recent, uses the CABot2 parser while

CABot1 used the earlier stack based parser. Timing for CABot1 provides one of the

major reasons for the development of the CABot2 parser: the stack-based parser was

too slow. While a command like Turn toward the pyramid. takes around 200 cycles in

the CABot2 parser, it takes 800 in the stack-based parser due to time needed for stack

erasing.

The CABot agents act to support a user in the game. The parser interprets com-

mands from the user and uses the results of these commands to set its internal goals.

The game requires that CABot2 interpret and implement 12 different imperative com-

mands. The parser generates the correct interpretation for all of these.

Various minor versions of the agents have been developed to explore a range of

capabilities, and two versions are particularly relevant to this paper. In one version of

CABot1, the labels of some visual semantic categories were learned by presenting them

simultaneously with visual instances of the category. This labelling is a portion of the

solution to the symbol grounding problem [Harnad, 1990]. Similarly, a second variant

of CABot1 used an item in the visual field to resolve the referent of the command Turn

toward it, showing the agent supports pronoun resolution by context.

The CABot2 parser is being used for the next version of the agent that is currently

under development, CABot3. It will need to understand about 20 new commands, but

this should be a straightforward extension to the current parser. CABot3 will also use

the above labelling work from the variant of CABot1.
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6 Discussion and Conclusion

The four main goals of the CABot2 parser, laid out in the introduction, have been met.

Most importantly, the system parses in a linguistically, psychologically, and neurally

plausible manner. That is not to say that it is a perfect model, but it is consistent with

current theories and data obtained in all three fields. It is consistent with several lin-

guistic theories (e.g. [Filmore, 1968,Pollard and Sag, 1994,Jackendoff, 2002]), parses a

context free grammar, and has a combinatorial representation of semantics that is

extensible to all linguistic semantics. It parses in a psychologically plausible manner

following a psycholinguistic model [Lewis and Vasishth, 2005]. Short and long-term

memories are handled according to the long standing neuropsychological CA hypoth-

esis. Timing of short-term memories and overall timing of parsing is consistent with

psychological evidence. The basic fLIF neural model is a reasonably accurate, albeit

relatively simple, model of biological neurons. While the simulated neural topology is

specified, and in some cases biologically unlikely (e.g. 10 oscillating neurons for a fea-

ture, and mostly orthogonal CAs, see section 4.2), it does make use of CAs and in some

cases hierarchical CAs. These simplifications are caused mainly by a forced limitation

of size. Although biologically unlikely (and aside from some very strong synapses), the

topology does not violate any known neural organisation principles.

As is almost certainly the case with people, prepositional phrase attachment ambi-

guity is resolved by semantics. In the cases where the attachment is known, it per-

forms flawlessly, that is, the system is capable of storing pre-calculated decisions.

Moreover, it is capable of handling novel attachment decisions due to the hierar-

chical nature of the stored semantics and their activation of attachment preference

rules. This use of the four-tuple (verb, noun, preposition, noun) has been shown

to be effective in symbolic systems [Ratnaparkhi et al., 1994,Nakov and Hearst, 2005,

Nadh and Huyck, 2009] getting more that 90% of decisions correct. However, it is in-

tended that future parsers, using context information, may perform at or near human

levels.

The CABot2 parser is relatively effective. It correctly parses all of the test sentences

in the current CABot commands, and, as the topology has no randomness, it parses

these correctly every time. The expectation is that this can be easily expanded to

account for the further 20 or 30 commands that the next CABot agent will need to

understand. Moreover, the whole parsing process is relatively efficient in both simulated

and actual time. An additional and important advantage is that the relatively few

neurons used for parsing leaves more available for other types of processing (e.g. vision

and planning).

Finally, the parser uses a reasonable semantic model. The representation of words

as semantic hierarchies is one aspect of this, along with noun and verb instances to im-

plement frames to store the semantics of phrases and sentences. This storage approach

allows specific queries made of a sentence to interact with other systems, and CABot

uses these instance frames to set its goals.

As the four main goals have been met, the CABot2 parser qualifies as a cognitive

model. As a cognitive model, it provides evidence for the type of grammar that is used

showing that a unification-based grammar can be used. It shows that PP attachment

can use hierarchical relations to resolve ambiguity. Finally, the timing results show that

proactive attachment can be efficiently implemented.

While the CABot2 parser handles standard, prototypical English, parses in human-

like time, and handles PP attachment ambiguity, it is by no means an industrial grade
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parser or even a particularly good psycholinguistic model. The belief is that by using

the same techniques used to develop the parser, it could readily be scaled up, but this

may not be the best way forward. Instead, a better understanding of the neurodynamics

of the system could be gained while developing a parser that learned rules and that

a better parser would result from this. Of course, parallel improved understanding of

the dynamics could also improve other related and connected systems that would also

improve parsing performance.

These improvements and expansions will run into a simulation boundary. The

CABot2 parser has 30,000 neurons and systems with 100,000 fLIF neurons have been

simulated in real-time on a standard PC, where real-time means a cycle takes 10 ms.

to simulate, or 100 cycles take about a second. Expansion beyond 100,000 neurons has

radically slowed simulations. These sizes could be improved by improved hardware,

distributing the simulator across PCs, or a more efficiently coded simulator, but it is

expected that special neural hardware [Khan et al., 2008] will be available within a

year or two. This should enable simulations in real-time of a billion neurons.

Scaling up is relatively straightforward for words and grammatical constructs. The

addition of new words and lexical classes is merely a linear change in the number of

neurons, that is, each new word will only increase the number of neurons as much as

the last word and perhaps less than this due to the hierarchical encoding of semantics.

Grammar rules can readily be added, although phenomena like conjunction and

gapping need further exploration. Since the CABot2 parser is based on current lin-

guistic theories that account for these phenomena, however, such extensions are about

implementation detail and not fundamental to the neurally based parsing approach

reported.

For example, in the current system, there is a rule for V P → V P NPobject that

makes the NP the object of the verb. Unfortunately, there are three versions of this

rule, one for the first NP instance, one for the second, and one for the third. The

problem is that each needs activation from only one noun instance, and all from the

single verb instance. If there were only one rule, multiple instances would all contribute

activation to the rule and cause it to activate at the wrong time. This problem might

be resolved by dynamic binding using active links [van der Velde and de Kamps, 2006]

or some other hierarchical activation mechanism, but it is currently a recognised flaw

in the CABot2 system.

The problem with multiple versions of rules for different instance pairs (see section

4.4) is currently unsolved and could, in theory, lead to an explosion of rules as sen-

tences grow longer. There is, of course, some upper sentence length limit for normal

human parsing. Moreover, in the CABot2 parser, most instances are turned off early

in processing so do not need to be accounted for. A dynamic binding mechanism can

probably be developed to overcome any remaining problems concerning multiple rules.

Other linguistic systems, like a lexical system, phonetics, or discourse interpreta-

tion, or systems for production of all of these, could be developed and integrated with

the parser. A lexical system could be used to resolve lexically ambiguous and polyse-

mous words like saw. It is expected that these efforts would be of a similar degree of

complexity to parser development but would be made easier by the skills, techniques,

and knowledge already gained. Crucially, while these systems would be largely inde-

pendent according to the tripartite theory, they would function in parallel. Thus the

full system would process at roughly the same, simulated, speed.

While the CABot2 parser could be scaled up, and systems developed for other

tasks, a better approach would be to develop systems that could learn the underlying
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rules, whether syntactic, lexical, phonological or of other types. Initial work has begun

on rule learning with CAs [Huyck and Belavkin, 2006,Belavkin and Huyck, 2008], but

it is still in its early stages. Integrating rule learning with variable binding (see section

2.1) is one obvious next step. When this issue is resolved, the system will only need to

be provided with the basics of Universal Grammar [Chomsky, 1965] and other systems

(e.g. sensing, effecting, and semantics) to learn to parse. Of course, the difficulty of

these tasks is not to be underestimated.

Considering what brain areas these subnets simulate, aside from some work on

words [Pulvermuller, 1999], and the knowledge that Broca’s area is heavily involved

in language processing, at this stage any proposed link would be highly speculative,

although one could pursue Anderson’s [Anderson and Lebiere, 2007] proposals linking

cognition to eight brain areas.

It does appear that the CABot2 parser is a reasonable cognitive model. If so,

then this is proof that Smolensky’s claim is out of date and that neural models are

now capable of being used for sophisticated cognitive modelling. More importantly,

these neural cognitive models may be able to address new problems that symbolic and

non-neural connectionist systems cannot, such as timing, word coding, and the neural

implementation of memory, both short and long-term. The link to neural data may

also provide simple solutions to problems that are otherwise difficult to solve. Neural

models also can solve the symbol-grounding problem that cause problems for symbolic

systems. It therefore seems reasonable to expect that the development of these models

will lead to better AI systems.
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