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Do Neural Models Scale up to a Human Brain?

Roman V Belavkin

Abstract—Models of cognition generally operate either at a
micro or a macro level. It is not clear, however, if the micro
models can predict the macroscopic properties of biological
neural systems, such as the human brain. Here, I evaluate some
hypotheses about the main functions of neural processing by
scaling them to higher levels. Using neurobiological literature, I
estimate the numbers of inputs and outputs of the entire nervous
system. Then, I apply optimal control and information theories
to predict the numbers of neurons required to implement these
functions. The addition of constraints on connectivity leads to
numerical estimates comparable to the numbers of neurons and
synapses in human brain.

I. INTRODUCTION

Human brain operates with approximately 100 billions of
neurons, which are believed to be the fundamental informa-
tion processing units. Many different approaches have been
applied to model the mind. Some are based on models of
neurons (e.g. [1], [2], [3]); others use higher order repre-
sentations to model higher level cognition (e.g. [4], [5]).
Although some convergence between these two approaches
can be observed, there are doubts whether the models of
neurons will stand up at the macroscopic level.

Perhaps, the key to understanding the organisation and
implementation of any device or a system is its function.
For example, there are many possible implementations of an
engine, all of which, however, fulfil the same function. The
differences in implementations are due to some additional
constraints. Likewise, different animals have different organ-
isations of nervous systems. These may be due to different
habitats, senses and other constraints. However, the main
function is most likely the same.

The unified theories of cognition approach due to [4] was
proposed as the way to test different theories in one compu-
tational architecture. Some implementations have been very
successful in modelling various psychological phenomena
[6]. Yet, these models largely rely on symbolic represen-
tations of higher level cognition, and it is not clear how can
they be represented by neurons. The research in artificial
neural networks, on the other hand, has often been driven
by engineering and signal processing problems resulting in
systems with little connection to biological systems.

Recently, there has been progress in using biologically
inspired neural architectures to simulate symbolic processing
and higher level cognition [7]. The CABOT project, currently
in progress, aims at incorporating elements of natural lan-
guage, symbol grounding and planning in a system, based
entirely on cell–assemblies of fatiguing leaky integrate–
and–fire neurons [8]. Although this project may prove the
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sufficiency of using current neural models for implementing
some higher order cognitive tasks, it is not clear how to test
which models are necessary.

In this paper, we propose the idea and report the results
of testing the models of neural function against macroscopic
physiological data of human brain. In the next section, we
overview some basic facts about the organisation of human
nervous system, and use them to estimate the total number
of inputs and outputs of the central nervous system (CNS).
In the following two sections, we investigate two functions
of neural processing: Optimal control and optimal coding of
information. It will be shown that although standard math-
ematical neural models correspond well to these functions,
a fully connected system would require significantly fewer
units than the number of neurons in human CNS. Several
mathematical relations are derived in order to account for
partial connectivity in neural networks. When these relations
are used with the constraints on connectivity based on
the average number of synapses of human CNS, then our
estimates for both the optimal control and optimal coding
functions are comparable with the corresponding parameters
of human CNS. The influence of additional constraints on
particular implementation of these functions is discussed.
The paper concludes by discussing the limitations, future
directions and possible applications of this research.

II. COUNTING THE AFFERENT AND EFFERENT FIBRES

In this section, we shall overview some main facts about
the nervous system, its organisation and estimate the total
numbers of afferent (input or ascending) and efferent (output
or descending) fibres of the CNS. The main objective is
to estimate the dimensionality of the input and the output
spaces, in which CNS operates. These estimates will help us
validate our hypotheses about the function of the CNS.

A. Overview of Human Nervous System

The nervous system of human, as well as of other verte-
brates, is usually organised into the central nervous system
(CNS), which consists of the brain and the spinal cord,
and the peripheral nervous system (PNS), which is the
complement of CNS, and it consists of the somatic and
autonomic nervous systems (Table I). PNS is responsible for
collecting all the sensory information and sending all the
control signals to the body, which include voluntary actions,
sympathetic and parasympathetic processes. Thus, most of
this (if not all) information is processed by the CNS.1

1Enteric system contains approximately one billion neurons, which op-
erate using the same neurotransmitters as in the brain. It is only connected
with CNS via the vagus nerve and can operate quite independently of the
rest of the nervous system. Its role is not yet well understood.



TABLE I
ORGANISATION OF HUMAN NERVOUS SYSTEM.

Central (CNS) Peripheral (PNS)

Brain (1011 neurons)
• Forebrain
• Midbrain
• Hindbrain

Spinal cord (109)

Somatic voluntary
control

Autonomic (ANS)
• Sympathetic (fight

or flight)
• Parasympathetic

(rest and digest)
• Enteric (109)

CNS is separated from the rest of the body by three layers
of tissue, called meninges, which make CNS largely insulated
from the rest of the body [9]. The main ‘interface’ between
CNS and its environment (the body) is provided by nerves,
which carry all the afferent and efferent fibres between CNS
and PNS. The information flow is represented on the diagram
below

PNS −→ (inputs)m CNS (outputs)n −→ PNS

where m is the total number of afferent, and n is the total
number of efferent fibres. Let us also denote by S the total
number of neurons in the CNS.

The brain is by far the largest collection of neurons in
the body with some estimates on the order of 1011 neurons,
while the spinal cord contains approximately 109 neurons,
many of which aggregate and relay the information into and
from the brain [10]. The brain is likely to fulfil the majority
of information processing and control functions in the body.

In this paper, we shall consider mathematical models of a
neuron to hypothesise about the major function of the CNS.
By using the estimates of m, n and S, we can test whether
these functions can be scaled up to the entire CNS.

B. Overview of the Connections

Although many sources in the neurological literature sug-
gest that the number of afferent fibres to the CNS is greater
than the number of efferent, unfortunately, we were unable to
find the estimates of these figures. Thus, in order to estimate
m and n, we had to survey the literature for the data about
the number of afferent and efferent fibres in all the nerves
connecting CNS with PNS, and then sum these estimates
together.

There are 12 pairs of cranial nerves that connect directly
to the brain, and 31 pair of spinal nerves that connect to the
spinal cord. The majority of the nerves carry both afferent
and efferent fibres. The data about the number of fibres varies
across different sources and is quite noisy. In some cases, we
could not find the exact figures and had to rely on estimates,
an improvement of which is desirable. However, our current
estimates, although quite noisy, turned out to be very useful
as a starting point of this research.

1) Cranial Nerves (12 pairs): Table II provides the sum-
mary of afferent and efferent fibres in cranial nerves together
with the approximate number of fibres. One can see that there

TABLE II
AFFERENT AND EFFERENT FIBRES IN CRANIAL NERVES.

Nerve: Afferent (IN) Efferent (OUT) Fibres
olfactory smell 1.2 · 10

7

optic vision 1.2 · 10
7

vestibulocochlear hearing, balance 3.1 · 10
4

oculomotor eye, pupil size 3 · 10
4

trochlear eye 3 · 10
3

abducens eye 3.7 · 10
3

hypoglossal tongue 7 · 10
3

spinal-accessory throat, neck ?
trigeminal face chewing 8.1 · 10

3

facial 2/3 taste face 10
4

glossopharyngeal 1/3 taste, blood
pressure

throat, saliva ?

vagus pain heart, lungs, ab-
dominal, throat

?

are three nerves with only afferent, five with only efferent
and four nerves with mixed fibres. The optic and olfactory
nerves account for the majority of afferent fibres among
cranial nerves, and they provide information for the most
complex perceptual systems in the body.

Unfortunately, we could not find information regarding
some of the nerves, and had to use estimations. For example,
we are still looking for a good count of fibres in the spinal-
accessory nerve. Based on the counts of fibres in the other
four efferent–only cranial nerves, our estimate for the spinal-
accessory nerve is 1

4 (30 + 3 + 3.7 + 7) · 103 = 1.09 · 104.
Similarly, the estimates for glossopharyngeal and vagus are
based on the other two mixed cranial nerves, and they are
1
2 (8.1 + 10) · 103 = 9.05 · 103.

The other information we did not find was the ratio
between afferent and efferent fibres in the mixed nerves.
One way to estimate this ratio is to take into account the
ratio between the numbers of afferent and efferent fibres in
all other cranial nerves. However, the olfactory and the optic
nerves have significantly higher numbers of fibres than any
other nerves [10], [9], and this method would probably result
in a very biased estimate. For this reason, the preliminary
estimates assume that half of fibres in a mixed nerve are
afferent and the other half is efferent. Below are the estimates
of the total numbers of afferent and efferent fibres in 24
cranial nerves:

mc ≈ 4.81 · 107 , nc ≈ 1.45 · 105

2) Spinal Nerves (31 pairs): Spinal nerves are both sen-
sory and motor. Thus, each spinal nerve carries both afferent
and efferent fibres. Table III shows the summary of all 31
pairs. Unfortunately, we could not find good estimates of the
number of fibres in the spinal nerves, and therefore had to
use estimates.

One way of estimation is based on the organisation of
neurons in the spinal cord. Indeed, afferent fibres connect
to one second and then to two third order spinal neurons,
which then project fibres into the brain; the efferent fibres



TABLE III
ORGANISATION OF SPINAL NERVES.

Nerves: Number
cervical 8
thoracic 12
lumbar 5
sacral 5
coccyx 1

from the brain connect directly to the α and γ motor neurons.
Thus, one could estimate the numbers of afferent and efferent
fibres of the spinal nerves based on the total number of spinal
neurons (109). Alternatively, one could use the estimates
based on the mixed cranial nerves. Here, we report the results
of the second method, which produces lower estimates

ms = ns ≈ 2 · 31 · 4.5 · 103 = 2.8 · 105

C. The Estimates

Adding up the results for cranial and spinal nerves, we
can now estimate the total numbers of afferent and efferent
fibres of the CNS:

m = mc + ms ≈ 4.84 · 107

n = nc + ns ≈ 4.26 · 105

These estimates are based on rather imprecise data, and
they are clearly very noisy and not final. Nevertheless, they
provide some important information, which will be used in
this paper. Firstly, the number of afferent fibres, m, does
indeed exceed greatly the number of efferent, n. Secondly,
m, which is the dimensionality of the input space of the
CNS, is much greater than the number of synapses, k, of
the average neuron (k ≈ 103 − 104). Thus, CNS is not a
fully connected network, and each neuron operates in the
space of a much smaller dimensionality as compared to the
entire CNS. Thirdly, the number of efferent fibres, n, is much
smaller than the total number of neurons in the CNS.

Some additional data about internal structures of the CNS
can be evaluated using the above estimates of m and n.
For example, the number of fibres in corpus callosum,
which connects the left and right cerebral hemispheres, is
approximately 2.5 · 108. Interestingly, half of this number
is quite comparable with our estimate of m. One might
speculate that each hemisphere receives m inputs and then
relays some information to the other hemisphere via corpus
callosum. Another interesting fact is the number of fibres in
pyramidal decussation, which are the motor fibres that pass
from the brain to medulla. This number is approximately
1.1 · 106, and it is also comparable with our estimate of the
number of outputs from the spinal nerves, ns.

III. OPTIMAL ESTIMATION AND CONTROL

Let us consider the assumption that CNS implements
optimal estimation and control of the body. Let us assume
that X is a set of all states of the environment, and there
is a preference relation ordering these states (total preorder).

This order can be induced by some non–constant numerical
cost function c : X → R. If states x ∈ X are observed
indirectly through some measurements y ∈ Y m, then the
optimal function u : Y m → Un is found by minimising the
conditional expected cost

u∗(y) = arg min
u(y)

E{c(x, u(y)) | y}

= arg min
u(y)

∫

c(x, u(y))P (dx | y)

where minimisation is done over all functions u(y). The
choice of the optimal function depends on the cost functional,
c(x, u(y)). For example, the optimal estimation function
minimising quadratic error c(x, u(y)) = |x − u(y)|2 is
conditional expectation u∗(y) = E{x | y}. Its linear
approximation is the linear mean–square regression

E{x | y} ≈ E{x} + BT (y − E{y}) , (1)

where B is a matrix of the regression coefficients, which
depend on the correlations between different components of
vectors x and y.

Linear algorithms are known to be optimal for Gaussian
distributions [11], [12], and, in this case, linear regression
defines the optimal hyperplane minimising the quadratic
distance between x and its estimate u(y). Similar optimal
linear algorithms can be formulated for control problems.
Their implementation requires only the knowledge of the first
and second order statistics.

Optimal non–linear algorithms, in general, rely on higher
order statistics. However, algorithms optimal in the sense of
maximum probability can be significantly simplified [13].
Interestingly, some popular models of a neuron and neural
networks have great similarities with the optimal linear
algorithms.

A. Neural Linear Transformations

The very first mathematical model of a neuron due to [1]
is a function of the inner product between the weights and
the input vectors:

u(y) = ϕ
(

a + wT y
)

= ϕ

(

a +
k
∑

i=1

wiyi

)

where a is the threshold (bias), y is the input vector, w is the
weight vector, and k is the number of inputs (synapses) of
a neuron. Often, the activation function, ϕ, is the Heaviside
threshold function. Notice the similarities between the argu-
ment of ϕ in the above model and linear regression (1). The
bias, a, can be seen as the ‘intercept’ coefficient of the linear
transformation, E{x} − BT E{y}; the weights, w, can be
seen as the regression coefficients, b ∈ B. Furthermore, the
latter association is supported by many theories of synaptic
learning.

The idea, proposed by Hebb [2], that synaptic weights
increase when neurons ‘co–fire’ was extended into the co-
variance learning rule [14], [3], according to which the
weights are learnt as correlations between the pre and post



synaptic activities. Similar ideas can be found in the works on
principal or independent components analysis using neural
networks [15], [16] as well as the self–organising maps
[17], which linearly transform signals into lower dimensional
spaces minimising some cost functions (e.g. quadratic or
Kullback distance). Furthermore, it is well known that mul-
tilayer networks with a large number of linear units can be
used to approximate non–linear functions. Let us investigate
further these similarities between the neural models and the
optimal estimation and control algorithms. For this, however,
we shall need to develop some additional mathematical
apparatus.

B. Constraints on Connectivity

Suppose that a system of artificial neurons implements a
control algorithm transforming m–dimensional input signal
y ∈ Y m into an n–dimensional control signal u ∈ Un. A
linear algorithm can be implemented using a single layer
percerptron consisting of n neurons with m synapses each.
Indeed, such a network would implement a linear transfor-
mation, and if the weights matrix of this network equals
to the regression coefficients matrix, B, then the system
will be optimal for Gaussian input and quadratic cost. Thus,
according to the previous section, such a system with m and
n equivalent to human CNS would only require n ≈ 4.26·105

motor neurons connected directly to m ≈ 4.84 · 107 input
nodes. This, obviously, contradicts the fact that there are
billions of neurons in the CNS between the inputs and the
outputs (approximately 1011 in the human brain).

In the ‘equivalent’ single layer system, however, the output
neurons would have m ≈ 4.84 ·107 synapses, which exceeds
by far the estimated number of synapses of an average neuron
in the human brain (between 103 and 104, or k ≈ 4 · 103,
[10], [9]). Furthermore, each of the sensory neurons would
have to be connected to n ≈ 4.26 ·105 neurons in the output
layer. Thus, a single layer system cannot account for the
numerical data about human CNS.

Let us consider a system with m input and n output
nodes, but with a constraint that the average number of
synapses cannot be larger than k. Thus, n output nodes can
be connected to maximum n× k nodes. If n× k < m, then
there must be nodes between the input and the output layers,
which we shall refer to as hidden nodes.

Let us denote by i = 1, 2, . . . the distance of a node
from the output nodes, measured in the number of forward
connections. Thus, i = 0 corresponds to the output nodes,
and i = 1 corresponds to all nodes that connect directly to
the output nodes. In analogy with feed–forwards networks,
i is the number of a hidden layer starting from the output
layer.

Let ri be the number of nodes in the ith layer. It is clear
that max ri+1 = ri × k can only be achieved if each of the
nodes in layer i + 1 is connected to a single node in layer i.
In other words, each of the nodes in ith layer is connected
to a different set of k nodes in layer i+1. In this case, layer
i consists of ri independent nodes, and the input space of

layer i is an ri+1–dimensional space consisting of ri disjoint
k–dimensional subsets.

Suppose that the k–dimensional subsets of the ri+1–
dimensional input space are not disjoint. This means that
the nodes in layer ri+1 are connected on average to h > 1
nodes in layer i. By noticing that the outgoing connections
from layer i + 1 to i and connections received by layer i
from i+1 are the same, one can write ri+1h = rik, and the
following recurrent relation holds

ri+1 = ri
k

h

For a system with l hidden layers, m inputs and n outputs,
we have

r0 = n , ri = n

(

k

h

)i

, rl+1 = m (2)

Thus, m
(

h
k

)l+1
= n, and the number of hidden layers can

be computed as follows

l =
ln m − ln n

ln k − ln h
− 1 (3)

We shall call l the order of connectivity. Note that because
l ≥ 0 and m ≥ n, it follows from (3) that k ≥ h. Moreover,
l ≤ 0 when h

k ≤ n
m . Note that l = 0 corresponds to a single

layer percerptron, discussed above. The order of connectivity,
l, increases infinitely as h

k → 1:

lim
h
k
→1

ln m − ln n

ln k − ln h
− 1 = ∞

Using Equations (2) and (3), the total number of hidden
nodes can be computed as

S =

l
∑

i=1

ri = n

l
∑

i=1

(

k

h

)i

= m

l
∑

i=1

(

h

k

)i

(4)

Note that l and S do not depend on the values of h
and k explicitly, but rather on the h

k ratio. However, since
both h and k are natural numbers, maximisation of h

k and
minimisation of k suggests that h = k − 1.

Using estimates of m and n from the previous section, let
us compute the h

k ratio such that the total number of neurons
in hidden layers, S, is approximately the same as in human
CNS (1011). For h

k = .9995, equations (3) and (2) give us

l = 9461 , S = 0.96 · 1011

Thus, the h
k ratio in this model has to be very close to one

in order to achieve the number of hidden neurons comparable
to that of a human brain. Also, we observe a very high order
of connectivity. Interestingly, because h and k are natural
numbers, the minimal value of k that can achieve ratio h

k =
.9995 (h = k − 1) is k = 2 · 103, which matches well the
average number of synapses in the human brain (between
103 and 104).

Clearly, the results, obtained above, should be carefully
interpreted. First, the model used to derive equations (3) and
(2) assumed the average numbers of synapses, k, and postsy-
naptic connections, h. In biological systems, these quantities



have quite a high variance. The model also took into account
only forward connections, and the feedback connections are
not considered. This is, of course, an idealisation. Perhaps,
the results, obtained above, should be treated as the estimates
of the average values of the parameters, which may have a
high variance.

In the conclusion of this section, let us discuss the validity
of linear models. Indeed, for non–Gaussian distributions,
linear algorithms are not optimal, and it is unlikely that the
input of the CNS is Gaussian. However, as discussed earlier,
a multilayer system with high number of linear units can
successfully approximate a non–linear function. Furthermore,
any distribution can be approximated as a mixture of Gaus-
sians with small variance (indeed, the Dirac δ–function can
be seen as a Gaussian with zero variance). Also, because for
Gaussian distributions the expected value corresponds to the
maximum of probability, such neural networks can be nearly
optimal in the sense of maximum likelihood. Thus, partially
connected multilayer networks, such as human CNS, can be
applied to much wider range of problems than a simple linear
optimisation.

IV. OPTIMAL CODING

In this section, we consider neural systems from the
information theoretic point of view. Let us consider the input
vector, y ∈ Y m, and the output vector, u ∈ Un, as random
variables. Thus, a neural system, such as CNS, can be viewed
as a function of random variable u(y). Cardinal numbers |Y |
and |U | are the numbers values each input and output neuron
can transmit (e.g. if one assumes a binary model of neural
communication, then |Y | = |U | = 2), and therefore |Y |m

and |U |n are cardinalities of the input and the output spaces.
In general, only an isomorphic mapping can transform a

random variable without information loss. However, u(y)
is not an invertible function if |U |n < |Y |m, and some
information is lost. However, we know from information
theory that under some conditions on y, it is possible to
find an optimal code with an alphabet of size |U |n < |Y |m

and no loss of information.
This condition is entropical stability, which is defined

as follows. Let H(y) = − ln P (y) denote the random (or
Hartley) entropy, and Hy = −E{P (y)} denote the expected
(or Boltzmann) entropy. A family of random variables {yi}
is called entropically stable if the ratio H(yi)/Hyi

converges
in probability to one as i → ∞. It can be shown that
many random processes are entropically stable [13] (e.g. any
Markov process with constant transition probabilities).

A very deep result of information theory is the theorem
about asymptotic properties of entropically stable processes.
This theorem [13] suggests that if {yi} is entropically stable,
then the set of all possible realisations of yi can be divided
into two disjoint subsets Ai and Bi such that as i → ∞

1) P (Ai) → 0;
2) P (yi)/P (y′

i) → 1 for any yi, y′

i ∈ Bi;
3) The number of realisations in Bi approaches eHyi .
Thus, for large m, some realisations of entropically stable

y ∈ Y m are extremely rare, while some realisations are more

common and have asymptotically similar probabilities. Fur-
thermore, the number or realisations of these, more probable
y can be approximated by eHy . Let us apply these general
ideas to a neural system with m inputs and n outputs.

Let Hy and Hu denote the expected entropies of the input
and the output vectors. If y has uniform distribution, then
Hy = ln |Y |m, which is the maximum entropy; otherwise,
Hy < ln |Y |m. If input is an entropically stable process,
then we only require to encode eHy ≤ |Y |m realisations
of y. Moreover, these realisations have asymptotically equal
probabilities. Thus, an optimal code can be implemented
using |U |n = eHy uniformly distributed realisations of u.
If |U | = |Y |, then n ≤ m.

Interestingly, many algorithms, based on artificial neu-
ral networks, implement transformations, such as discussed
above. Indeed, the independent component analysis (ICA) is
a transformations of y into u, such that the components of
u are statistically independent. This means minimisation of
Kullback divergence between joint probability P (u) and the
product of marginal probabilities P (u1)×· · ·×P (un). This
condition can be written in terms of entropies as follows

u∗(y) = arg min
u(y)

(

n
∑

i=1

Hui
− Hu

)

where minimisation is done over all functions u(y). Some
ICA algorithms are based on minimisation of the sum of
marginal entropies [18]. However, one can see from above
that minimisation can also be achieved by maximising Hu,
which results in almost uniform distribution of u. Thus, ICA
algorithms can be used for optimal coding.

Neural implementations of linear ICA require only one
layer fully connected networks. This means n neurons with
m synapses each. As in previous section, we observe a dis-
crepancy with biological systems, where many more neurons
are used with fewer synapses. Let us discuss the implications
of the upper bound constraint on the number of synapses.

Each neuron with k synapses transforms k–dimensional
random vector into a scalar (one axon). This constitutes
to an average information loss of dimension k − 1. More
information can be communicated using additional neurons,
connected to the same input. Thus, a system of h = k
neurons, connected to the same input, can communicate with
no loss of information. In previous section, we estimated that
h
k = .9995, which suggests almost perfect communication.

A neural system of S units has the capacity to communi-
cate |U |S realisations. However, there are h units on average
with the same input. Also, if each unit is connected to h
other units, then these h units receive the same information.
Thus, the total number of realisations should be reduced to
|U |S/h. Perfect communication of information to the output
through a channel of S hidden units suggests that the channel
should have the capacity for |U |m realisations. Thus,

m =
S

h

One can see from above that S is an increasing function of h,
as was the case in Equation (4). If the number of synapses, k,



has to be minimised, while the ratio h
k maximised, because

h and k are natural numbers, it follows that h = k−1. Using
our estimates from previous section for m ≈ 4.84 · 107 and
h ≈ 2 · 103, we can estimate

S ≈ 0.97 · 1011

The above result is quite close to our previous calculations,
even though a different approach has been used.

V. CONCLUSIONS

In this study, we attempted to hypothesise about the main
function of nervous system and the brain, and evaluate these
hypotheses by using numerical data about human CNS and
the estimates of the input and output spaces it operates in. It
is unfortunate that the data and the estimates are quite noisy
and imprecise, and we hope that better approximations will
soon be available. However, current figures allowed us to
develop and test some preliminary ideas.

Two main mathematical models have been evaluated: Op-
timal control and optimal information coding. Both functions
can be implemented in artificial neural systems very different
from their biological counterparts. For example, both the
optimal linear algorithms and optimal communication can
be implemented using a simple percerptron. Although some
advantages of introducing hidden nodes have been known
for decades (e.g. non–linear separation), we found that a
constraint on the number of synapses also leads to a solution
with hidden nodes. In this case, however, the network is not
fully connected.

Several relations have been derived for networks with
bounded connectivity. In these relations, the ratio between
the numbers of post and pre synaptic connections, h

k , plays
an important role. Systems with ratios close to one can
implement functions similar to single layer transformations
with no constraints on connectivity. Using two different
approaches, we obtained very similar results, which predict
the estimated number of neurons in human CNS as well as
the average number of synapses of a neuron.

Our estimates and computations support the idea that CNS
implements an optimal control and encoding of information.
The redundancy in the input allows for a dimensionality
reduction of the control signal. Thus, the system makes an
optimal transformation from Y m to Un, but with additional
constraints on connectivity.

Minimisation of the number of synapses is probably
justified, as it may reduce the number and the length of
connections, and possibly the size and energy requirements
of each cell in the nervous system. In addition, each neuron
operates in a subspace of a lower dimensionality, which
can significantly improve the convergence rate (i.e. speed
of learning). However, the increase of the h

k ratio, which
reduces information loss, sets the lower bound on the number
of synapses k = h + 1. In addition, we observe an increases
of the number of hidden neurons, S. Such systems can
be applied for non–linear problems. The total number of
hidden neurons, however, is bounded above due to the

physical constraints. Thus, the topology and organisation of
nervous systems, observed in nature, can be due to a complex
multicriteria optimisation.

The mathematical models, presented here, should not be
translated literally to biological systems. They, however,
introduce the ideas about how models of a single neu-
ron can be scaled up, even to levels as high as human
CNS. The macroscopic data about biological systems can
be used to evaluate these microscopic models and reason
about the higher level functions using mathematical models.
Understanding of how these functions are implemented in
biological systems as a result of evolution, can help us in
the design and applications of artificial systems.
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