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Abstract—Perception, prediction and generation of sequences 
is a fundamental aspect of human behavior and depends on the 
ability to detect serial order. This paper presents a plausible 
model of sequential memory at the neurological level based on 
the theory of cell assemblies. The basic idea is that sequences in 
the brain are represented by cell assemblies. Each item of the 
sequence and the sequential association between the items are 
represented by cell assemblies. Simulation results show that the 
model is capable of recognizing and discriminating multiple 
sequences stored in memory. The cell assemblies that represent 
the sequential association between two items are activated if 
these items occur in the input in the correct order. These 
sequence detecting cell assemblies form the basis of this model. 
A simulation presenting 100 stored sequences and 100 not 
stored recognizes perfectly  90% of the time with no false 
positives.  

INTRODUCTION

THE ability to process sequential information is important 
for intelligent behavior produced by natural and artificial 
systems. For many years researchers have been studying 
various models to explain sequential learning and memory, 
but the neural dynamics are still not well understood. This 
paper presents a neurally plausible mechanism for sequential 
memory. It addresses the question of how to store a sequence 
of discrete elements and recall them in correct temporal 
order. 

The concept of cell assemblies provides a reasonable 
account of the neural representation of basic concepts in the 
human brain [1]. However, the organization of neural 
structures that result in higher cognitive processes such as 
sequence recognition is not known yet. In this paper, a 
fatiguing leaky integrate-and-fire neuron model is used as the 
basis.  Cell assemblies that emerge from these simulated 
neurons form a neurally plausible mechanism for storing and 
retrieving temporal sequences. Two different types of cell 
assemblies are simulated: base cell assemblies, that represent 
the item of the sequence, and sequence cell assemblies that 
represent different sequences.

BACKGROUND

A great deal of research has been directed towards the 
problem of understanding psychological phenomena from a 
neural perspective.  The cell assembly hypothesis is central 
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to much of this research. Specifically there has been a lot of 
interest in understanding sequences and the neural basis of 
sequences. We will first review the cell assembly hypothesis 
and then propose how dynamics of neuronal assemblies can 
account for complex sequential behavior.

Cell Assembly

Hebb proposed that synapses are modified by an activity 
dependant mechanism [1]. The synaptic modification rule 
proposed by Hebb facilitates the storage of information in 
human memory. He suggested that neurons do not 
individually represent memories but a large group of 
simultaneously active neurons account for any concept or 
idea in the human brain. Central to his theory is the idea of 
cell assemblies, which are formed as a result of the proposed 
learning process. Learning is achieved by increasing the 
synaptic strength between any two neurons in the network if 
the activation of the two neurons is correlated and decreasing 
it if they are activated in an uncorrelated manner. Therefore 
when an external input is presented to the network, the 
neurons that are simultaneously active acquire connections 
with each other. Repeated presentations of the external input 
increase the strength of the connections between these 
neurons.  The increase in the synaptic strength allows this 
group of neurons to function together. This group of strongly 
connected neurons is called a cell assembly. Formation of 
these cell assemblies accounts for long term memory. 
Whenever a large subset of the cell assembly is activated by 
external input, all the neurons of the cell assembly are 
activated due to recurrent excitatory connections. The strong 
recurrent excitatory connections enable activation to 
reverberate among the neurons of the group even after the 
external input is removed. Such persistent neural activity in a 
cell assembly, even after the external input has ceased, 
accounts for short term memory. Hebb's theory and 
associated learning rule have inspired several computational 
neural network models (eg. [2-16]).

The cell assembly theory successfully explains how the 
brain learns neural representations of different concepts and 
how they are stored in the human memory. These concepts 
enable us to recognize different objects, names and events. 
This paper is an attempt to extend this theory to explain 
more complex human behavior than perception. Sequence 
learning is one such aspect of behavior and learning serial 
order association between two items of a sequence is crucial 
for executing a wide range of cognitive tasks. 

Sequence Learning

For many decades, researchers have investigated the 
organization of sequences in memory. One of the earliest 

Hina Ghalib, Christian Huyck

A Cell Assembly Model of Sequential Memory



accounts of serial order memory was given by Ebbinghaus 
[17]. He believed that serially organized behavior can be 
represented as a chain of associations. According to his view, 
sequences were learned by associating each item or memory 
pattern of the sequence with the item that follows it in a 
sequence. So a sequence ABCD is simply stored as a set of 
associations A-B, B-C, C-D. In this paradigm, each item of 
the sequence when recalled remains active for some time 
after which it facilitates the activation of the the next item in 
the sequence to which it is associated.

Hebb suggests cell assemblies become organized into 
more complex systems. As repeated activation of ideas result 
in the formation of cell assemblies,   ideas that are frequently 
activated contiguously become associated by establishing 
direct synaptic connections between their cell assemblies. 
This leads to sequential activation of cell assemblies and 
results in the organization of inter-related cell assemblies 
into a phase sequence. Stimulation of a phase sequence 
represents successive steps of serial computation at the 
neural level. A higher level organization of phase sequences 
in a series constitutes a phase cycle. 

 A number of neural network models of serial order were 
based on the principle of forming associations between 
successive items of a sequence [18-21]. These models based 
on the idea of associative chaining were not capable of 
handling sequences containing repeated items. Consider a 
sequence  R-E-S-E-A-R-C-H, where there are two 
associative links arising from E. Associative chaining models 
provide no mechanism for choosing between multiple 
associative links. Therefore sequences with recurring 
patterns cannot be learned by direct association between 
items. In the cell assembly model each cell assembly may be 
associated with a number of other cell assemblies, but simple 
and direct association between cell assemblies, like other 
associative chaining models, fail to account for memory of 
complex sequences. Lashley [22] rejected simple pair wise 
associative chaining as a plausible mechanism to account for 
complex serial behavior.

The problem of sequence learning has been addressed 
using various techniques, such as hidden Markov models, 
dynamic programming, connectionist systems and 
evolutionary computation. In order to deal with sequential 
information, the system must be designed such that several 
input patterns together in their given order influence the
output of the system. The system therefore needs some form 
of memory to hold past inputs. Many recent simulations 
have used connectionist systems to model how the brain 
might process sequential information. These connectionist 
models either use recurrent connections or some other non 
recurrent mechanism such as time-delay or windows to 
capture temporal features of the input. All these mechanism 
try to incorporate some kind of contextual information in a 
connectionist structure. The Time Delay Neural Network is 
an example of a feed-forward network where hidden neurons 
and output neurons are replicated across time to process 

temporal information [23].  Finite Impulse Response (FIR) 
is another feed-forward network which models each synapse 
as a linear FIR filter to provide dynamic interconnectivity 
[24]. Networks that use feedback connections to store 
representations of recent input events are broadly termed as 
recurrent networks.  A large number of connectionist models 
capable of processing sequential information are based on a 
feedback architecture [25-29]. Temporal back-propagation 
is a successful learning mechanism with these recurrent 
networks but it lacks biological plausibility as it is a 
supervised mechanism. Another class of popular 
connectionist system that is used for sequence processing are 
based on the Hopfield model of associative memory [30-34]. 
All these models consider a temporal sequence as an 
association of contiguous items, and the network learns these 
associations in a supervised manner. 

A number of unsupervised connectionist models have also 
been presented. Some of these models based on self 
organizing maps [35], such as Temporal Kohonen Map [36-
37] and Recurrent Self-Organizing Map [38], process 
temporal information by incorporating leaky integrator 
memory to preserve the temporal context of the input. 

A number of computational models can successfully 
replay the sequence of items just presented. These models 
only account for short-term memory of sequences but none 
of them addresses the question of how these sequences are 
learned in an autonomous fashion and consolidated into 
long-term memory [39-41]. 

This paper presents a model that overcomes the problems 
faced by associative chaining models and their variants. The 
model presented does not store serial order relationship in 
the connections between the cell assemblies of the associated 
elements. This serial order relationship is extracted and 
translated into a more stable representation that is itself a cell 
assembly. In this paper, this third cell assembly is called a 
sequence cell assembly and it represents context information 
when processing sequences. The sequence cell assembly 
stores serial order associations in long term memory. Each 
sequence cell assembly receives connections from a cell 
assembly representing the context and the last element of the 
sequence. It is sensitive to the order in which associated 
items are presented. The model is then used for the problem 
of sequence recognition. 

SIMULATION MODEL

This section presents the model that is simulated.   
Simulations described in this paper are based on fatiguing 
leaky integrate-and-fire neurons with dynamic threshold as 
discussed below.  Neurons are organized into two types of 
networks, a base network and four sequence networks.  The
connection scheme within a network differs from the 
connection scheme between networks.

The Neuron Model

A biologically plausible neuron model is used [42]. The 



system presented is a sparsely connected network of 
fatiguing leaky integrate-and-fire neurons. The network is 
composed of neurons, 80% of which are excitatory and 20% 
inhibitory as in the mammalian cortex [43]. The neurons in 
the network are either excitatory or inhibitory; that is, all 
synapses leaving a neuron are either excitatory, or they are 
all inhibitory.  This is consistent with Dale’s principle [44].  
Connections are uni-directional as in the brain. Neurons do 
not have self connections.

Each neuron receives activations from all neurons that are 
connected to it. The activation received over time is 
integrated. The neuron leaks some activation at each step 
that it does not fire, modeling the leakage of current through 
the cell membrane of biological neurons [45].  Activation is 
lost at a constant rate which is called the decay rate. 
Activation of a neuron i at time step t is represented by the 
following equation: 

     11  towtata jijii  (1)

Where  tai  and  1tai  is the activation of neuron i at 

time step t and t-1 respectively, ijw  is the strength of the 

connection between  neuron i and j, )(to j  is the output of  a 

neuron j at time t, τ is the decay rate and  1 tow jij

represents the sum of all the inputs received by a neuron i at 
time step t. The output of a neuron is defined by a binary 
Heaviside step function.
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Where  ti  is the threshold of neuron i at time step t. The 

neuron fires if activation integrated over time exceeds the 
threshold. As the neuron fires, it sends a spike to other 
connected neurons. After the spike, the neuron looses all its 
activation. On the other hand, if the integrated activation is 
below the threshold the neuron remains quiescent. Up to this 
point, the neural model is consistent with a great deal of 
work with leaky integrate-and-fire neural models (e.g. [46]). 
The model incorporates the idea of dynamic threshold to 
account for neuronal fatigue. An integrate-and-fire neural 
model with dynamic threshold is rarely used despite its 
extensive biological evidence [45]. The dynamic threshold is 
a useful mechanism that helps the network move from one 
stable state to the next stable state. Threshold of each neuron 
changes at each time step depending on its fatigue. 
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Where cf is the fatigue constant and fr is the fatigue 

recovery constant. cf  is the constant value with which the 

threshold increases at each time step t when the neuron fires. 
Increase in threshold increases the amount of activation 
required for a neuron to fire. This makes a neuron that has 
fired frequently in the recent past more difficult to fire. 
Fatigue therefore acts as a self inhibition mechanism that 
shuts off cell assemblies that have been active for a long time 
allowing another to activate. A neuron's threshold decreases 
with a constant value of fr at each step that it does not fire.  

A lower threshold value for neurons that remain quiescent 
for long makes these neurons more sensitive to the input 
received. 

Table 1 shows the parameters used for the networks in the 
simulation. These values were determined by a process of 
manual parameter exploration.  

The Network Architecture

The system presented in this paper is a multi-network 
architecture, consisting of 5 networks connected to each 
other to process sequences of up to length 5. The network is 
composed of 1 base network and 4 sequence networks; 
Figure 1 shows the coarse topology of the system. The 
neurons within each network are sparsely connected via a 
distance based connectivity scheme. Since distance is 
important, the network organization follows a toroidal 
topology to avoid border effects. The number of connections 
leaving each neuron is uniform. Each network contains N 
neurons and network size for simulations described in this 

paper is N = 250 for each network. An N x N matrix C =  ijc

represents connectivity within each network.. There exists a 
connection between neuron i and j of same network only if 

ijc =1. Inhibitory neurons are randomly connected. The 
connectivity rule for excitatory neurons is given by.


  otherwise

drifcij 0
)*(1  (4)

Where r is a random number, d is the city block distance 
between two neurons and   is the connection probability. 
This connectivity rule suggests that connections between the 
neurons is a function of the distance between them and is 
also influenced by the chosen connection probability of the 
network. Simulations described in this paper set d = 4 and 

TABLE I
NETWORK PARAMETERS

Symbol Parameter
Base and Sequence 

Net

 Threshold 4.5
τ Decay Rate 0.9
fc Fatigue 0.25
fr Fatigue Recovery 0.35
η Learning Rate 0.07

Parameters for base and sequence networks of the model



 = 0.8. Therefore each neuron is connected to other neurons 
in the network within a local radius of 4. 

Apart from being locally connected, each neuron in the 
network has one long distance axon with several synapses. 
One quarter of the connections go down this axon, and in 
this area connections are also distance biased. So, neurons 
send connections to their area and one other area in the 
network. This is motivated by biological neural topology 
[45].

Each network is broken into several orthogonal cell 
assemblies.  This is done by a process of unsupervised 
training (see sections III C and D).

The base network is connected to the level one sequence 
network with fixed forward connections as shown in Fig1. 

Each sequence network is connected to its higher level 
sequence network. The synaptic strength of these 
connections is pre-calculated, there is no training. 

The sequence networks store the serial order association 
between the basic patterns. Each serial order association in a 
sequence network is represented by a cell assembly   
composed of 50 neurons. The A and B cell assembly 
represent items A and B in the base network, and the AB and 
BA cell assemblies in the first sequence network represent 
their occurrence in different temporal order.  Individual 
items are stored in such a way that the pattern of short term 
memory activity, neural firing, encodes both the items that 
have occurred and the temporal order in which they have 
occurred. In the cognitive literature, such a mechanism is 
often said to store both item and order information [20].

  The model presented here employs a weight based 
technique to encode and maintain serial order information in 
the network. Connections between each network have pre-
calculated weights to detect the temporal order of activations 

received from the connected network. Sequence cell 
assemblies have two types of input, one from the first 
element of the sequence that it represents and another from 
the second element.  So a level 1 sequence CA has two types 
of connections from the base network, and a higher level 
sequence CA has the first type from the prior level, and the 
second from the base.  The weights calculated for 
simulations described in this paper are 0.41 from first 
element and 0.18 from second element of the sequence. 
There are 100 connections from each cell assembly of the 
base network to each cell assembly in the sequence network.

For example, neurons in the base network representing A 
are connected with the neurons of the AB cell assembly in 
the level 1 sequence network with a fixed weight of 0.41, 
and neurons in B are connected with the neurons of the AB 
cell assembly in the level one sequence network with a fixed 
weight of 0.18. Experiments show that the activation 
received by AB from A increases the activation level of 
neurons in the assembly but is not enough to fire them. 

Learning

The base network is trained with five basic patterns and 
each sequence network is trained with five sequential 
patterns. Neurons in the appropriate Cell Assembly were 
simultaneously fired via external activation. Each pattern is 
composed of 50 neurons, and the patterns do not share any 
neurons (are orthogonal).

The network learns these patterns using a correlatory 
Hebbian learning rule [47]. Following this learning 
mechanism, the weights of the synaptic connections are 
modified according to the equation:

*)1( Wijijw  (5)

  *Wijijw (6)

Where ijw  is the weight of the synapse from neuron i to 
neuron j and    is the learning rate. At each computing 

cycle the synaptic weight changes if the pre synaptic neuron 
fires. The weight increases, the first Hebbian equation, if the 
post synaptic neuron also fires. On the other hand, weights 
are reduced if the post synaptic neuron does not fire, the 
second anti-Hebbian equation.  This combination of Hebbian 
and anti-Hebbian learning forces the synaptic weights from 
neuron i to neuron j, ijw , towards the likelihood that neuron 

j fires when neuron i fires [47].

Simulation Experiment

Simulations were run to test the storage of items and their 
sequences of length two through five.  The simulations 
consisted of the following steps.

First, the base network was trained with five basic patterns 
and each sequence network with five sequence patterns using 

Fig.1. One Base Network and four sequence networks are connected to 
process sequential information. 



the learning mechanism discussed in section III C. After the 
learning phase, the sequences to be stored were encoded into 
the network as discussed in section III B.  

In order to test the storage of sequential information, 
sequences of basic items were presented to the base network; 
some presentations had stored sequences, and some had 
sequences that were not stored. Each pattern consisting of 50 
neurons was presented for 50 cycles.  So, if the ABCDE 
sequence was presented, A would be presented for 50 cycles, 
then B for 50, and so forth until E ceased presentation at 
cycle 250.  

Each pattern when presented to the base network activated 
the cell assembly in the base network representing the input. 
Once activated, the cell assembly reverberated after the 
external input had ceased. Each cell assembly has strong 
inhibitory and weak excitatory connections to other cell 
assemblies in the same network. Therefore if one cell 
assembly is activated it inhibits the neurons belonging to 
other cell assemblies in the network. The neurons belonging 
to the reverberating cell assembly fatigue due to continuous 
firing. As the next input in the sequence is presented to the 
base network, fatigue and inhibition cause the previously 
active cell assembly to deactivate. 

After the patterns were presented in a particular sequence, 
activity was measured in sequence cell assemblies with any 
firing showing that the presented sequence was stored. 
Consider an experiment to test the storage of a simple 
sequence ABC. When patterns were presented in this 
sequence to the base network, the A cell assembly is ignited 
at first. The A cell assembly then sends activation to the 
sequence cell assemblies to which it is connected. The 
activation thus sent is not enough to ignite any sequence cell 
assembly but primes them, that is, increases their activation 
level. As the next pattern in the sequence, B, is presented it 
shuts down the A cell assembly in the base network and 
ignites the already primed AB cell assembly in the first level 
sequence network. Activation of AB indicates A is followed 
by B in the input sequence. The AB cell assembly sends 
activation to other cell assemblies in the second level 
sequence network to which it is connected and primes them. 
Presentation of C ignites the C cell assembly in the base 
network and also the ABC cell assembly in the second level 
sequence network which was already primed due to 
activation received from the AB cell assembly. Results show 
that the ABC cell assembly is only ignited when patterns are 
presented in this particular sequence.

RESULTS

Experiments were carried out using simple sequences of 
length 2 to 5. Table II shows a summary of results obtained 
from the experiment. 

The system stored five patterns of length two through 
five.  The five patterns were ABCDE, BACDE, ECDAB, 
EBEAC, and DCABE. The shorter length sequences were 

the prefixes of the length five sequences (e.g. the length two 
patterns were AB,  BA, EC, EB, and DC).  The system was 
presented with each instance and five instances that were not 
stored: CABDE, CBADE, BCDAE, ACBED, and EACBD.  
These were selected arbitrarily but no adjacent letters were 
permitted (e.g. AABCD would not work).  Letters can occur 
more than once in a sequence, e.g.  EBEAC.    This was run 
on 20 different networks.  Table II shows the results. The 
simulated model recognizes the stored sequences effectively, 
but recognition error increases as the length of the sequence 
increases. Sequences that are not stored are not retrieved, so 
there are no false positives.

 Presentation of ECDAB, for example, leaves activity in 
the level 1 AB sequence cell assembly.  This is not reflected 
in Table II.  Similarly, the sequence CABDE, which is not 
stored, leaves activation in AB, as AB is stored.

CONCLUSION

A model of sequential memory based on the hypothesis 
of cell assemblies has been proposed. The model presented 
introduces the novel idea of sequence cell assemblies which 
account for neural representation of serial order information 
in long-term memory. The sequential information is stored in 
the inter-network connections. However, these connections 
were calculated and a more complete account would 
investigate how these weights are adapted by repeated 
presentations of a sequence.  Future work will include 
forming long term sequential memory from presentations of 
sequences.  This may benefit from work on sequential 
rehearsal work (e.g. [40]).

Simulations have shown networks that store five 
sequences of up to length five.  Further studies will be 
carried out to evaluate the scalability of the proposed model, 
but the model requires only a constant number of sequence 
cell assemblies for each stored sequence. The idea of 
chunking as a memory mechanism proposed by Miller [48] 
can provide a useful starting point for developing a network 
which does not grow in size too quickly with longer 
sequences. It is also important to test the validity of this 
model with evidence from brain studies. Exploring these 
aspects is critical for understanding how neural circuits are 
used to produce cognitive function. 
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