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Abstract—Hebb considered the cell assembly to represent a
concept in the brain and thus to be an underlying construct
of human thought. He proposed that the cell assembly is a
connected group of neurons whose pattern of firing is such that
a reverberatory activity persists after the removal of a stimulus.
Once a cell assembly is activated something must eventually cause
it to decay. Clearly thoughts have to be extinguished to make way
for others, the question is how. Various suggestions have been
made concerning mechanisms that could cause an assembly to
decay in the long term including inhibition by other assemblies
and passive fatigue. In this paper two classes of models are used to
implement this decay, the first is based on building cell assemblies
with specific weights and connections that have a linear decay.
The second class is based on manipulating variables within a cell
assembly model, creating long term fatigue or activation decay.
This class of models may be more biologically plausible than
the first, and can produce the expected temporal dynamics in
the presence of an ambiguous stimulus. However neither class
can yet produce the correct prolongation of activation when the
stimulus is re-presented.

I. INTRODUCTION

A cell assembly is an interconnected set of neurons which
when stimulated form a reverberating circuit of activity. The
cell assembly is a construct that was proposed by Hebb [6] to
serve as a concept or unit of thought; since the initial proposal
this hypothesis has been supported by many studies (e.g. [1],
[15]). A central tenet of Hebb’s approach is that cells that
are co-located will form excitatory connections under repet-
itive neural activity, cells that ”wire together fire together”.
However if such a process is left unchecked activation would
lead to the uncontrolled spread of excitation. This led Milner
[13] to later add inhibition to the model to counter this effect.
By this model, storing of information in memory is seen to be
achieved by the formation of cell assemblies. Hebb considered
that long term memory was formed by changes in synaptic
strength resulting from his excitatory rule.

In a paper on the temporal dynamics of cell assemblies,
Kaplan et. al. [10] suggested that the activation of a cell
assembly comes in a series of phases, giving it the power to
handle a wide range of psychological data. They add fatigue
and short term connection strength to the model of a cell
assembly. A control on the amount of activity is modelled
by fatigue, the tendency for units to drop out over time.
Furthermore the authors suggest that local excitation will
produce local inhibition and make a cell assembly vulnerable
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Fig. 1. Activity in a cell assembly over time. (After [10].)

to competition from other cell assemblies. This then gives
a particular temporal activity profile to a cell assembly. As
excitation builds up activity increases as the cell assembly
ignites, activity peaks and a longer period of slowly decreasing
activity ensues as fatigue, local inhibition and competition
have effect, until the cell assembly is extinguished. This gives
the distinctive curve shown in figure 1.

While the above is one account for how excitation is
extinguished it is not the only one. Burgess and Hitch (1999)
[3] produced a connectionist model of the phonological loop
(part of Baddley’s 1986 [2] model of short term or working
memory) in which connection weights are assumed to decay
over time. An alternative model of working memory [14]
proposed decay of a node’s activation over time. Distributed
models of working memory (eg: [4]) typically ascribe forget-
ting to interference, while [5] proposed self inhibition as a
method of extinguishing ”attentional shrouds”. Beyond these
possible causes for cell assembly activity decay are possible
long term leak or fatigue processes.

In the ACT-R rule-based model, memory chunks’ activation
decay as a function of usage history and time according to a
function which is intended to track the log odds that an item
will need to be retrieved [11]. This symbolic model is a model
of real neural behavioural that has a measurable psychological
manifestation in neurons. As a cell assembly is the neural
implementation of a psychological concept, the activity in
a cell assembly should be correlated to the activation of a
psychological concept. The simplest measurement is number



of neurons firing, so if the number of neurons in a cell
assembly firing is larger at one time than another, then the
corresponding concept is more active.

Cell assemblies are interesting because they can be used to
simulate aspects of the functioning of neurological structures,
thus there is an urge to make such models biologically plausi-
ble. They are also interesting as a novel form of computation;
considerable effort is being applied to manufacture processor
chips based on cell assemblies as they are parallel processing
units which could revolutionise computation if the principles
of how to use them to solve real world problems can be
elucidated (eg: the EU FACETS project, [12]). Accordingly
some cell assemblies stray from strict biological plausibility
in pursuit of these criteria.

This paper looks at a number of ways to affect cell assembly
decay. The CANT model is a cell assembly model that has
variously been used for information retrieval [9], apply rules
[8], learning hierarchical categories [7], and as a video game
agent among other applications. Currently in the CANT model
cell assembly decay is enforced by making cell assemblies
inhibit each other or by ending the current training run where
all cell activation is reset.

II. THE CANT MODEL

The CANT simulator is based on fatiguing Leaky Integrate
and Fire (fLIF) neurons. Neurons collect activation from other
neurons via synaptic connections. If the neuron does not fire,
some of that activation leaks away. Equation 1 describes the
activation of a neuron i at time t if it does not fire at time
t− 1.

hit =
hit−1

d +
∑

j∈Vi
wji, 1 < d (1)

The amount of leak is given by d the leak parameter. Vi is the
set of all neurons that have connections to i and fire at time
t−1. The weight, or synaptic strength, of the connection from
neuron j to neuron i is given by wji.

The model is based on discrete time steps. This allows the
whole system to be updated simultaneously. It can be argued
that each time step is roughly equivalent to 10 ms. of simulated
time. This enables the system to ignore refractory periods and
synaptic delay as these are all within the 10 ms.

Neurons also fatigue so that the more closely adjacent
steps at which they fire, the more difficult it becomes for
them to fire. While a simplification of the biological system,
where fatigue is associated with ion transport, it is modelled
by increasing an activation threshold θ if a neuron fires as
described by Equation 2.

θt = θt−1 + Fc (2)

In Equation 2 the threshold θ at time t is set to the threshold
at time t-1 + the fatigue constant Fc. If the neuron does not
fire, the threshold is reduced toward the base resting level as
in Equation 3.

θt = θt−1 − Fr (3)

A. A naive short term memory model.

In order to examine cell assembly temporal dynamics in
CANT a naive model was constructed to implement short term
memory for numbers. An individual memory could store one
number between 0 and 9. Each memory was implemented
as a set of ten cell assemblies, of two hundred neurons
each, that were connected together. Neurons were inhibitory
or excitatory with a ratio of 1 to 4. Inhibitory connections
were random. Excitatory neurons have local connections and
one long distance axon with several synapses. So a neuron
connects to nearby neurons and to neurons in one other area
of the net.

The cell assemblies in a memory block were individually
trained and learnt to store a number according to the learning
rules. They used the standard correlatory learning rule (see
[7]). When neurons co-fired the weight was adjusted by
equation 4. The weight was reduced according to equation
5 when the pre-synaptic neuron fired and the post-synaptic
neuron did not.

∆+wij = (1− wij) ∗R (4)

∆−wij = (wij) ∗ −R (5)

Synaptic weight roughly reflects the likelihood that the post-
synaptic neuron fired when the pre-synaptic neuron fired.

The regime for training a memory block was that a high
connectivity was specified in order to facilitate quick formation
of cell assemblies, and a cell assembly had to form at each
number location in the memory block following fifty cycles
of activation during which the training stimulus was presented
for the first twenty five cycles. If a complete set of cell
assemblies did not form then the memory was retrained using
a different random number seed until a complete set was
formed. When cell assemblies formed for each number the
amount of neurons involved in each assembly varied due to
the randomisation factors in the construction of cell assemblies
and due to competition between assemblies within a memory
block during learning. Ten unconnected blocks of memories
were constructed so that up to ten numbers between 0 - 9
could be stored. For subsequent storage of numbers learning
was turned off and Fc = 0.5, Fr = 1.0, d = 1.1 and θ =4.0.
Stimuli (one frame of a hundred and fifty randomly assigned
neurons) representing ten random numbers were presented at
fifty step intervals, and numbers were stored in the memory
blocks using a matrix addressing scheme which meant that
successive numbers were stored in successive memory blocks.

In order to examine the firing behaviour of cell assemblies
their activity is plotted as a function of time. Given space
constraints only the most active (CA1) and least active (CA2)
of the ten randomly activated assemblies are shown in figure
2 to give an idea of range. The reverberatory activity of these
two assemblies can be clearly seen, as can the difference in
magnitude of activity between the them. A rough average
(obtained by discarding the first five steps and averaging over
the next five hundred) shows CA1 has 91.7 neurons firing per



Fig. 2. Activity of two cell assemblies over time.

time frame, while CA2 has only 18.2. Though the numbers
of neurons firing in each assembly is quite different they are
both well formed and will continue to fire indefinitely in the
absence of inhibition from any source.

III. AN IMPLEMENTATION OF NEURAL FIRING DECAY

When cell assemblies exist in isolation, the typical be-
haviour of cell assemblies in CANT models is that neurons
either stop firing very quickly or they continue to fire indefi-
nitely. In the first case, neurons in the cell assembly fire; this
leads to a cascade of activation (ignition) with all or most of
the neurons in the cell assembly firing in each cycle. Fatigue
accumulates rapidly in all of the neurons, and eventually some
of the neurons do not fire. While these neurons lose some
fatigue, they also stop sending activity to other neurons in the
cell assembly. This leads to a crash in activity and all of the
neurons stop firing.

In the second case, fatigue and activation are more finely
balanced. For instance, a smaller percentage of neurons might
fire in each cycle after ignition. Fatigue increases in the
neurons, but it may increase more slowly as a given neuron
does not fire in each cycle. When fatigue causes some neurons
to stop firing, they have time to recover. This leads to the case
where overall fatigue stays constant as does overall activation.
The cell assemblies from the prior section did this.

It is however possible to build a topology where the number
of neurons firing decreases in a linear way. Figure 3 gives an
example of a system. In this case it consists of 12 neurons
I1...I6 and J1...J6. The connections are reciprocal and are
weighted from 10 to 5.

The set would be activated by firing the top half. It would
then proceed to oscillate between the top and bottom half with
six neurons firing in each cycle. If Fr were less than Fc,
overall fatigue in the neurons would gradually build up. At
some point, overall fatigue in all of the I neurons would be
greater than 1 and the I6 and J6 neurons would stop firing.
As the fatigue in the remaining neurons grows they will cease
firing two by two and in a linear fashion.
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Fig. 3. A Set of Neurons that Oscillates and Decays.

A simulation with 50 pairs of neurons was run. Fc = 1.2,
Fr = 1.0, θ = 4.0, and the connection weights range from 5
to 55. One pair drops out every 10 cycles, with the last pair
ceasing at cycle 500. Reducing Fc to 1.1 doubles the period
of activation.

A second topology with Fr > Fc has also been developed.
The topology is a bit more sophisticated and instead of pairs
of neurons, it is based on sets of eight neurons shown in figure
4. The eight neurons are broken up into two groups of four
I, J,K, and L. The main connections are shown in both groups
in the figure. A neurons sends excitation to its successor of
2.5 + x and in this case I succeeds L. The other connections
are only shown in the figure on the left side, and are weighted
.8. Additionally there is a connection of weight .8 from each
neuron to its double in the opposite group (e.g. I1 to I2).
Initially six of the eight are ignited, typically these are the
I , J and K neurons. In the next cycle, the first pair, I , does
not get enough energy to fire, but the other three pairs do. So
there is an oscillation with six neurons on in each cycle. In
the simulation θ = 4, Fc = 0.01, Fr = 0.011 and d = 1.5.
The remaining factor is x in the primary connections. The
simulation has 20 sets of eight neurons and x increases through
each set from 0 to .95 in steps of .05. This means that the first
pair fatigues out first, and subsequent pairs fatigue out linearly
there after.

A summary of the behaviour of both systems is shown in
figure 5. The behaviour shows that both indeed decay linearly
over time.

While these two restricted topologies account for linear
memory decay, they seem a poor basis for a memory decay
model. The topologies are highly restricted and it is hard
to imagine how such topologies could be learnt. In the next
section, modification of the model leads to more biologically
plausible solutions to the memory decay problem. Moreover
these system should work over a much wider range of topolo-
gies so that the topologies can be used to encode different
information.

IV. DECAY FROM LONG TERM FATIGUE

Possibly the simplest way to implement a long term re-
duction in neural firing in a cell assembly is to implement a
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Fig. 4. A Second Set of Neurons that Oscillates and Decays.

Fig. 5. Neural Firing over time in two restricted topologies

form of long term fatigue. Such fatigue should reduce activity
by raising the activation threshold as is done by the existing
fatigue parameter. It should be noted that the TRACE model
[10] implements this sort of double fatigue in a mathematical
model of cell assembly behaviour. Here, this mathematical
model is translated into a neural model where assemblies
emerge. Long term fatigue was implemented so that equations
2 and 3 are replaced by the following equations. LFr denotes
the long term fatigue recovery rate and LFc the long term
fatigue constant.

LFit = LFit−1 + LFc (6)
LFit = LFit−1 − LFr (7)

Short term fatigue SF can then be redefined in a similar
manner.

SFit = SFit−1 + SFc (8)
SFit = SFit−1 − SFr (9)

The activation threshold θ is then modulated by the values of
these two fatigue factors.

θt = θt−1 + SF + LF (10)

Figure 6 shows the effect on activation of implementing long
term fatigue. The same cell assemblies as used in figure 1 were

Fig. 6. Activity of two cell assemblies over time with long term fatigue.

activated using the same random seed as for figure 1 but using
the long term fatigue model. LFc was set at 0.004 and LFr

at 0.0002 (and the short fatigue parameters as before). The
activity of both cell assemblies reduces and now extinguish
as a function of time in a manner reminiscent of figure 1. It
is interesting to note that CA2 dies off around time step two
hundred and fifty and CA1 at timestep three hundred and fifty
which is relatively close given they have such different levels
of overall activation.

A. Effect of long term fatigue on response to an ambiguous
stimulus

In the previous section it was demonstrated that long term
fatigue can extinguish cell assembly activity. The next step is
to investigate the temporal dynamics over a longer time scale.
One aspect of this is how competing fatiguing assemblies
interact, which should be demonstrated by the presentation of
an ambiguous stimulus. The Necker cube is probably the most
famous example of an ambiguous or bistable stimulus. In this
case a line drawing that can be interpreted as a 3D wireframe
cube seen under orthographic projection can be perceived as
being in two possible orientations. Subjects usually report
that they see one orientation only at a time and that from
time to time the percept flips from one orientation to the
other. While there are many explanations and influences on
the perception of bistable stimuli, fatigue is one explanation -
that two percepts are competing and that whichever is currently
dominant will eventually give way to the other due to fatigue.
In a much more simple analogue of the bistable stimulus two
cell assemblies were formed (two hundred neurons each) by
presentation and training on two stimuli, an upper rectangular
block and a non overlapping lower rectangular block. Subse-
quently learning is turned off and an ambiguous stimulus (a
number ’1’ which overlapped the positions of the upper and
lower blocks roughly equally was presented continuously and
the cell assembly that dominated was periodically recorded
as dominance oscillated between the two assemblies. The
parameters were LFc = 0.0005, LFr = 0.0001, SFc = 0.5,



SFr =1.0, d =1.1 and θ = 4.0.
The result was that the system produced osccillations in the

expected manner. One cell assembly was slightly stronger than
the other as it had recruited more neurons during training and
thus dominated slightly more in the long term, but because it
fatigued the other cell assembly won some of the time. If a
cell assembly being active is arbitrarily defined as having any
cells firing at particular intervals (in this case at fifty cycle
intervals from cycle twenty five), then over one thousand runs
the top cell assembly was dominant for five hundred and forty
five cycles, the bottom for four hundred and forty three, and
in two cases recording was made on transition between the
two states. For these parameters the system transitioned from
one state to the other eleven times.

V. DECAY FROM ACTIVATION LEAK.

In the long term fatigue condition decay comes about
because neurons firing thresholds are raised. An alternative ap-
proach to decay would be to model the reduction of activation
via leak. In the CANT model the leak of activation is modelled
by the parameter d in equation 2. d is a constant and its value
must be greater than 1. For a given cell assembly there is a
value for d which so quickly undermines activation that the
cell assembly is extinguished. We can model leak as a factor
that increases with neuronal firing, in which case leak can be
uses as a means for model extinction. We define parameters
for leak similar to those for fatigue by having a leak constant
dc added to the base rate of leak when a neuron fires, as in
equation 11, and a leak recovery parameter dr which allows
the leak rate to return to the base rate when the neuron does
not fire, as in equation 12.

dit = dit−1 + dc (11)

dit = dit−1 − dr (12)

This scheme was then implemented with the values dc = 0.001,
dr =0.0005, Fc = 0.5, Fr = 1.0, θ = 4.0, and the decay
base rate was set to 1.1. The model was then run using the
same random seed on the short term memory model described
in section IV, on the same two cell assemblies. The results
are shown in figure 7. The graph shows that both assemblies
are extinguished after some time although now it is CA2
which persists for longer. To get a rough estimate of the
variability in extinction rates for the long term fatigue and leak
conditions twenty runs each with different random numbers
seeds were made for both CA1 and CA2. The results are
shown in table I. The fact that the standard deviations are
relatively small suggests that these methods of extinction may
be fairly reliable. It is noticeable that the effect of size of cell
assembly may have opposite effects under the two conditions
as CA1 tends to last longer than CA2 on the long term fatigue
condition but shorter on the leak condition. This could bear
further investigation if either of these techniques are found to
be worth using.

Fig. 7. Activity of two cell assemblies over time with activation leak.

TABLE I
MEAN TIME STEPS TO EXTINCTION WITH STANDARD DEVIATIONS FOR 20

RANDOM RUNS FOR CA1 AND CA2 WITH LONG TERM FATIGUE AND
ACTIVATION LEAK.

Long term fatigue Activation leak

mean std. dev. mean std. dev.

CA1 297.4 49.3 253.8 44.4

CA2 456.5 82.3 711.2 197.0

A. Effect of activation leak on response to an ambiguous
stimulus

To investigate one aspect of longer term dynamics of
activation leak the ambiguous stimulus experiment run for
long term fatigue was run under the condition of activation
leak using the parameters given in the previous section.
Again consecutive domination of one cell assembly over the
other was seen, as each assembly’s activation successively
leaked giving way, allowing the other assembly to prevail.
Over a thousand cycles with the given parameters the system
transitioned from one assembly dominating to the other thirty
eight times; for four hundred and fifty cycles the bottom CA
dominated, five hundred forty three times the top assembly
dominated, while seven times the system was registered as in
transition. Therefore as predicted a similar temporal dynamics
was found on this task as found for the long term fatigue
example.

VI. THE EFFECT OF REFRESHING THE STIMULUS.

Both the long term fatigue and increasing leak approaches
to producing decay in cell assemblies seem quite effective
and stable from a preliminary analysis, and may be more
biologically plausible than the methods presented in section
III. However one test they may fail is that of being able to be
refreshed over long periods. Some behaviour of memory need
the capability to have activity refreshed by re-presentation of
the stimulus. An example of this is the ability to remember
a phone number that has just been heard for longer than



Fig. 8. Activity of cell assemblies over time which are fatiguing and being
refreshed every hundred cycles.

Fig. 9. Activity of cell assemblies over time which are leaking activation
and being refreshed every hundred cycles.

a few seconds, by mental rehearsal. Accordingly, the two
example cell assemblies were re-tested with the stimulus being
presented on the first and then once every hundred frames
until extinction. The results are shown in figures 8 and 9
respectively. In the fatigue condition activation is shortened for
both assemblies, in the leak condition activation is lengthened
slightly, but in all cases extinction is inevitable. These results
suggest that for the parameter range tested, on their own
neither of these two methods can reproduce the desired effects
of refresh. It remains to be seen whether such methods may
work in conjunction with other mechanisms to produce the
required behaviour.

VII. CONCLUSION

This paper has investigated two classes of methods for
producing autonomous decay in cell assemblies. In the first
class two cell assemblies whose activation decays in a highly
precise linear manner, due to the nature and strengths of
their connections, were examined. Whilst it is interesting to
note the precision with which this decay is produced from a

connectionist programming point of view, it is hard to imagine
how such circuits could be learnt in a biological system.

The second approach, which may be more biologically
plausible, looked at manipulation of variables within the
CANT cell assembly model. Both activation decay and long
term fatigue produced reasonable passive decay in activated
assemblies. They both produced reasonable behaviour over
time in their response to ambiguous stimulus where assemblies
successively rise to dominance despite differences in initial
strength, due to the effects of decay. However neither of these
two approaches, as investigated here, can account for a crucial
aspect of temporal dynamics: the ability to maintain activation
on stimulus refresh. In the ACT-R model for example [11],
repeated activations lead to longer activations. Future work
will address this shortcoming in the current model.
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