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Abstract — This paper presents a natural language pars-
ing system based solely on fatiguing Leaky Integrate and
Fire neurons, a relatively faithful model of biological neu-
rons. The parser implements cell assemblies, sequences, fi-
nite state automaton and a stack. The stack enables the sys-
tem to parse context free grammars. The system uses vari-
able binding to apply the rules, and implement the stack. A
novel form of variable binding based on short term poten-
tiation is presented. The output of the system is a semantic
frame of the sentence that was parsed. The symbolic inter-
pretation is derived from the underlying neural firing by a
simple count of neurons that fire in a particular cycle. The
system parses over 99% of the tested sentences correctly.

Keywords: fatiguing LIF neuron, Cell Assembly, Natural
Language Processing, Parsing.

1 Introduction

Perhaps the most complex task that humans perform is
to understand language. Virtually every human can do this,
but no machine approaches the general linguistic abilities of
the typical primary school student. One of the fundamental
processes involved in understanding language is to take a
sentence of words, and combine the meanings of the words
in an order dependent fashion to get the meaning of the en-
tire sentence. This is typically called parsing the sentence.
While a great deal of effort has been put into developing
parsers, the best parsers still function below 90% efficiency
in generating the syntax trees of sentences [2]. There has
been less work on semantic evaluation, but again parsers
are imperfect.

From this earlier parsing work, it is clear that ambigui-
ties exist in natural language and semantics are needed to
resolve these ambiguities. Unfortunately, computational in-
terpretation of semantics is poor. One way forward may be
to mimic human processing at the neural level. This may
allow a system to learn semantics in a fashion similar to
humans.

This paper presents a natural language parser imple-
mented in fatiguing Leaky Integrate and Fire (fLIF) neu-
rons. The model is a variation on the widely used Leaky
Integrate and Fire (LIF) neuron [21], but these neurons fa-
tigue when fire repeatedly; this fatigue makes it more dif-

ficult for the neurons to fire. This improves the dynamics
of the system, by making it easier to move from one state
to another, and adds an extra degree of biological faithful-
ness. The actual fLIF model is not explained in this paper
but can be found elsewhere [8, 12]. While the fLIF model
is an imperfect model of biological neurons, it does closely
approximate the basic functions of neurons. The model is
not perfect with discrete cycles that correspond roughly to
10 ms. of biological time. The loss of biological faithful-
ness is partially compensated by the efficiency of the model
allowing a large number of neurons to be simulated in real
time. The parser takes advantage of Cell Assemblies (CAs)
[5], a concept that unifies neural and psychological theory
(see section 2).

The parser has a small grammar and lexicon, but is able
to repeatedly generate the correct semantic representation
for a number of sentences. Moreover the parser is one com-
ponent of a larger video game agent. The agent is an as-
sistant to a user and takes text commands using the parser.
The agent also can view the environment and take its own
actions. The entire agent is implemented in fLIF neurons.

The parser is a partial implementation of a psychologi-
cally plausible symbolic parser [9]. This work is similar to
a Marcus parser [17, 13], and is based around a stack, pref-
erences for rule selection, limited look ahead, and grammar
rules that combine syntax and semantics.

Crucially, implementation of the stack allows the parser
to interpret context free languages [1]. It is widely agreed
that natural languages are at least context free [19]. A
neural parser is rather unique. While other connectionist
parsers have been built (e.g. [18, 7]) the authors are aware
of only one other neural parser [14]; however, Knoblauch
and Palm’s parser does not have a stack and thus is limited
to regular languages.

While parsing, variable binding is used to bind nodes to
stack elements, and to bind slot fillers to verb frames. The
semantic representation is thus a verb frame [3]. The system
described in this paper uses a novel form of variable binding
based on short-term synaptic plasticity.
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Figure 1: Topology of the Parsing System

2 State Change with the System

The network consists of 13 subnets shown in Figure 1.
The action of the system is more fully explained in sec-
tion 3. It makes extensive use of CAs for stable states, and
pseudo-CAs for organising simple sequences of actions.

CAs are sets of neurons that have high mutual synaptic
strength. When a small number of these neurons fire, they
spread activation to the others causing a cascade of firing
that enables the complete CA circuit to remain persistently
active practically indefinitely [22]. Most of the subnets in
the system are broken up into CAs. The process of activat-
ing a CA so that it continues to fire persistently is called CA
ignition or simply ignition.

In a given fLIF network, the ignition and persistence of
a CA puts the system into a state. Most of our prior work
(e.g. [10, 12]) has focused on these single state systems.
The network is presented an object, the object causes a CA
to ignite, this categorises the object as a member of that
CA, and this state persists indefinitely. To categorise a new
object, the system is reset with each neuron’s activity and
fatigue levels reset to zero, then the new object is presented.

Unlike these single state systems, the system discussed in
this paper is a multi-state system. Depending on the current
state and the current input, the system moves to a new state.

It is relatively simple to see how a fLIF network can move
from one state to the next independently of input. This oc-
curs in the Push, Pop, Test and Erase sub-networks. In each
of these, the subnet is broken up into a series of pseudo-
CAs. Neurons in each have high mutual synaptic strength
so they cause each other to fire. However, in a given se-
quence of pseudo-CAs, neurons have excitatory connec-
tions to neurons in the next pseudo-CA and inhibitory con-
nections to neurons in the prior one. So after a few cycles,
the next pseudo-CA in the sequence ignites; firing in that
pseudo-CA causes the initial pseudo-CA to cease firing be-
cause of the inhibitory connections. Fatigue also plays a

component in shutting down the prior pseudo-CA. As these
pseudo-CAs do not persist for a significant time, they are
not true CAs.

This chain of activation enables the system to execute a
sequence of events. Unfortunately, it does not allow the
system to perform different actions depending on the input.
Fortunately, a simple mechanism exists to enable this type
of change. One set of subnets encodes the current state.
The current state sends activation to the possible next states.
This activation is enough to prime those next states, but not
enough to ignite them. Similarly, the inputs also send ac-
tivation to those next states; again this activation is enough
to prime but not enough to ignite. The combination of state
and input is, however, enough to ignite the next state. This
pragmatically, allows the system to function as a finite state
automata [15]. Combined with the stack, the system func-
tions as a push down automata.

3 Overall Architecture

The architecture is based on 13 subnetworks shown in
Figure 1, which shows 12 subnets and the connections be-
tween them. In the figure, the noun subnet and the other
word subnet are combined as their coarse external connec-
tions are identical.

Figure 1 is quite complex. The entire network imple-
ments the simple parsing algorithm:

1. Start by pushing a word onto the stack
2. Repeat

(a) Testrules
(b) If no rule succeeds,

i. Push new word on stack
(c) else (a rule succeeds)

i. Apply the rule
ii. Pop stack

3. Until VP — V PPeriod rule applied

An explanation of a parse of the simple sentence in ex-
ample 1 is provided to highlight important aspects of the
parser. For clarity, the explanation follows the algorithm.

Example 1. Follow me.

Start by pushing word on stack

Initially, portions of two subnets are activated. The two
CAs that receive external activation are the Follow CA in
the Input net and the O element in the Stacktop net. This
causes ignition of the appropriate reverberating circuit in
these nets, and many neurons in these circuits will continue
to fire until some other net causes them to stop firing via
inhibitory connections.

The Input, Verb, Noun, Other, Instance, Stack, Skip, and
Rule subnets are each broken into several CAs (see section
2). In these subnets the CAs are orthogonal so each neuron
is in only one CA.



Firing in the O element of the stacktop and any input
CA causes ignition of the Push subnetwork. In essence,
this is the start state of the automata. The Push, Pop, Test
and Erase subnetworks execute processes via neural firing;
they are not CAs per se, but are quite similar (see section
2). The activation of the Push subnetwork (Pop, Test and
Erase) causes a sequence of events to happen with neu-
ral firing in the subnetwork shutting down automatically at
the end of the sequence. This sequence is implemented by
sets of neurons, similar to CAs, that are connected to the
next set of neurons in the subnetwork. These connections
are excitatory, while reverse connections, in the set, are in-
hibitory. With the Push net, the sequence is to increment
the Stacktop, ignite the appropriate Stack element in coop-
eration with the Stacktop, ignite the appropriate word CA
(in this case a Verb CA), and start the Test subnetwork.

The Stacktop is incremented by sending activation to par-
ticular neurons in it !.

The appropriate Stack element is ignited by a combined
activation from push and stacktop. Push sends activation to
all the items. Stacktop sends activation to the item that cor-
responds to the active Stacktop CA. In this case, the only
CA that is receiving activation from both is the first Stack
element. This ignites. Similarly, all of the word CAs in
the Verb, Noun and Other Word nets are sent activation, but
only the Follow CA receives activation from the Input and
it is the only one that ignites. Additionally, the only sym-
bolic act occurs when the Push net ceases to fire; the Input
net moves onto the next word, in this case me. This is the
only symbolic act the system performs. This symbolic act
is necessary as there is no reading component to the system.

The first Stack element is now ignited as is the Verb’s
Follow CA. The Stack element has some fast bind neurons
(see Section 4) and is now bound to Follow.

Test rules

The Test subnetwork then becomes active. It has a se-
quence of steps where it shuts down activation in the Stack
and the words followed by igniting elements of the stack.
It activates each of the first three Stack elements preceded
and followed by turning them off. It does this twice. If the
Stack elements are bound, the corresponding words are ig-
nited. Activation in the word nets causes the appropriate
rule to fire. In this case, no rule corresponds to a verb by
itself and no Rule CA is ignited.

If no rule succeeds

Test finishes by activating Push. Push follows a similar
process to push me on to the stack as its second element.
The second stack element and the noun are both ignited.
There simultaneous firing causes them to be bound.

Push new word onto stack

IThe keen observer will note that the stacktop is the only subnet that
has not been specified as a sequence pseudo-CA or a subnet of orthogonal
CAs. This is because it consists of five CAs, that are linked with push and
pop sequence manipulating neurons. The push neurons associated with a
particular stacktop element prime the next stack element. When a push is
generated, activation is sent to all the elements; only the primed element
ignites; when it ignites it suppresses the prior element. A similar mecha-
nism works for pushing.
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Figure 2: Rule Activated in System

When push finishes, it starts test running (and makes the
period the input).

else (a rule succeeds)

This time the ignition of Verb Noun causes the VP —
VP NP-object rule to fire. Note that in the rule subnet the
leak is quite low so that a significant amount of activation
is retained. This is important so that the activity of multiple
stack elements can be integrated into the ignition of a given
rule. The retention of activation (the part that remains after
leakage) is a form of memory that is particularly important
in the rule selection of this system.

Figure 2 shows this rule igniting over several cycles. The
test network activates the stack items in sequence. The
boxes represent ignited CAs consisting of several hundred
neurons. In the figure, stack item 1 is ignited and is ignit-
ing the verb Follow. Before that stack item 2 had ignited
the noun Follow. The Rule CA has accumulated activation
from the noun, and now that the verb has ignited, enough
activation has accumulated for the rule to ignite.

Apply the rule

The ignition of the rule causes the first and second Stack
elements to be activated simultaneously, and shuts off the
Test. The Noun me CA has also activated an instance of
me in the Instance net. The rule also sends activation to the
object slot in all the verbs; as the only verb that is active
is Follow, its object slot also ignites. This slot has fast bind
neurons that bind it with the Verb and bind it to the me CA in
the instance net. However, a semantic trace is left in binding
of the object slot to the instance net CA.

Pop stack

The rule then causes the Pop net to become active. This
pops the stack and starts the Erase net.

One could ask why there is an instance net as there is
a one to one correspondence between instances and nouns.
The answer lies in the connection between the noun net and
the rule net. While the active noun CA sends activation to



rules, the active instance does not. So, once the noun has
been included into a parse and is removed from the stack, it
no longer helps to apply grammar rules.

The Erase net is then activated to complete the clearing of
the second stack element. This will be described in section
4.

Until VP — V PPeriod rule applied

The result at this point is that activating the first Stack
element will ignite the Verb Follow which ignites its object
me. Reading these activations provides a symbolic semantic
interpretation of the sentence. The parse will continue to
push the period, and eventually to run the VP — VP period
rule which stops processing of the sentence.

This entire process can be viewed as an automata. The
state of the parser is held by the stack, and the position in
the processing subnets (push, test, pop and erase). Push
modifies the stack and thus the state. Test merely inspects
the stack, but if the right elements are on the stack in the
right order, they will cause a rule to fire. This causes pop to
modify the stack. Pop then passes control onto erase which
completes the modification process. Erase finishes by pass-
ing control back to the test subnet.

4 Variable Binding

One of the fundamental problems of neural processing
and indeed connectionist systems in general is variable
binding. In brief, a variable needs to be given a value that it
retains for some significant period of time. Later, the system
needs to be able to give that variable a new value. Variable
binding is needed to give the system compositional syntax
and semantics [4].

This is a simple process in typical computers. A variable
is associated with a portion of memory. The memory cor-
responds to a value in a circuit. As long as the electricity is
on, the circuit, and thus the variable, will retain that value.

It is more difficult in neural systems. One commonly
used mechanism for binding is via synchrony [20]. Two
sets of neurons are bound together if they tend to fire at
the same time. Unfortunately, this has problems supporting
more than a small number of bindings.

Another option is to bind by permanently changing
synaptic weights [11]. Most simulation of neurons involves
learning by changing synaptic weights permanently. This
is equated to the biological phenomena of Long-Term Po-
tentiation. However, a mechanism to replace the binding
with another binding is still required. This can be done with
spontaneous neural activation, but this takes many simula-
tion cycles.

Another biological phenomena is Short-Term Potentia-
tion. Coactivation of neurons leads to increased synaptic
weights that revert back to the original weights over time
[6].

This phenomena has been modelled in this simulation
by neurons that we have coined fast bind neurons. These
change synaptic weights by a simple addition of a constant
when two neurons are coactive; this weight is clipped at a
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Figure 3: Skipping Binding During Erase

maximum. Each cycle the neurons do not cofire, the weight
is reduced until it reaches zero.

When a CA that has fast bind neurons is coactivated
with another CA that it is connected to, the two are rapidly
bound. Subsequent ignition of the initial CA will then cause
ignition of the bound CA. After a period of no activation of
the initial CA, the binding will be gradually but automati-
cally erased.

So, when a Stack element is activated, the simultaneous
activation of a word CA causes the element’s fast bind neu-
rons to rapidly increase weight. If the element is turned off
and then on again, as the Test net does, the fast bind neurons
will ignite the word CA. As it is only bound to one word,
only that word is ignited. A similar process happens when
Verb slots are bound to Instance CAs.

The erase net ignites the active Stack elements, but only
those at or below the stacktop. It does this in sequence so
that, if the Stacktop is two, the first Stack element is ignited,
then shut, then the second Element. This is repeated three
times. This ignition supports the binding by allowing the
now reduced weights to regain their strength. The elements
above the Stacktop are automatically erased as they are not
supported. Skip comes in here to inhibit the activation of
Stack elements above the Stacktop. This is done by having
the skip CA inhibit the second stack element. If the skip
CA is on, it prevents the second stack element from igniting.
The skip CA is only turned on when the stacktop is one, and
erase is trying to activate the second stack element. Figure 3
shows this. Erase typically activates stack items. However,
if the stacktop is one, then the skip net comes on (just one
CA) when erase is about to activate stack element two. This
suppresses the ignition of stack element 2.

5 Results

The parser stores a semantic representation of the sen-
tence in the form of a verb frame. This subsymbolic verb



frame can be readily translated into a symbolic frame.

To retrieve the semantic interpretation of the sentence af-
ter parsing has completed, the first stack element is ignited.
Activation is sent to the item for 10 cycles. This ignites it
and, in each case tested, causes ignition of the verb CA to
which it is bound. Since the verb CAs are orthogonal, a cal-
culation of which particular CA is ignited is simply a matter
of counting the neurons in that CA that fire in the tenth cy-
cle. For this measurement, if any neuron fires, the CA is on.
If multiple verb CAs are on, it is considered an error.

Similarly, the verb CA has 60 fast bind neurons associ-
ated with each of its three slots (actor, object and location).
If the slot has neurons firing, it is considered on. Again,
multiple or absent slots are considered an error. These slot
neurons have propagated activation onto the slot fillers that
they are bound to. These slot fillers are also orthogonal and
are measured in the same fashion as the verbs and slots.

The parser was tested on 17 sentences, uses five gram-
mar rules, and 16 words that fall into five lexical categories.
There is some randomness in creating the system, and a ran-
dom system gets roughly 90% of the semantic representa-
tions complete. The networks can be saved and rerun.

The best system has over 99% performance with the cal-
culated error being lost on slot filler absences. In this case,
the system was tested on each of the 17 sentences 32 times.
The system only failed on 2 instances of the sentences for a
performance of 542/544 or .9963.

The system can be found at
http://www.cwa.mdx.ac.uk/CABot/CANT.html. It is
written in Java and we are happy to respond to queries for
help in installing and running the system.

Since the parser, described above, was completed, it has
been integrated into our CABotl agent. This is an agent
in a Crystal Space video game. The agent assists a user in
the 3D environment. The user issues commands that the
agent tries to follow. In addition to the parser there is a vi-
sual subsystem, a goal propagation subsystem and a control
subsystem. The agent goes through a loop (the control sys-
tem) of accepting the user’s command, parsing it, setting a
goal based on the command, completing the goal, and then
erasing the stack. Again, except for reading a new word and
sending a command to the game, all of this is done in fLIF
neurons. This parser has a similar performance though it
now has an extra rule, a few more words and parses a few
more sentences.

6 Discussion

The parser is effective though it is clearly not an indus-
trial grade parser. The construction of the system involves
some randomness in synaptic connections and neural prop-
erties. The system can be rerun and it is highly likely that
a better network can be found. Moreover, the existing net-
work could be modified to improve performance. That is,
the randomness could be eliminated. However, at this stage,
perfect performance is not the major point of the parser.

Instead the point is to develop neural parsing algorithms
and integrate them with other neural systems as has been
done with the CABotl games agent. The integrated system
will then function in an environment. Neural learning, not
used in the parser presented in this paper, will then allow
the system to learn the semantics of the environment. This
in turn will enable the system to parse more effectively than
current symbolic parsers.

As few multi-state simulations have been done with neu-
ral systems, building the techniques to develop these sys-
tems is a complex task. By using sequences, finite state
automaton and push down automaton, implemented in fLIF
neurons, this system shows how these things can be imple-
mented. More formal treatment of these mechanisms will
be explored.

This parser has also shown some weaknesses that need
to be explained. Firstly, the system does not properly ac-
count for a verb that has two or more slot fillers. One would
expect that the activation of a single slot in a verb frame
would only activate the associated slot filler. Unfortunately,
when the verb ignites, all of its bound slots also ignite along
with all the slot fillers. This means that they are all bound
together. For instance, the semantic representation of ex-
ample 2 should have the object slot filled with pyramid and
the location slot filled with door. When all of these are co-
active, pyramid is also bound to location via the fast bind
synapses. So when Move’s location slot alone is activated,
both pyramid and door will ignite.

Example 2. Move the pyramid to the door.

We hope to solve this problem using a different form of
binding for the slot fillers. This is based on a compensatory
learning mechanism and spontaneous activation [11].

Secondly, the parsing takes too long from a psychologi-
cal perspective. Each cycle in the fLIF model corresponds
to roughly 10 ms. This allows the system to ignore refrac-
tory periods and synaptic transmission delays as all of these
things happen below the 10 ms. level. Unfortunately, pars-
ing a typical sentence takes on the order of 1000 cycles, or
10 seconds of simulated time.

Like symbolic parsers, neural parsers can also produce
semantic output and account for human parsing failures.
One of the advantages of a neural model of parsing is it can
easily give timing data for sentence parsing. All of these
can be compared with psycholinguistic data to reproduce
more human-like parsers.

It seems that the problem with the parser is largely around
the time that it takes to erase bindings. The stack mecha-
nism requires the bindings to be erased. Over half the time
is spent on erasing. Similarly, most of the remaining time is
spent running the test. A better parser would avoid the use
of a stack all together. Many modern parsers avoid the use
of stacks and merely have a set of active items that can be
used during the parse [16]. Implementing this kind of parser
with fLIF neurons seems viable. In this type of system neu-
ral firing levels within a CA would probably become more
important and the system would have to deal with multiple
items being simultaneously active.



Finally learning is a key factor in neural systems. In-
deed it is one of the main reasons or hopes why neural sub-
symbolic systems will surpass symbolic systems. Learn-
ing needs to be incorporated into the system. Prior work
shows that the fLIF neurons can be used to learn categories
[10, 12]. These techniques should be readily applied to
learning parsing preferences.

7 Conclusion

This paper has shown a natural language parser imple-
mented in fLIF neurons. This parser functions above the
99% rate. The parser takes advantage of the intermediate
concepts of CAs, sequences, and finite state automaton. It
was shown how sets of fLIF neurons can implement all of
these.

The parser shows that a traditionally symbolic task, nat-
ural language parsing, can be implemented in relatively bi-
ologically accurate simulated neurons. We hope that this
system will allow us to explore the acquisition of grammar
rules, semantics and language understanding.
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