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Abstract
A framework that combines neural processing, psychological
modelling, and Artificial Intelligent (AI) applications is pro-
posed as a means of making steady progress towards the reso-
lution of the problems of the Turing test, understanding neural
behaviour, understanding psychological behaviour, and de-
veloping useful AI systems. By a principled process of in-
tegrating models from these domains, it is hoped that steady
progress will be made on a variety of research fronts culmi-
nating with a system that can pass the Turing test.

Introduction
Artificial Intelligence (AI) is about building intelligent sys-
tems, but unlike humans most existing systems are brittle
(Smolensky 1987). The classic test for an AI is the Turing
test (Turing 1950), but despite a great deal of effort by the
research community and some progress, the community is
no where near solving this problem. Consequently, a frame-
work that supports steady progress is highly desirable.

The authors propose that a good way to develop the ca-
pacity to build a system that is capable of solving the Turing
test is to:
1. Use human-like components (simulated neurons)
2. Keep in touch with reality

(a) Solve problems like humans do (cognitive architecture)
(b) Develop interesting systems

3. Integrate learning
4. Take advantage of emergent algorithms
5. Repeat

The basic idea is to focus on the intelligent system that
is known, humans and to a lesser extent other animals. Of
course, human functioning is not entirely understood, so it
is important to work with what is known and in parallel with
advances in related fields.

One aspect of human cognitive functioning that is rela-
tively well understood is neurons. Consequently, develop-
ment should be based on neural models that closely approx-
imate mammalian neural functioning and topology. Simi-
larly, a range of psychological phenomena have been stud-
ied, measured, and modelled. Development should generate
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models and architectures that correspond to known psycho-
logical performance, and these models should be based on
neurons.

There are a host of neural and psychological behaviours
and models. It is relatively simple to build computational
models that account for individual behaviours, but what is
needed is a system that accounts for them all. Cognitive ar-
chitectures like ACT (Anderson & Lebiere 1998) account
for a large range of behaviours, but are based around sym-
bols. The symbols are not grounded (Harnad 1990), and it is
difficult or impossible to learn new symbols that are not just
some combination of existing symbols (Frixione, Spinelli, &
Gaglio 1989). As neural systems can learn new symbols, a
neural cognitive architecture that accounted for a wide range
of phenomena would perhaps be more important. Neural
cognitive architectures could then be extended beyond sym-
bolic architectures, and could then be used for real world
applications.

Indeed developing interesting real world applications is
one of the key points of the framework. Systems that inter-
act with complex environments can begin to cope with those
environments. Humans are very good at coping with a range
of environments, so for a system to be human-like, it must
also. Moreover, developing interesting systems allows the
construction of systems that are economically useful in the
short and medium term. This can sustain the framework be-
yond the intellectual pursuit.

One key aspect of human, neural, and the best AI systems
is that they can learn. The framework thus places learning
in a central position. However, at this stage it is not entirely
clear how best to build complex neural systems. Cell As-
semblies (CAs see the Neuron section below) provide one
mechanism for an intermediate level of representation, but it
is hoped that support may be provided from the architecture
to implement emergent algorithms (e.g. (Granger 2006))
that will simplify development of more complex systems.

Initially neural cognitive architectures will be relatively
simple. By repeating the development process to extend the
architecture and the capabilities, progress can be made in an
incremental fashion.

Developing a system that can pass the Turing test in this
fashion will also enable the research community to better un-
derstand neural functioning, psychological functioning, and
will enable the development of AI systems that are incredi-



bly useful. For instance, a system that could pass the Turing
test would be an excellent basis for a user interface.

Neurons
The human brain is composed of between 10 billion and
one trillion neurons (Churchland & Sejnowski 1999). How
these neurons interact to produce cognition is a long stand-
ing research problem that is, to some extent, the question
on which the authors are focused. Various computational
models of neurons have been built and simulated to explain
complex cognitive task. There are a host of neural models
and non neural connectionist models. While connectionist
models (e.g. (Rosenblatt 1962)) may lead to a better under-
standing of parallel processing in systems that are similar
to neural systems, they do not have the advantage of being
linked to biological neurons. Consequently, basing a frame-
work on a connectionist system could easily lead to prop-
erties that do not occur in human cognition, and simulating
human-like cognition is the goal that the author’s are pursu-
ing. Neural models on the other hand may need to be re-
vised to more accurately reflect the necessary properties of
neurons, but the research community is still finding which
properties are necessary and why they are necessary. Choos-
ing the right neural model is important, but progress can be
made on a range of models simultaneously. Current neu-
ron models range from biologically faithful compartmental
models (Hodgkin & Huxley 1952; Dayan & Abbott 2005;
Bower & Beeman 1995) to very simple integrate and fire
models (McCulloch & Pitts 1943).

One popular model for brain modelling is the attractor net
(Amit 1989). There are a range of attractor nets, but the most
commonly used is the Hopfield net (Hopfield 1982). The
Hopfield net uses an integrate and fire model like the Mc-
Culloch Pitts neurons (McCulloch & Pitts 1943). However,
these attractor nets typically use biologically invalid topolo-
gies including bidirectional connections and well connected
networks. This allows them to take advantage of statistical
mechanics, but also means that these systems get stuck in
stable states and can not move on.

The model that the authors have been using is a fatiguing
Leaky Integrate and Fire model. It is a good model of the
biological neuron, but we are pragmatic about it and are still
open to changing the model and using different ones. How-
ever, the authors have yet to see a reason why this model
should not work.

One simplification from biological neurons that this
model makes is that it processes at discrete time steps in-
stead of continuous time as in biological networks. This al-
lows a large number of neurons to be simulated and makes
the model computationally efficient. Each time step is 10
milliseconds apart. This enables the system to ignore cer-
tain biological details like synaptic delay, and the absolute
and relative refractory period of neurons. (During the ab-
solute refractory period the neuron does not fire again, no
matter how strong the excitatory activation it receives.) The
use of discrete time steps may still hide certain useful tim-
ing behaviour, and if such behaviours are found, the authors
would be happy to switch to a continuous time model.

The large number of neurons in the brain connect with
one another through synapses to form complex networks.
These synapses are modified with experience and form the
basis of learning and memory (see the Learning section be-
low). Hebb suggested a synaptic modification mechanism
wherein synaptic strength is increased if the pre-synaptic
neuron repeatedly and persistently takes part in firing the
post-synaptic neuron (Hebb 1949). As a result of this mech-
anism, groups of correlated neurons which tend to fire to-
gether form a strongly connected group of neurons called
a cell assembly (CA). A CA once activated remains ac-
tive, even after the triggering event has been removed, and
serves to represent it. CAs, which form the basis of men-
tal representations in the brain, account for neural processes
that occur in the brain during thought and learning. There
has been growing experimental evidence that such synap-
tic modification mechanism exist in the brain and form
the basis for learning, and memory (Abeles et al. 1993;
Marr 1969). CAs can serve as the basic processing unit
for higher level brain functions and can provide an inter-
mediate level model of cognition ((Huyck 2001) see the
Emergent Algorithms section below). Hebb’s proposed
learning mechanism led to the development of various com-
putational models in an attempt to understand how the
brain organizes and produces behaviour (Braitenberg 1989;
Palm 1990; Sakurai 1998),and CAs have been simulated for
decades (e.g. (Rochester et al. 1956)).

The fLIF neuron model has also been used for investiga-
tion of cell assembly dynamics (Huyck 2008). This model
is likely to be used to model a wide range of cognitive pro-
cesses and gradually lead to the development of a neural
cognitive architecture.

Keep in Touch with Reality
The main goal of research in the field of AI is to create sys-
tems which behave intelligently like humans. While it is
frequently necessary to build small systems to better under-
stand a particular behaviour, it is important to have a mech-
anism for assuring progress is really being made. Develop-
ing the appropriate type of large systems can assure that the
paradigm is reasonable.

Perhaps the best way to build systems of human level
intelligence is to understand how cognition is achieved by
natural systems. Cognitive models are used to simulate hu-
man intelligence in a human-like way. Therefore, models of
human cognitive processes can help to achieve the goal of
AI. As opposed to cognitive models which focus on specific
cognitive tasks, cognitive architectures provide a complete
theory of human cognition which covers the full range of hu-
man cognitive phenomena. Various cognitive architectures
exist that provide a framework for building models (Newell
1990; Anderson & Lebiere 1998). These cognitive architec-
tures have been used by researchers to successfully model
human behaviour in a wide range of tasks and to develop
practical AI systems (e.g. (Wray et al. 2005)).

Cognitive Architecture
One way to move forward on developing a system that can
pass the Turing test is to build a better cognitive architec-



ture. Unfortunately, most cognitive architectures, includ-
ing the two most prominent (Newell 1990; Anderson &
Lebiere 1998), are symbolic architectures. These have prob-
lems with, among other things, learning new symbols that
are not merely combinations of existing symbols (Frixione,
Spinelli, & Gaglio 1989). It is the hope of the authors that
a cognitive architecture based on neurons will resolve this
problem and eventually lead to an AI.

The nascent framework has been used to make some ini-
tial progress on psychological tasks. An unreported system
has been developed to reproduce data on the Stroop task
(Stroop 1935; MacLeod 1991). Another version of the sys-
tem has made progress on the question of the duration of a
short-term memory (Passmore & Huyck subm).

The Stroop task is broadly studied with the prototypi-
cal example (Stroop 1935) being colour words written in
coloured ink. A colour word like blue or red is presented
to a subject, and the subject is asked to name this word. If
the word is printed in a colour differing from the colour ex-
pressed by the word’s semantic meaning (e.g. the word red
printed in blue ink), it takes longer to identify the colour of
each printed colour name. This is due to difference between
the meaning of the word and the perceived colour. This hu-
man psychological phenomenon has been implemented in a
system based on CAs and fLIF neurons. CAs representing
the lexical representation of the word and the print colour,
both are sent external stimulation. The CAs representing the
underlying semantic meaning of the colours red and blue are
stimulated by the lexical and print colour CAs. When both
lexical and print CAs stimulate the same meaning CA it is
activated faster than when the stimuli are sent to different
meaning CAs. The results that have been simulated roughly
agree with human timing data.

A second task involves the duration of an active memory.
Short-term memories vary in the time that they remain ac-
tive. The direct correlate of short-term memory duration in
CA theory is how long the reverberating circuit has a large
number of neurons firing. A formula exists from ACT-R
(Lewis & Vasishth 2005), and a mathematical model of CA
dynamics is largely consistent with this (Kaplan, Sontag, &
Chown 1991). A series of implementations using fLIF neu-
rons (Passmore & Huyck subm) begins to make progress in
modelling these phenomena.

These two systems are examples of neural cognitive mod-
els. The Stroop task is solved by developing a particular
topology that mimics the data. The memory task is more
fundamental, and is about developing a model of CA per-
sistence that emerges from the underlying parameter set and
topology. However, the plan is not just to implement simu-
lations that mimic psychological data in fLIF neurons, but to
develop a single system that echoes the data for all the tasks,
that is, to build a neural cognitive architecture. In this, as
yet to be developed, architecture the topology for the Stroop
task will be learned, as will the topology for the memory
duration task.

It is hoped that this will gradually lead to the development
of artificial systems which can produce the full range of hu-
man cognitive behaviours. By reproducing core psycholog-
ical human behaviours, faithful models of larger aspects of

human cognition can be developed.

Develop Interesting Systems
Intelligent behaviour evolves due to active interaction with
the complex environment (Simon 1969). Therefore, in order
to build truly intelligent systems, it is important to estab-
lish a link between internal symbols and external real world
entities, events and relationships. The problems of assign-
ing symbolic representations of the system to a meaning in
the physical world is termed as the symbol grounding prob-
lem (Harnad 1990). Symbolic architectures suffer from the
symbol grounding problem, and these architectures are as
yet unable to learn new symbols and therefore find it dif-
ficult to learn new domains. Consequently, systems based
on symbolic architectures can be developed for specific do-
mains only. This is a major shortcoming of such cognitive
architectures and shows that they would find it difficult to
imitate all the processes of human cognition. On the other
hand, cognitive architectures based on neural networks pro-
vide a potential solution to the symbol grounding problem.
A neural cognitive architecture can thus provide an infras-
tructure for intelligent systems that remain constant across
different domains.

As it is important to develop systems that have links to
complex environments, a system in a video game environ-
ment has been developed (Huyck 2008) using the frame-
work. The system, called CABot1, acts as an agent in the
game assisting the user in the game. CABot1 takes input
from the environment in the form of a stream of pictures,
and input from the user in the form of textual commands.
It uses a simulated retina and primary visual cortex to pro-
cess the picture in a reasonably biologically accurate man-
ner, though the final step of visual processing is a patently
inaccurate secondary visual cortex. It processes the text with
a context free grammar parser. It uses the textual commands
to set goals, and has a subsystem for goal maintenance plan-
ning and action. Finally there is an overall control system
to that allows the language and action subsystems to take
control. All of this is done with just fLIF neurons.

CABot1 does not do much in the way of learning.
The current focus of development is learning of actions
(Belavkin & Huyck 2008), learning prepositional phrase at-
tachment ambiguity resolution, and a more psycholinguis-
tically accurate natural language parser, all to be integrated
into CABot2 in 2008. CABot3, due in May 2009, should in-
clude learning of visual items and labelling them along with
a start on addressing the symbol grounding problem.

The current plan is to continue with virtual agents for the
medium term and developing a conversational agent to fur-
ther explore linguistically driven actions. Beyond that phys-
ical robots are difficult to implement, but it is hoped that
they will eventually be implemented using the framework
and that this will lead to improved symbol grounding giv-
ing the system a better understanding of the semantics of the
physical world.

Learning
One of the key aspects of neural networks is that they can
learn. Learning has been a keystone in the hopes of devel-



oping a system that can pass the Turing test as far back as
Turing himself. That is, it is really difficult to build complex
systems, so build a system that is complex but one that is
complex enough to learn everything else it needs to know.

Learning is of course widely studied both in psychology
and in the guise of machine learning, and is an underpin-
ning strength of symbolic cognitive architectures. There are
many machine learning algorithms based on connectionist
systems, and learning is also studied in biological neural sys-
tems (Abeles et al. 1993; Schulz & Fitzgibbons 1997).

Developing a neural cognitive architecture that can be
used to implement complex agents can make extensive use
of learning. Learning enables networks of neurons to build
internal models of the environment and perform complex
tasks.

The authors have used Hebbian learning mechanism to
train networks of fLIF neurons (Huyck 2007). Hebbian
learning is an unsupervised learning mechanism in which
synaptic modification is based only on the properties and
firing behaviour of the pre and post-synaptic neurons. More-
over, it is biologically motivated; most, and perhaps all,
learning in biological neurons is Hebbian.

There are a range of proposed Hebbian learning mecha-
nisms, some have stronger links to biological studies than
others, but there is no standard agreement on the biological
learning rule or learning rules. As the learning problem is
both central and poorly understood, this will be an ongoing
area of exploration and exploitation within the framework.

Emergent Algorithms
One of the key problems with the framework is how to move
from a neural model to a neural architecture. CAs provide
some support here as different concepts are supported by
sets of neurons, so CAs act as a way of organising the system
and thinking about the system (Huyck 2001). This is also
supported by a great deal of research on CAs dating back at
least to the 1940s.

However, there are two large gaps, one between neurons
and CAs, and another between CAs and the full brain. While
the number of neurons participating in CAs is debatable,
a number around 100,000 is not an unreasonable starting
point. The number of neurons in the brain is on the order
of 100,000,000,000 and this leaves many orders of magni-
tude to handle. On the other hand, groups of neurons of size
under 100,000 arrange themselves in structures that are not
CAs. For example, on-off detectors in the retina are not in-
volved in reverberating circuits.

The gap between neurons and CAs is being explored.
There are a range of mechanisms for looking at neural be-
haviour, and progress is being made. This is made easier
by the tractable number of neurons being studied (under
100,000). Still this problem needs to be addressed in a neu-
ral cognitive architecture.

The gap between CAs and the full brain is more difficult,
perhaps a larger problem, and is certainly less studied. To
some extent this is a problem of self-organisation. Putting
inputs into a neural system should allow CAs to form via
Hebbian learning. However, this only starts to address the
question.

Cognitive Map

Cell Assembly

Neural Collections

Synaptic Associations

Neurons

Figure 1: Working Hypothesis on Hierarchy of Structure

Figure 1 provides a working hypothesis on neural struc-
tures. It goes from the smallest unit, neuron, to the
largest, cognitive maps (Tolman 1948; Jeffery & Burgess
2006). Synaptic associations are centred around a particu-
lar synapse and the neurons it connects, but they in turn are
affected by other neurons that they are connected to. Neu-
ral collections are just different structures than CAs and they
are even more ill-defined than CAs. Cognitive maps are col-
lections of CAs, and perhaps neural collections, that allow
more sophisticated behaviour. The question at hand is how
these can be formed and used. A related question, is are
they sufficient to complete the model or are other structures
needed?

One way to address this problem is to look at the human
brain. Many features are well known. Laminar architecture
is prevalant throughout the brain; primary sensory and motor
areas are well mapped; areas such as the hippocampus and
broca’s area are heavily studied; connectivity between brain
areas is well mapped. fMRI and other imaging studies on
brain areas functioning under different conditions indicate
some of the functions of some of these areas. While rapid
advancement is being made in understanding the functions
of certain parts of the brain, the overall mechanisms are not
well understood.

Another approach is to develop models to account for the
behaviours and a host of models have been proposed to ac-
count for some of the behaviours that might be generated by
these areas. Perhaps the best studied are the sensory areas.
There is a large amount of information on how these areas
function. There are also models of how these areas work
(Knoblauch et al. 2007). Similarly, there are models for the
functioning of other areas, for example the thalamacortical
and corticostriatal system is modelled by (Granger 2006).

However it must be noted that brain structures are not like
the virtual machines on which modern computation is built
(Sloman 1999). The brain has levels of organisation, but
the boundaries are fuzzy, and this fuzziness makes the sys-
tem more flexible. For example, the CA for a given word
has neurons in many areas of the brain (Pulvermuller 1999).
This enables the CA to influence and be influenced by a large
portion of the brain.

The medium term hope is to begin to develop ways of in-
tegrating these emergent algorithms to start to develop an



architecture. Initially, it is hoped that ways of improving
categorisation, signal processing, and memory storage can
be integrated to enable large scale storage of memories. A
similar goal is to integrate action, action learning, and mem-
ory. This area clearly is in need of exploration.

Turn the Wheel
The CABot1 agent (Huyck 2008) is the most sophisticated
system that has been developed to date using this framework,
and it is far from passing the Turing test. It is however appre-
ciably more sophisticated than the earlier systems that were
developed and indicates the progress that has been made.
The final key to the framework is to develop new and more
sophisticated systems in a directed way.

After some initial work on CAs (Huyck 1999), an ini-
tial proposal for the use of CAs as a key point in mod-
elling intelligent systems was made (Huyck 2001). In
that paper, several key problems were proposed, and since
then work has been done on many of these. For exam-
ple, CAs are most directly related to categorisation prob-
lems, so systems were developed to learn hierarchical cate-
gories (Huyck 2007) and to solve real world categorisation
problems (Huyck & Orengo 2005). Sequence (Ghalib &
Huyck 2007) and rules (Huyck & Belavkin 2006; Belavkin
& Huyck 2008) are other complex problems mentioned in
(Huyck 2001) that have been addressed by the framework.
The rule work addresses the variable binding problem, a
core problem for connectionist systems (Malsburg 1986;
Jackendoff 2002), and a draft publication extends this work
with a novel solution via short-term potentiation.

In some sense these solutions are ways of solving core
problems. However, they are theoretical solutions, and need
to be scaled up and integrated with each other. Work on
CABot1 is a way of combining the components into a larger
system, and synergies arise in this system. For instance,
once words and semantic items based on vision are formed
(e.g. pyramids), it is relatively simple to associate the two to
label the semantic item and perform a simple sort of symbol
grounding (publication in draft).

This current paper is a revision of the initial framework
proposal (Huyck 2001). A new set of problems needs to
be identified for candidate solution. The wheel can then be
turned to solve these problems.

There are standard connectionist problems, traditional AI
problems, and psychology problems. Connectionist prob-
lems include the binding problem, the stability plasticity
dilemma, and the symbol grounding problem. Traditional
AI problems include the frame problem and eventually the
Turing test. As mentioned before, cognitive architectures
have been extensively used as models for accounting for
psychological data, and performance on these and other ex-
periments need to be modelled. In particular, research in
the area of attention is needed. Progress has been made on
associative memory, but more is needed to handle concepts
such as semantic nets and cognitive maps, and to be more ac-
curate psychologically in terms of memory formation, loss,
and activation. There is not a shortage of future steps.

Similarly, building systems that solve real world prob-
lems, especially if they cover a broad domain, is a great way

to move forward. CABot1 is an example of this, but this
agent is just a start in the video game domain. Improve-
ments of sensory mechanisms including vision and hearing
are needed. Other virtual agents in other domains would be
useful. Eventually, physical robots should also be built.

By repeating this process, the underlying neural model
can be improved, the cognitive architecture can be devel-
oped and refined, and progress is made.

The Next Turn
To a great extent, progress is being made on multiple fronts
simultaneously. This of course includes progress within the
scientific community as a whole, and this progress needs to
be integrated into the developing model. Within the model,
progress is made on at least the neural level, the synaptic
learning level, the topological level, the emergent level, and
the system level. This section contains the start of a proposal
that incorporates these levels.

On the neural level, it is hoped that the core neural model
will remain for the duration of this next project. It may need
to change, or variants may need to be developed and com-
bined, but this not anticipated.

The synaptic learning level occurs at the interface be-
tween neurons. It is Hebbian so it is based solely on the
behaviours of the pre and post-synaptic neurons. However,
this leaves an enormous range of possibilities. The recent
use of short-term potentiation in our simulations, has opened
a space. In the past, our work on long-term potentiation has
required the rule to learn quickly, but this time can now be
elongated to allow more stable behaviour.

The topological distinctions that the model has depended
on to date are uni-directional and sparse connectivity. Be-
yond that use of subnets has enabled compartmentalisation
for engineering purposes. This compartmentalisation may
be continued especially to develop new functionality. How-
ever, it is hoped that existing systems will be made more
uniform as underlying theory is developed.

At the emergent level, our primary focus will be on devel-
oping widely distributed memories. The system has made
some use of CAs that share neurons (Huyck 2007), but has
been overly reliant on orthogonal CAs. One route may be
to follow a graph theoretical approach (Valiant 2005) that
supports distribution. From the psychological perspective
a related issue is the loss of access to memories, and from
the connectionist perspective this relates to the stability plas-
ticity dilemma (Carpenter & Grossberg 1988). This should
also incorporate cognitive maps as ways of making CAs
work together.

At the system level, the agent will be extended to allow
the production of language. This makes it a conversational
agent. This step enables a range of complex behaviour in-
cluding confirmation, and learning via interaction. It will
also require better integration of learning and forgetting of
associative memory, and better integration of learning rules.
In particular, CAs for words will now be used for production
and generation. It should also be noted that the Turing test
requires a conversational agent, so this system would be a
particularly important step toward solving the Turing test.



This proposal is of course only one option for progress.
Many small projects exist, but other possible large turns
of the wheel include improved vision, speech recognition,
modelling attention, and using the system to implement a
user interface.

Conclusion
It should be noted that there is a simulation boundary. Even
with the simplified fLIF neural model, only a few hundred
thousand neurons can be simulated in real time on a stan-
dard PC. Advances in processor speed and memory capacity
should help, and the system can be distributed. Moreover,
advances in neural chip development should lead to a great
advancement in speed in the next few years, but capacity is
a current problem.

Research in the field of AI aims to build intelligent arti-
ficial systems. Advancement in this field has been slower
than anticipated; still progress has been made in various ar-
eas which can contribute to emulating human intelligence
in machines. This paper describes a framework which in-
tegrates models of psychological behaviour and information
about underlying neural process to develop useful intelligent
systems. A framework connecting neural processing and
how it produces psychological behaviour can surely help in
building artificial system that can learn intelligent behaviour
in similar ways to humans. This framework can, in the long
run, lead to the design and development of a cognitive archi-
tecture, completely built out of neural components.

Look for low hanging fruit. Many researchers look for
problems that can be solved relatively easily, but this leaves
a range of problems unsolved. The framework described in
this paper is building a scaffolding to reach higher hanging
fruit. This will enable the solution of a range of more dif-
ficult problems. The framework is open and others are en-
couraged to join, either in discussion or, preferably, in sim-
ulation. Hopefully, together we can build a system that can
pass the test.
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