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It is widely accepted that learning is closely related to theories of optimisation and
information. Indeed, there is no need to learn if there is nothing to optimise; if one
possesses full information, then there is simply nothing new to learn. The paper considers
learning as an optimisation problem with dynamical information constraints. Unlike the
standard approach in the optimal control theory, where the solutions are given by the
Hamilton–Jacobi–Bellman equation for Markov time evolution, the optimal solution is
presented as the system of canonical Euler equations defining the optimal information–
utility trajectory in the conjugate space. The optimal trajectory is parameterised by
the information–utility constraints, which are illustrated on examples for finite and
infinite–dimensional cases.

Without uncertainty, optimisation corresponds to a simple choice problem, where
a preference relation (total preorder) is defined over the underlying set Ω. If one can
represent the preference relation by some real utility function u : Ω → R, then the optimal
solution corresponds to the extremum (e.g. the maximum) of this function. The utility
function may take the form of a Lagrangian incorporating many objectives, and such
problems have been well–studied in variational analysis and theory of optimal control [1,
2].

When the states cannot be observed directly, the problem is usually formulated
as optimisation under uncertainty, and the methods of Bayesian estimation, dynamic
programming and stochastic control are applied [3, 4]. A significant development in this
field was the theory of optimal non–linear filtering [5] and conditional Markov processes
[6], where general solutions were first described by stochastic differential equations.
Particular cases of these equations, such as the discrete and linear equations [7], have
become important in applications.

Despite the successes of this approach, its limitations are becoming apparent in some
learning problems. In particular, the standard approach is based on the classical theory of
statistical estimation, which is an asymptotic theory. This means that its predictions are
true only if the probability distributions are known with sufficient precision. Furthermore,
many problems of learning and choice under uncertainty violate some of the basic
assumptions of the weak low of large numbers, such as the independence of trials,
stationary distributions and so on. It is suggested that these limitations of asymptotic
learning theories can be overcome by considering dynamic information constraints.

The problems considering constraints on entropy or Shannon information first appeared
in information theory [8–10], where they were used to determine maximum channel
capacity and information value. Here, I first present a generalised form of these problems
by finding conditional extremum in partially ordered Banach space. Next, this general
form will be used to prove a result about the interior and exterior extrema. This result
will be then applied to a dynamical setting to define the optimal learning trajectory. The
results will be illustrated on examples for dynamical constraints on entropy for finite and
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continuous sets, and determine the optimal trajectories in the corresponding finite and
infinite–dimensional Banach spaces.

The relation of the optimal learning trajectory to other methods will be discussed.
In particular, it will be shown that the solution converges to the standard asymptotic
techniques as information increases. It will be shown also that some existing stochastic
techniques, such as simulated annealing [11], correspond to a particular case of the
solution, and the optimal trajectory can be used to define the optimal annealing schedule.
The connection between the information dynamics and the theory of conditional Markov
processes will be considered.

The implementation of the theory in several applications will be reviewed. In particular,
it will be shown how the theory was applied by the author to cognitive models of animal
learning and human decision–making [12], and how it helped to model several psychological
phenomena. Another application is in the study of optimal action selection strategies and
adaptation of agents in stochastic environments [13]. The third application is stochastic
meta–control of symbolic rule learning by neural cell–assemblies.
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